首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We determined the nuclear 18S rRNA sequences for 41 species of octocorals and used these to address the validity of the historical ordinal divisions and the current subordinal divisions within the subclass Octocorallia. We also explored the phylogenetic affinities of the species Dendrobrachia paucispina, which was originally classified in the order Antipatharia (subclass Ceriantipatharia) although polyp structure indicates it belongs in the subclass Octocorallia. Trees constructed using maximum likelihood techniques are incongruent with the current and historical taxonomy of the Octocorallia. There appeared to be three major clades of octocorals. The first clade included most, but not all, pennatulaceans as a monophyletic group. The second clade contained 21 species, representing all major octocoral groups other than pennatulaceans. The third clade contained members from three suborders of the Alcyonacea and one member of the Pennatulacea. These data could not be used to distinguish the branching order of the three major clades. The species D. paucispina had a close affinity with the genera Corallium and Paragorgia (Alcyonacea: Scleraxonia), although its morphology suggests it is more similar to the genus Chrysogorgia (Alcyonacea: Calcaxonia). The morphological character of dimorphism (the presence of both autozooids and siphonozooids within a single colony) corresponded loosely with the topology of the most likely trees, and a single origin of dimorphism could not be rejected. Despite sampling from the majority of families within the Octocorallia, many of the relationships within this group remain ambiguous. Received: 16 June 2000 / Accepted: 14 September 2000  相似文献   

2.
Endeis laevis (Grube) is the more littoral of the two British members of the Endeidae (Pycnogonida). The process of vitellogenesis is examined. It closely resembles that of annelids and Limulus polyphemus, in which the majority of the yolk is synthesised within the oocyte with only a small contribution from outside the oocyte. This contrasts with the method in insects in which most of the yolk comes from outside the oocyte. The vitellogenic process is slow, the eggs accumulating yolk over the winter. Although E. laevis has two reproductive cycles each year, only one brood is produced, juveniles occurring over a restricted period (July and early August).  相似文献   

3.
Sea spiders are conspicuous, and often abundant, members of the Antarctic benthic community. Nymphonidae (Pycnogonida) in Southern Ocean waters comprise over 240 species which are often difficult to assign due to their intraspecific ‘highly variable’ morphology. In particular, Nymphon australe, the numerically dominant species in Antarctic waters is known to have a high level of phenotypic variation in external morphology and is also reported to have a circumpolar distribution. Circumpolarity seems contradictory to the pycnogonid’s brooding lifestyle and presumably limited dispersal. Here we examine the genetic diversity of several Nymphon species collected in the Antarctic Peninsular region. Concomitantly, we assess the genetic structure of N. australe to gain insight into Nymphon dispersal capacity. Cytochrome c oxidase subunit I (COI) and 16S ribosomal gene data suggest a recent common history and/or recent gene-flow of N. australe populations across nearly 800 km of the Antarctic Peninsula. Furthermore, these data support that the Antarctic Peninsula region may hold two previously unrecognized species of Nymphon. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
The microbial community cultured from the marine sponge Rhopaloeides odorabile Thompson et al. is dominated by a single bacterium, designated strain NW001. Sequence analysis of 1212 bp of the16S rRNA gene of strain NW001 indicates that it is a member of the α-subgroup of the class Proteobacteria. The association between this bacterium and its host sponge was observed in healthy R. odorabile collected from six different reefs in the Great Barrier Reef representing a geographic distance of 460 km, and in four collections in different seasons in 1997–1998 at Davies Reef (18°49.6′S; 147°34.49′E). The proportion of colonies of strain NW001 in samples from R. odorabile, expressed as a percentage of the total heterotrophic bacterial colony count, showed no significant spatial (range: 81–98%) or temporal differences (range: 81–99%), although colony counts of strain NW001 varied by up to two orders of magnitude between reef sites and sampling periods. The location of strain NW001 within the sponge mesohyl was visualized by in situ hybridization, using fluorescently labeled probes based on the 16S rRNA gene sequence of this strain. Cells of strain NW001 surround the choanocyte chambers, suggesting that these bacteria may play a role in nutrient uptake by the sponge. The absence of strain NW001 from corresponding seawater samples indicates that it has a specific, intimate relationship with R. odorabile and is not being utilized as a food source. A unique cyanobacterium related to the genera Leptolyngbya and Plectonema was also isolated from R. odorabile and characterized by 16S rRNA gene sequencing. Received: 19 May 2000 / Accepted: 18 November 2000  相似文献   

5.
Grapsoid crabs of the genera Planes and Plagusia are commonly referred to as “rafting crabs” due to their propensity to live on flotsam and pelagic marine animals. Planes minutus and Planes major (=Planes cyaneus) are epibionts of sea turtles. Occurrences of grapsoid crabs in the genera Planes and Plagusia were evaluated on a total of 27 olive ridley sea turtles, Lepidochelys olivacea, from the eastern tropic Pacific (1998–2001) and the Hawaiian Islands (2002) captured in July–December each year. This is the first report of Planes marinus and Plagusia squamosa on sea turtles, and of P. major, P. marinus, and P. squamosa in sympatry on a confined substrate. Stomach content analyses showed P. major and P. marinus consumed a variety of neuston and marine vegetation, with the former consuming considerably more animal material. Epibiotic P. squamosa consumed mostly plant material. The three Planes species had distinctive differences in gastric mill tooth morphology. The versatile mouthparts of P. marinus are described and resemble those of their congeners. Most female P. major and P. marinus collected were ovigerous and present in all survey months.  相似文献   

6.
 Mud crabs of the family Panopeidae are common organisms in coastal soft-bottom, vegetated, rubble, and oyster-bed communities along the temperate and tropical coastlines of the American continent. Similar morphology among many species renders their distinction and classification difficult. Here, we present phylogenies of western Atlantic Panopeidae based on DNA sequences of the mitochondrial large subunit rRNA (16S; 529 basepairs) and cytochrome oxidase I (COI; 640 basepairs) genes. Results suggest that the speciose genera Panopeus and Eurypanopeus are not monophyletic and that their taxonomy does not accurately reflect evolutionary partitions. In two cases (P. herbstii complex and E. depressus and allies), the molecular findings strongly support sister-species relationships that differ from previous morphology-based assumptions. We suggest that convergence or morphological stasis are responsible for the phenotypic similarities between divergent evolutionary lineages. Received: 23 July 1999 / Accepted: 5 April 2000  相似文献   

7.
Levels of total RNA, total DNA, 18S ribosomal RNA (rRNA), poly(A) messenger RNA (mRNA), and two mRNAs coding for abundant myofibrillar proteins were estimated in laboratory-reared Atlantic cod larvae (Gadusmorhua Linnaeus) under conditions of feeding and starvation. DNA probes specific for cod 18S rRNA, β-actin mRNA and myosin heavy chain mRNA were developed. In two experiments on newly hatched larvae in fed and starved treatments, changes in 18S rRNA and mRNA were similar to changes in total RNA during the first weeks after hatching. RNA levels in fed and starved larvae in both experiments were stable, or increased, over the first 3 d after hatching, and then decreased to minima at 9 d. RNA levels increased after 9 d, with the degree and timing of the increase varying among the individual classes of RNA. Complete mortality of starved larvae in both experiments was observed shortly after 11 d, corresponding to exhaustion of endogenous yolk reserves. Total RNA content, RNA/DNA ratio, 18S rRNA levels, total mRNA pool, and actin and myosin heavy chain mRNA levels showed significant differences in fed and starved first-feeding larvae after yolk exhaustion. In another experiment with 3- to 4-week-old cod larvae, 18S rRNA levels were significantly lower in starved versus fed larvae after 3 d. Total RNA responded to feeding and starvation within a similar time as 18S rRNA and the mRNAs examined. Analysis of bulk nucleic acids using fluorometric dyes was simpler and faster than analysis of individual RNAs using hybridization probes, and provides valuable information on recent growth and condition of individual larvae. However, analysis of specific RNAs can provide information on expression of the corresponding genes and reveal the changes underlying trends seen in bulk RNA. Received: 9 February 1996 / Accepted: 7 June 1999  相似文献   

8.
Nearly all social spiders spin prey-capture webs, and many of the benefits proposed for sociality in spiders, such as cooperative prey capture and reduced silk costs, appear to depend on a mutually shared web. The social huntsman spider, Delena cancerides (Sparassidae), forms colonies under bark with no capture web, yet these spiders remain in tightly associated, long-lasting groups. To investigate how the absence of the web may or may not constrain social evolution in spiders, we observed D. cancerides colonies in the field and laboratory for possible cooperative defense and foraging benefits. We observed spiders’ responses to three types of potential predators and to prey that were introduced into retreats. We recorded all natural prey capture over 447 h both inside and outside the retreats of field colonies. The colony’s sole adult female was the primary defender of the colony and captured most prey introduced into the retreat. She shared prey with younger juveniles about half the time but never with older subadults. Spiders of all ages individually captured and consumed the vast majority of prey outside the retreat. Young spiders benefited directly from maternal defense and prey sharing in the retreat. However, active cooperation was rare, and older spiders gained no foraging benefit by remaining in their natal colony. D. cancerides does not share many of the benefits of group living described in other web-building social spiders. We discuss other reasons why this species has evolved group living.  相似文献   

9.
The ascidian Styela clava, native to the north-west Pacific, is an invasive species affecting New Zealand’s marine ecosystems, biodiversity and aquaculture operations. To provide detailed information on the reproductive biology of S. clava in New Zealand for post-border biosecurity management, long-term seasonal patterns of gametogenesis were determined from May 2006 to May 2008 in Auckland’s Waitemata Harbour (36°49′20″S, 174°45′85″E). Of particular interest was whether the critical 15°C threshold spawning temperature for reproduction observed in the Northern Hemisphere applied here to the first Southern Hemisphere study. S. clava gametogenesis followed a regular seasonal cycle with ripe gametes appearing as early as September and persisting to June; this time frame corresponds to the period when sea surface temperatures in the region first reach 15°C and with spawning occurring mainly during late summer to early autumn. From photoperiod manipulation, it was determined that spawning occurred at approximately 18:20. The extended reproductive period and a short generation time in the Waitemata Harbour provides a lengthy opportunity for S. clava to spread. Findings are discussed in relation to S. clava’s post-border management.  相似文献   

10.
Summary Seothyra henscheli (Eresidae) is a burrowing spider that lives in the dune sea of the southern Namib Desert, Namibia. Prey capture by these spiders involves a foray from a cool subterranean retreat to the undersurface of a capture web that can be lethally hot. Striking, disentangling and retrieving prey from the capture web typically involves several short trips to the capture web, alternating with retreats to the cool burrow. It has been suggested that this behavior limits the increase of body temperature a spider must experience while working at the hot capture web. We used biophysical models in conjunction with direct observations of prey-capture behavior and distributions of sand temperature to estimate body temperatures experienced by S. henscheli during prey capture. In the circumstances we observed, only the relatively long post-strike retreat from the capture web is important in keeping spiders' body temperatures from exceeding their lethal limits. After the post-strike retreat, shuttling appreciably limits the increase in body temperature of small individuals, but may have little effect on body temperature increase in larger spiders. Correspondence to: J.S. Turner at the present address  相似文献   

11.
The nocturnal orb-web spider Larinioides sclopetarius lives near water and frequently builds webs on bridges. In Vienna, Austria, this species is particularly abundant along the artificially lit handrails of a footbridge. Fewer individuals placed their webs on structurally identical but unlit handrails of the same footbridge. A census of the potential prey available to the spiders and the actual prey captured in the webs revealed that insect activity was significantly greater and consequently webs captured significantly more prey in the lit habitat compared to the unlit habitat. A laboratory experiment showed that adult female spiders actively choose artificially lit sites for web construction. Furthermore, this behaviour appears to be genetically predetermined rather than learned, as laboratory-reared individuals which had previously never foraged in artificial light exhibited the same preference. This orb-web spider seems to have evolved a foraging behaviour that exploits the attraction of insects to artificial lights. Received: 8 June 1998 / Received in revised form: 18 January 1999 / Accepted: 19 January 1999  相似文献   

12.
Summary.  Beetles of the family Lycidae have long been known to be chemically protected. We present evidence that North American species of the lycid genera Calopteron and Lycus are rejected by thrushes, wolf spiders, and orb-weaving spiders, and that they contain a systemic compound that could account, at least in part, for this unacceptability. This compound, a novel acetylenic acid that we named lycidic acid, proved actively deterrent in feeding tests with wolf spiders and coccinellid beetles. Species of Lycuscommonly figure as models of mimetic associations. Among their mimics are species of the cerambycid beetle genus Elytroleptus, remarkable because they prey upon the model lycids. We postulated that by doing so Elytroleptus might incorporate the lycidic acid from their prey for their own defense. However, judging from analytical data, the beetles practice no such sequestration, explaining why they remain relatively palatable (in tests with wolf spiders) even after having fed on lycids. Chemical analyses also showed the lycids to contain pyrazines, such as were already known from other Lycidae, potent odorants that could serve in an aposematic capacity to forestall predatory attacks. David Utterback: Deceased  相似文献   

13.
The study describes the diversity of actinobacteria isolated from the marine sponge Iotrochota sp. collected in the South China Sea. Species and natural product diversity of isolates were analyzed, including screening for genes encoding polyketide synthases (PKS) and nonribosomal peptide synthetase (NRPS), and 16S rRNA gene restriction fragment length polymorphism (RFLP). PKS and NRPS sequences were detected in more than half of the isolates and the different “PKS-I–PKS-II–NRPS” combinations in different isolates belonging to the same species indicated a potential natural product diversity and divergent genetic evolution. The phylogenetic analysis based on 16S rRNA gene sequencing showed that the isolates belonged to genera Streptomyces, Cellulosimicrobium, and Nocardiopsis. The majority of the strains tested belonged to the genus Streptomyces and one of them may be a new species. To our knowledge, this is the first report of a bacterium classified as Cellulosimicrobium sp. isolated from a marine sponge. Key Laboratory of Marine Bio-recourses Sustainable Utilization (LMB-CAS), Guangdong Key Laboratory of Marine Materia Medica (LMMM-GD), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People’s Republic of China.  相似文献   

14.
We examined the location of squuestered secondary metabolites in three species of sea hares, Stylocheilus longicauda, Dolabella auricularia, and Aplysia californica (Opisthobranchia: Anaspidea). The sea hares ate a natural diet or were fed an artificial diet containing secondary metabolites in the laboratory. In all three species, sequestered secondary metabolites were located almost exclusively in the digestive gland, an internal organ, rather than in the exterior parts of the body, in eggs, or in ink (released when sea hares are disturbed). S. longicauda, a specialist sea hare, was able to sequester measur-able amounts of all six algal metabolites offered (caulerpenyne, halimedatetraacetate, pachydictyol A, malyingamides A and B, and ochtodene) and two (luffariellolide and Dysidea spp. brominated diphenyl ether) of three sponge metabolites offered (chondrillin was not sequestered). Malyngamides A and B, found in the host plant of S. longicauda, were sequestered at high, but not unique concentrations. D. auricularia, a generalist sea hare, was fed caulerpenyne, pachydictyol A and malyngamide B; patterns of sequestration of these three compounds did not differ markedly between S. longicauda and D. auricularia. S. longicauda did not lose measurable amounts of malyngamides after 18 d on a malyngamide-free diet. These results suggest that sea hares have generic mechanisms for sequestering algal metabolites rather than mechanisms that are tightly linked to particular compounds, that these mechanisms do not differ dramatically between species, and that sequestered secondary metabolites are not located optimally for defense.  相似文献   

15.
DNA sequences for a 639 bp region of mitochondrial cytochrome oxidase I (mtCOI) were determined for 34 species of ten genera in two families of calanoid copepods, including: Calanoides, Cosmocalanus, Meoscalanus, Nannocalanus, Neocalanus, and Undinula (family Calanidae); and Clausocalanus, Ctenocalanus, Drepanopus, and Pseudocalanus (family Clausocalanidae). MtCOI gene sequences proved to be diagnostic molecular systematic characters for accurate identification and discrimination of the species. Levels of mtCOI variation within species (range: 1-4%) were significantly less than those between species (9-25%). Higher levels of intraspecific variation (>2%) usually resulted from comparisons between ecologically distinct or geographically isolated populations. MtCOI sequence variation resolved evolutionary relationships among species of Clausocalanus, Neocalanus, and Pseudocalanus, although there was evidence of saturation at some variable sites. Phylogenetic relationships among 11 copepod genera (adding Calanus to the list above) were reconstructed using a 660 bp region of nuclear small-subunit 18S rRNA, a slowly evolving gene that showed no variability within a species and differed by <1-6% among the genera. The 18S rRNA molecular phylogeny was consistent with the accepted limits of the Calanidae and Clausocalanidae and clearly resolved relationships among genera within each family. This molecular systematic and phylogenetic study was part of the ZooGene project, an international partnership to create a DNA sequence database as a tool for uniform, molecularly based species identification of planktonic calanoid copepods and euphausiids.  相似文献   

16.
Sperm economy and limitation in spiny lobsters   总被引:5,自引:0,他引:5  
Sperm limitation, when female fertilisation success is constrained by the supply of sperm, is generally perceived to be an uncommon feature of reproduction in species which directly transfer gametes during copulation. Male size, previous copulations, and the balance of expected reproductive return and future mating opportunity may, however, limit the amount of sperm males transfer to females. We used laboratory experiments where mate size could be manipulated and its consequences on spermatophore size and clutch size determined, to show that in two genera of spiny lobsters (Crustacea: Palinuridae) male reproductive output limits the size of clutches brooded by females. In Panulirus argus from the Florida Keys, we show that while male size affects spermatophore area, males also vary the amount of ejaculate positively with female size. Furthermore, the area of the spermatophore has a greater influence than female size on subsequent clutch weight. In Jasus edwardsii from New Zealand, female size, male size and mate order all affect clutch weight. In both species, clutches fertilised by small males in the laboratory are significantly smaller than clutches fertilised by large males. These results suggest that to ensure they receive sufficient sperm, females should either mate several times prior to oviposition, mate as early as possible in the reproductive season, or choose large, preferably unmated males as partners and thus compete with other females for preferred males. Sperm-limited female fecundity has the potential to limit the egg production of fished populations where large males are typically rare. Received: 18 May 1998 / Received in revised form: 20 November 1998 / Accepted: 30 November 1998  相似文献   

17.
18.
19.
The female genital structures of six calanoid copepod species, belonging to the genera Gaussia, Metridia and Pleuromamma, were studied using light and scanning electron microscopy (SEM). The copulatory pores and seminal receptacles are paired in Gaussia and Metridia, but unpaired in Pleuromamma. A thin epicuticle and a spermatophoral plug are the mechanisms by which the pores are closed before and after copulation. The pores open directly into the receptacles, which are reduced to shallow integumentary depressions in Gaussia. The mode of insemination suggests two matings in females of Gaussia and Metridia, but only one in Pleuromamma. Paired gonopores and egg-laying ducts are present in the three genera, with a characteristic, closed semicircular configuration; these are opened during egg-laying by the action of retractor muscles of the gonoporal plates. The seminal ducts, which open into the gonopores, are long, thin and paired in Gaussia and Metridia, whereas in Pleuromamma they are short, broad and unpaired. The opening of the seminal and egg-laying ducts is synchronized. The shell ducts are paired in Gaussia and Metridia, unpaired in Pleuromamma; these arise from glands situated in the lateral expansions of the last prosomite and lead into the distal part of each egg-laying duct in Gaussia and Metridia and of the egg-laying duct receiving the seminal duct in Pleuromamma. The position and anatomy of these structures are compared to those of other families and genera, and a functional interpretation of their morphology is proposed. The main evolutionary trends of the different structural patterns of female calanoid genitalia are presented in tabular form. Received: 30 December 1996 / Accepted: 11 February 1997  相似文献   

20.
Males of the brush-legged wolf spider Schizocosa ocreata (Hentz) have conspicuously decorated forelegs used in courtship and agonistic displays. Approximately one in five juvenile males has a missing or regenerating foreleg, and regeneration of a leg lost during development usually results in the absence of a decorative tuft on that leg. The subsequent asymmetry in this male secondary character significantly decreases success in both courtship of females and male-male agonistic interactions. Experimental removal of tufts from one leg of previously successful symmetric males produces similar results. As a test for concomitant behavioral effects, female spiders were shown video images of a courting male with symmetric tufts and the same video image altered to have asymmetric tufts. Female receptivity to the asymmetric video image was lower. In contrast to fluctuating asymmetry resulting from developmental instability, leg tuft asymmetry in S. ocreata most likely arises from a single event during ontogeny – possibly leg loss from an aggressive or predator encounter  – and may serve as a quality indicator in female mate choice. Received: 27 July 1995/ Accepted after revision: 19 November 1995  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号