首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The widespread contamination of surface and ground water quality from the heavy use of fertilizer in modern agriculture is the current concern. Therefore, this study was carried out to develop a slow-release fertilizer using charcoal. The morphology of the charcoal impregnated fertilizer was investigated by scanning electron microscopy (SEM). This study also evaluated the release patterns of N, P, and K from impregnated charcoal using a simulated soil solution and distilled water as leaching solutions. The patterns of N, P, and K releases were examined in both static and continuous-flow conditions for 360 h. Releases of N, P, and K from impregnated charcoal were found to be slow and steady. However, the release trends of N, P, and K were higher in soil solution than distilled water under both the above conditions. Dissolution occurred when N, P, and K were released in the above leached solutions. As a result, the fertilizer impregnated charcoal could be developed as slow-release type fertilizer to minimize the contamination.  相似文献   

2.
Mine tailings coming from the exploitation of sulphide and/or gold deposits can contain significant amounts of arsenic (As), highly soluble in conditions of weathering. Open mine voids backfilling techniques are now widely practiced by modern mining companies to manage the tailings. The most common one is called cemented paste backfill (CPB), and consists of tailings mixed with low amounts of hydraulic binders (3-5%) and a high proportion of water (typically 25%). The CPB is transported through a pipe network, to be placed in the mine openings. CPB provides storage benefits and underground support during mining operations. Moreover, this technique could also enhance contaminant stabilization, by fixing the contaminants in the binder matrix. CPB composites artificially spiked with As were synthesized in laboratory, using two types of hydraulic binders: a Portland cement, and a mix of fly ash and Portland cement. After curing duration of 66 days, the CPB samples were subjected to several leaching tests in various experimental conditions in order to better understand and then predict the As geochemical behaviour within CPBs. The assessment of the As release indicates that this element is better stabilized in Portland cement-based matrices rather than fly ash-based matrices. The As mobility differs in these two matrices, mainly because of the different As-bearing minerals formed during hydration processes. However, the total As depletion does not exceed 5% at the end of the most aggressive leaching test, indicating that As is well immobilized in the two types of CPB.  相似文献   

3.
ABSTRACT: Toxicity testing is a means of establishing the environmental risk of a uranium tailings release. It is valuable in designing tailings containment structures because it assists in setting acceptable levels of risk for the design. This paper presents details of toxicity tests of the tailings from Ranger Uranium Mine, Northern Territory, Australia. The results suggest that the non-radiological toxicity of the tailings is low. The environmental risk of a tailings release is more likely to be related to the physical impacts of the tailings, including infilling of billabongs and changes in the sedimentology of riparian ecosystems rather than their biogeochemical impact. Two major results were: (1) water from treatment with washed tailing fines were not toxic to Hydra viridissima, and (2) mixtures of washed tailings fines and natural floodplain sediment (overlying water or elutriates) were not toxic to Hydra viridissima or Moinodaphnia macleayi.  相似文献   

4.
Maximum rates of nitrate removal in a denitrification wall   总被引:3,自引:0,他引:3  
Denitrification walls are constructed by mixing a carbon source such as sawdust into soils through which ground water passes. These systems can reduce nitrate inputs to receiving waters by enhancing denitrification. Maximum rates of nitrate removal by denitrification need to be determined for design purposes. To determine maximum rates of nitrate removal we added excess nitrate (50 mg N L(-1)) to a trench up-gradient of a denitrification wall during a 9-d trial. Bromide (100 g L(-1)) was also added as a conservative tracer. Movement of nitrate and bromide was measured from shallow wells and soil samples were removed for measurements of denitrification, carbon availability, nitrate, and other microbial parameters. Rates of nitrate removal, determined from the ratio of NO3-N to Br and ground water flow, averaged 1.4 g N m(-3) of wall d(-1) and were markedly greater than denitrification rates determined using the acetylene block technique (average: 0.11 g N m(-3) of wall d(-1)). These nitrate removal rates were generally lower than reported in other denitrification walls. Denitrification rates increased when nitrate was added to the laboratory incubations, indicating that despite large nitrate inputs in the field, denitrification remained limited by nitrate. This limitation was partially attributed to nitrate predominantly moving through zones of greater hydraulic conductivity or in the mobile fraction of the ground water and slow diffusion to the immobile fraction where denitrifiers were active.  相似文献   

5.
Pesticide leaching is an important process with respect to contamination risk to the aquatic environment. The risk of leaching was thus evaluated for glyphosate (N-phosphonomethyl-glycine) and its degradation product AMPA (amino-methylphosphonic acid) under field conditions at one sandy and two loamy sites. Over a 2-yr period, tile-drainage water, ground water, and soil water were sampled and analyzed for pesticides. At a sandy site, the strong soil sorption capacity and lack of macropores seemed to prevent leaching of both glyphosate and AMPA. At one loamy site, which received low precipitation with little intensity, the residence time within the root zone seemed sufficient to prevent leaching of glyphosate, probably due to degradation and sorption. Minor leaching of AMPA was observed at this site, although the concentration was generally low, being on the order of 0.05 microg L(-1) or less. At another loamy site, however, glyphosate and AMPA leached from the root zone into the tile drains (1 m below ground surface [BGS]) in average concentrations exceeding 0.1 microg L(-1), which is the EU threshold value for drinking water. The leaching of glyphosate was mainly governed by pronounced macropore flow occurring within the first months after application. AMPA was frequently detected more than 1.5 yr after application, thus indicating a minor release and limited degradation capacity within the soil. Leaching has so far been confined to the depth of the tile drains, and the pesticides have rarely been detected in monitoring screens located at lower depths. This study suggests that as both glyphosate and AMPA can leach through structured soils, they thereby pose a potential risk to the aquatic environment.  相似文献   

6.
Calculations regarding the long-term hazards to health from the radioactive gas radon which emanates from the tailings of milled uranium ores are presented here. The absolute and relative risks to the population from mill tailings, as well as technical solutions to the problem of disposal methods which would eliminate or minimize lung cancer risk, are discussed. Since the emission of radon from tailings will occur thousands of years after the projected benefits from nuclear-fission power have been obtained, the problem of present and future hazard from mill tailings calls for increased regulatory consideration.Now at Resources for the Future, Washington, D.C. 20036  相似文献   

7.
Application of municipal biosolids to mine tailings can enhance revegetation success, but may cause adverse environmental impacts, such as increased leaching of NO3- and metals to ground water. Kinetic weathering cells were used to simulate geochemical weathering to determine the effects of biosolid amendment on (i) pH of leachate and tailings, (ii) leaching of NO3- and SO4(2-), (iii) leaching and bioavailability (DTPA-extractable) of selected metals, and (iv) changes in tailing mineralogy. Four Cu mine tailings from southern Arizona differing in initial pH (3.3-7.3) and degree of weathering were packed into triplicate weathering cells and were unamended and amended with two rates (equivalent to 134 and 200 Mg dry matter ha(-1)) of biosolids. Biosolid application to acid (pH 3.3) tailings resulted in pH values as high as 6.3 and leachate pH as high as 5.7, and biosolids applied to circumneutral tailings resulted in no change in tailing or leachate pH. Concentrations of NO3--N of up to 23 mg L(-1) occurred in leachates from circumneutral tailings. The low pH of the acidic tailing apparently inhibited nitrification, resulting in leachate NO3--N of <5 mg L(-1). Less SO4(2-)-S was leached in biosolid-amended versus unamended acid tailings (final rate of 0.04 compared with 0.11 g SO4(2-)-S wk(-1)). Copper concentrations in leachates from acidic tailings were reduced from 53 to 27 mg L(-1) with biosolid amendment. Copper and As concentrations increased slightly in leachates from biosolid-amended circumneutral tailings. Small increases in DTPA-extractable Cu, Ni, and Zn occurred in all tailings with increased biosolid rate. Overall, there was little evidence of potential for adverse environmental impacts resulting from biosolid application to these Cu mine tailings.  相似文献   

8.
This study investigated the liming effect of water treatment sludge on acid mine spoils. The study was conducted with sludge from a water purification plant along the Vaal River catchments in South Africa. The optimum application rate for liming acid spoils and the speed and depth with which the sludge reacted with the mine waste were investigated. Chemical analysis indicated that the sludge is suitable as a liming agent because of its alkaline pH (8.08), high bicarbonate concentration (183.03 mg L(-1)), and low salinity (electrical conductivity = 76 mS m(-1)). The high cation exchange capacity of 15.47 cmol(c) kg(-1) and elevated nitrate concentration (73.16 mg L(-1)) also increase its value as an ameliorative material. The soluble concentrations for manganese, aluminum, lead, and selenium were high at a pH of 5 although only selenium (0.83 mg L(-1)) warranted some concern. According to experimental results, the application of 10 Mg ha(-1) of sludge to acid gold tailings increased the leach water pH from 4.5 to more than 7.5 and also increased the medium pH from 2.4 to 7.5. The addition of sludge further reduced the solubility of iron, manganese, copper, and zinc in the ameliorated gold tailings, but increased the electrical conductivity. The liming tempo was highest in the coal discard profile that had a coarse particle size distribution and took the longest to move through the gold tailings that had a fine particle size distribution. Results from this study indicate that the water treatment sludge investigated is suitable as a liming agent for rehabilitation of acid mine waste.  相似文献   

9.
A recent comprehensive review of the characteristics and utilization of copper slags encourages (properly) several applications for this important pyrometallurgical byproduct. However, the review does not include possible environmental effects from these slags. The United Nations Basel Convention on the Transboundary Movement of Hazardous Wastes and Their Disposal characterizes copper compounds that exhibit specified hazard characteristics as hazardous wastes. In 1996, the Convention considered further characterization of these and other compounds and substances. The final characterization of copper slags is as non-hazardous, i.e., exempt from control. This decision was based in part (if not largely) on the data that are presented here. Literature reports were used to accumulate data describing the chemical composition and acid leaching of commercial copper slags from three countries. From these data, average values of chemical composition and their statistical confidence limits (95%) were calculated. The variability of the chemical analyses of three commercial slags produced over 19 or 20 months were statistically analyzed and shown to be small. The concentrations of toxic heavy metals in the slags are low and the frequency distributions of the values are narrow. Most of the data are normally distributed, validating the use of the statistics used and permitting predictions of likely values. The amounts of heavy metals extracted by an aggressive standard acid leach procedure are low and well below the United States. regulatory levels derived from drinking water standards. The results for total composition and leaching illustrate why the U.S. Environmental Protection Agency made a regulatory determination that such slags are not hazardous wastes. Later, in 1996, the Basel Convention Technical Working Group concurred and the Parties to the Convention adopted their recommendation.  相似文献   

10.
Nitrogen runoff and leaching losses from two tomato and four corn field plots were compared to model predictions by CREAMS, a field-scale model for Chemicals, Runoff, and Erosion from Agricultural Management Systems. The tomato treatments were (1) trickle irrigation with one-half of applied N at preplant and one-half of applied N through the trickle irrigation system and (2) overhead sprinkler irrigation with one-half of applied N at preplant and one-half of applied N in two equal sidedressings. The corn treatments consisted of multiple N applications, minimum tillage, and “conventional” management. Soil type appeared to influence the ability of CREAMS to predict seasonal trends and treatment influences. Model predictions for N losses from tomato and corn treatments that were located on sandy soils often disagreed with measured values. Treatment influences and seasonal trends for N losses from corn treatments that were located on a higher clay content soil were more satisfactorily predicted by CREAMS. Even though model input parameter estimation and measurement techniques may be imperfect, the simulation ability of CREAMS for predicting N leaching losses from systems on deep sands probably needs to be improved. Sensitivity analyses indicated that annual NC3?-N leaching loss predictions were either minimally or not affected by changes in saturated hydraulic conductivity. Input estimations of the fraction of soil pore space filled at field capacity and soil organic matter were inversely related to annual NO3?-N leaching losses, while potential mineralizable N was directly related to yearly N leaching losses.  相似文献   

11.
The oxidative remobilization of uranium from biogenic U(IV) precipitates was investigated in bioreduced sediment suspensions in contact with atmospheric O2 with an emphasis on the influence of Fe(II) and pH on the rate and extent of U release from the solid to the aqueous phase. The sediment was collected from the U.S. Department of Energy Field Research Center (FRC) site at Oak Ridge, Tennessee. Biogenic U(IV) precipitates and bioreduced sediment were generated through anaerobic incubation with a dissimilatory metal reducing bacterium Shewanella putrefaciens strain CN32. The oxidative remobilization of freshly prepared and 1-yr aged biogenic U(IV) was conducted in 0.1 mol/L NaNO3 electrolyte with variable pH and Fe(II) concentrations. Biogenic U(IV)O2(s) was released into the aqueous phase with the highest rate and extent at pH 4 and 9, while the U remobilization was the lowest at circumneutral pH. Increasing Fe(II) significantly decreased U remobilization to the aqueous phase. From 70 to 100% of the U in the sediments used in all the tests was extractable at the experiment termination (41 d) with a bicarbonate solution (0.2 mol/L), indicating that biogenic U(IV) was oxidized regardless of Fe(II) concentration and pH. Sorption experiments and modeling calculations indicated that the inhibitive effect of Fe(II) on U(IV) oxidative remobilization was consistent with the Fe(III) oxide precipitation and U(VI) sorption to this secondary phase.  相似文献   

12.
滑熠龙  刘清  陈家斌 《四川环境》2011,30(2):101-104
随着世界对锌的需求量的增加,碱法浸出低品位氧化锌矿因其显著的优点(浸出率达90%以上、环境污染小等)而成为国内外研究的热点。本文主要介绍了低品位氧化锌矿氢氧化钠浸出体系的动力学和热力学过程,氨浸体系中氯铵、碳铵、硫氨浸出的国内外各研究单位的最近研究成果,并对碱浸过程中矿石活化、闪锌矿难溶解两类问题进行了讨论。  相似文献   

13.
Disposal of discarded chromated copper arsenate (CCA)-treated wood in landfills raises concerns with respect to leaching of preservative compounds. When unweathered CCA-treated wood is leached using the toxicity characteristic leaching procedure (TCLP), arsenic concentrations exceed the toxicity characteristic (TC) limit of 5mg/L in most cases. The majority of discarded CCA-treated wood, however, results from demolition activities, where the wood has typically been subjected to weathering. Since preservatives do migrate from the wood during its normal use, leaching characteristics of weathered and aged CCA-treated wood may differ from unweathered wood. To evaluate this, CCA-treated wood removed from service after various degrees of weathering was collected from multiple sources and leached with the TCLP, the synthetic precipitation leaching procedure (SPLP) and California's waste extraction test (WET). Five to seven individual pieces of wood were analyzed from each source. The average TCLP arsenic concentration for the 14 sources ranged from 3.2 to 13 mg/L. The average TCLP concentrations of the 100 wood pieces tested were 6.4, 5.9 and 3.2 mg/L for arsenic, copper and chromium, respectively. Overall, in 60 out of 100 samples tested by the TCLP, arsenic concentrations exceeded 5 mg/L (the TC regulatory value). SPLP leachate concentrations were similar to TCLP concentrations, although copper leached somewhat more with the TCLP. WET leachate concentrations were approximately a factor of 10 higher than TCLP concentrations. Discarded CCA-treated wood, even after exposure to years of weathering, often exceeds the TC limit for arsenic and without the current regulatory exemption would possibly require management as a TC hazardous waste in the US.  相似文献   

14.
Copper flotation waste from copper production using a pyrometallurgical process contains toxic metals such as Cu, Zn, Co and Pb. Because of the presence of trace amounts of these highly toxic metals, copper flotation waste contributes to environmental pollution. In this study, the leaching characteristics of copper flotation waste from the Black Sea Copper Works in Samsun, Turkey have been investigated before and after vitrification. Samples obtained from the factory were subjected to toxicity tests such as the extraction procedure toxicity test (EP Tox), the toxicity characteristic leaching procedure (TCLP) and the "method A" extraction procedure of the American Society of Testing and Materials. The leaching tests showed that the content of some elements in the waste before vitrification exceed the regulatory limits and cannot be disposed of in the present form. Therefore, a stabilization or inertization treatment is necessary prior to disposal. Vitrification was found to stabilize heavy metals in the copper flotation waste successfully and leaching of these metals was largely reduced. Therefore, vitrification can be an acceptable method for disposal of copper flotation waste.  相似文献   

15.
Land application of manure can exacerbate nutrient and contaminant transfers to the aquatic environment. This study examined the effect of injecting a dairy cattle (Bostaurus L.) manure slurry on mobilization and leaching of dissolved, nonreactive slurry components across a range of agricultural soils. We compared leaching of slurry-applied bromide through intact soil columns (20 cm diam., 20 cm high) of differing textures following surface application or injection of slurry. The volumetric fraction of soil pores >30 microm ranged from 43% in a loamy sand to 28% in a sandy loam and 15% in a loam-textured soil. Smaller active flow volumes and higher proportions of preferential flow were observed with increasing soil clay content. Injection of slurry in the loam soil significantly enhanced diffusion of applied bromide into the large fraction of small pores compared with surface application. The resulting physical protection against leaching of bromide was reflected by 60.2% of the bromide tracer was recovered in the effluent after injection, compared with 80.6% recovery after surface application. No effect of slurry injection was observed in the loamy sand and sandy loam soils. Our findings point to soil texture as an important factor influencing leaching of dissolved, nonreactive slurry components in soils amended with manure slurry.  相似文献   

16.
Concerns over increased phosphorus (P) application with nitrogen (N)-based compost application have shifted the trend to P-based composed application, but focusing on one or two nutritional elements does not serve the goals of sustainable agriculture. The need to understand the nutrient release and uptake from different composts has been further aggravated by the use of saline irrigation water in the recent scenario of fresh water shortage. Therefore, we evaluated the leachability and phytoavailability of P, N, and K from a sandy loam soil amended with animal, poultry, and sludge composts when applied on a total P-equivalent basis (200 kg ha(-1)) under Cl(-) (NaCl)- and SO4(2-) (Na2SO4)-dominated irrigation water. Our results showed that the concentration of dissolved reactive P (DRP) was higher in leachates under SO(4)(2-) than Cl(-) treatments. Compost amendments differed for DRP leaching in the following pattern: sludge > animal > poultry > control. Maize (Zea mays L.) growth and P uptake were severely suppressed under Cl(-) irrigation compared with SO4(2-) and non-saline treatments. All composts were applied on a total P-equivalent basis, but maximum plant (shoot + root) P uptake was observed under sludge compost amendment (73.4 mg DW(-1)), followed by poultry (39.3 mg DW(-1)), animal (15.0 mg DW(-1)), and control (1.2 mg DW(-1)) treatment. Results of this study reveal that irrigation water dominated by SO4(2-) has greater ability to replace/leach P, other anions (NO3(-)), and cations (K+). Variability in P release from different bio-composts applied on a total P-equivalent basis suggested that P availability is highly dependent on compost source.  相似文献   

17.
The oil sands industry in Alberta (Canada) has developed the composite tailings (CT) process to reduce the fluid fine tails resulting from the processing of oil sands. This process uses a chemical coagulant (gypsum or alum) to produce aggregated fines (clay), so they are retained with the coarse sand fraction of the extraction tailings to form CT, from which fines-free water is released relatively quickly compared with untreated tailings. The resulting CT and CT waters are saline-sodic, with Na+, SO4(2-), and Cl- being the dominant ions. When freshly deposited, the CT deposits are too soft for access by reclamation equipment, and the time required for these deposits to remove the water sufficiently to support traffic is uncertain. A greenhouse study was designed to determine the suitability of barley (Hordeum vulgare L.) for reclamation of fresh CT deposits and to evaluate benefits of peat amendments. This study assessed germination, early plant growth, chlorophyll content, and survival of barley growing in alum- and gypsum-treated CT, with and without peat amendment. Ion and trace metal accumulation in the root and shoot tissues of barley was determined. Amendment of CT with peat improved germination, survival, and growth of barley, but did not prevent leaf injury (probably due to Na and Cl- and possibly multiple nutrient deficiency). Field studies will be undertaken to validate our greenhouse results suggesting that barley could be used to improve dewatering of the freshly deposited substrates, reduce soil erosion, and facilitate leaching of ions by root penetration into the substrate.  相似文献   

18.
原油在土壤中迁移及降解的研究   总被引:1,自引:0,他引:1  
为了解原油在土壤中淋滤及降解的规律,剖析了大庆老油田开发区贮油池土壤含油状况,进行了自然植被不同类型土壤的浇油、室内原油淋滤模拟及栽培试验。结果表明:贮油池土壤原油淋滤深度绝大部分集中在0~30cm,以下原油明显减少(除沙化土壤外);盐碱土集中在0~10cm;草甸黑钙土集中在0~50cm;柱内油水混合渗透试验,80%集中在0~20cm;原油覆盖土壤表面时清水淋渗较弱,在0~20cm内残留94%;加原油的土壤降解试验,平均降解59.92%,范围为53.94%~62.25%,盆栽试验平均降解61.99%,范围为55.12%~70.68%。  相似文献   

19.
In the carbonate soils contaminated by a toxic spill from a pyrite mine (Aznalcóllar, southern Spain), a study was made of a thin layer (thickness = 4 mm) of polluted soil located between the pyrite tailings and the underlying soil. This layer, reddish-yellow in color due to a high Fe content, formed when sulfates (from the oxidation of sulfides) infiltrated the soil, causing acidification (to pH 5.6 as opposed to 8.0 of unaffected soil) and pollution (in Zn, Cu, As, Pb, Co, Cd, Sb, Bi, Tl, and In). The less mobile elements (As, Bi, In, Pb, Sb, and Tl) concentrated in the uppermost part of the reddish-yellow layer, with concentration decreasing downward. The more mobile elements (Co, Cd, Zn, and Cu) tended to precipitate where the pH was basic, toward the bottom of the layer or in the upper part of the underlying soil. The greatest accumulations occurred within the first 6 mm in overall soil depth, and were negligible below 15 mm. In addition, the acidity of the solution from the tailings degraded the minerals of the clay fraction of the soils, both the phyllosilicates as well as the carbonates. Also, within the reddish-yellow layer, gypsum formed autigenically, together with complex salts of sulfates of Fe, Al, Zn, Ca, and Mn, jarosite, and oxihydroxides of Fe.  相似文献   

20.
The aim of this study was to determine whether or not Sb and other elements (Ni, Cu, Bi, Tl, and Hg) originating from Pb alloy (2-5 wt. % Sb) bullets become more soluble as a result of weathering and what mechanisms possibly control their solubility. Samples were taken from bank material behind the targets at seven Swiss shooting ranges. The samples were dried, sieved, analyzed, and subjected to leaching experiments. Total average concentrations of Sb ranged from 0.5 to 13.8 g kg(-1). In the leaching experiments, Sb was almost exclusively present in solution as the oxidized species Sb(V) in concentrations of up to 5 mg L(-1). The Ca mineral Ca[Sb(OH)6]2 is suggested to control dissolved Sb(V) concentrations in soils at high concentrations. Oxalate extractions suggested that approximately 50% of Sb [predominantly Sb(V)] in the <0.5-mm fraction was adsorbed to Fe (hydr)oxides and possibly other minerals, such as calcite, that are soluble at pH 2. However, it is possible that only a fraction of the oxalate-extractable Sb(V) is reversibly bound to mineral surfaces. It was concluded that the release of Sb is significant and considerably higher than the other elements under investigation and that the mechanisms controlling Sb mobility should be further investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号