首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
During two consecutive growing seasons, the same potted individuals of European aspen (Populus tremula), grown from root cuttings of one clone, were fumigated with either ambient air or ozone concentrations of 0 (control), 0.05 or 0.1 microlitre litre(-1). Structure and biomass of the annually formed branches were analysed after excision at the end of each season. Only at 0.1 microlitre litre(-1) was branch weight reduced, and crooked axes occurred in each season. During the second season, branch length and leaf sizes were strongly reduced, while many leaves displayed yellowish deficiency symptoms and lowered cation concentrations. Such leaves contrasted to those showing characteristic O3-bronzing. Although foliage density was enhanced due to reduced branch length, the area of attached foliage was limited by the small leaf sizes, necrotic leaves and premature leaf loss. During mid-summer of the second fumigation period, photosynthetic capacity, carboxylation efficiency and water-use efficiency (WUE) declined in (attached) yellowish and bronze leaves at 0.1 microlitre litre(-1), whereas green leaves at 0.05 microlitre litre(-1) displayed accelerated senescence in late summer while maintaining WUE. It is concluded that the differences in branch growth between the two growing seasons were caused in part by internal changes in those plant organs (root and basal stem), which had experienced both fumigation periods.  相似文献   

2.
The differences in growth, leaf senescence, visible ozone injuries and stomatal density between one coastal site (natural ozone) and two inland sites (natural and elevated ozone) in Finland were determined for saplings of Betula pendula clones grown under open-field conditions during two growing seasons. Responses in growth, leaf senescence, visible injuries, and stomatal density were determined in relation to cumulative ozone exposure accumulated over the thresholds of 30, 40 and 50 ppb (10(9)) during the exposure period. In addition, the effects of the different ozone exposures on ultrastructure of chloroplasts were studied. Increasing ozone exposure resulted in reduced shoot dry weight, stimulated (first year) or reduced (second year) height growth, accelerated autumn yellowing of leaves, increased stomatal density, visible symptoms and chloroplast injuries, and increased number and size of plastoglobuli. Newly expanded mature leaves in midsummer were more sensitive to ozone episodes than younger developing leaves in the early growing season. In most parameters, the best correlation was achieved with the exposure index AOT30. Ozone risk for birch is highest in the southern coastal area of Finland, where background ozone concentrations are higher than in inland sites.  相似文献   

3.
The sensitivity of Cicer arietinum, Vigna mungo and Trigonella foenum-graecum to O(3) has been assessed at different stages of growth and development. Plants of different ages (0, 1, 2, 4 and 6 weeks old) were fumigated with 0 and 120 nl litre(-1) O(3), from 09.30 h to 16.30 h each day for four weeks, in hemispherical chambers located out-of-doors. Seed germination was not affected by O(3) in any of the species, but there were responses (differing between species) on the cotyledons. True leaves were fairly resistant when young but later they became more sensitive. Premature senescence and earlier abscission of leaves (in C. arietinum and T. foenum-graecum) and flowers and abortive fruit drop (in C. arietinum) were also observed. Of the five growth stages examined, 2- and 4-week-old plants seemed to be most sensitive except for Trigonella where sensitivity decreased with increasing age of the plants. The partitioning and distribution of dry matter among different plant parts was also significantly disturbed and root, leaf and stem were adversely affected in a decreasing order. However, the percentage reductions in dry weight per plants for Cicer and Vigna increased with age up to four weeks, then declined abruptly. Growth reductions at the 0- and 6-week-old stages differed only slightly and were very small in magnitude. It may, therefore, be suggested that the plants of these legumes in early stages of exponential growth are more vulnerable to O(3) damage and that the developmental or physiological age is an important factor in O(3) sensitivity.  相似文献   

4.
This study focuses on the effect of plants on the biogeochemistry of sulfur species and the mobility of heavy metals in wetland sediments. Results showed that, in the presence of plants, sediments had elevated sulfate concentrations in the rhizosphere during the growing season, ranging from 0.2 to 6.20 mmol L(-1), whereas only a small difference in the sulfate profiles between vegetated and non-vegetated sediments was observed during senescence. Based on the sulfate concentration increase, the oxygen release rate from the roots to achieve the corresponding oxidation of sulfide was estimated as 0.85 g m(-2) day(-1). Evapotranspiration-induced advection is a major contributor to the transport of sulfate from the water column into the sediments, and also allows dissolved trace metals (i.e. Cd, Pb, and Zn) to be transported into the sediments and react with the acid volatile sulfide pool, resulting in the immobilization of trace metals in these sediments.  相似文献   

5.
Tomato (Lycopersicon esculentum Mill.) 'New Yorker' plants were exposed to O(3) to compare leaf diffusive conductance (LDC) before exposure to O(3) with O(3) sorption rates and visible injury ratings. Two plant development stages and four or five leaf growth stages were examined. The LDC varied among leaf growth stages and between plant development stages and leaf surfaces; there was no continuity in the LDC pattern. Sorption rates differed among some leaf growth stages, and between plant development stages in expanding leaves (growth stage 1). For both development stages high sorption rates occurred in fully mature leaves; otherwise little similarity between corresponding leaf growth stages was evident. Total O(3) flux to the leaf was not well predicted by the LDC for water vapour; nor was visible injury well related to total flux. Differential mesophyll processes and leaf surface sorption capabilities may have accounted for some of the inconsistencies observed.  相似文献   

6.
Because the current critical level of ozone (O(3)) for forest trees is based only on one species, the responses of five deciduous tree species were differentiated in a climate chamber experiment. The number of symptomatic leaves per tree was significantly increased, and stomatal conductance was decreased under 50% ambient+30 nl l(-1) O(3) as compared to 'normal' senescence at 50% ambient [O(3)]. Species with a high stomatal conductance did not show earlier or more leaf injury symptoms. The additional 30 nl l(-1) O(3) induced specific pectinaceous cell wall protrusions, phenolic cell wall incrustations, tonoplast vesicles, and inhomogeneous, condensed/precipitated phenolic material in the vacuoles. Due to added O(3), cell senescence was accelerated with increased electron-density of the cytoplasm, and initial chloroplast degeneration. The slow degeneration process started in mesophyll cells, and expanded into epidermal and finally guard cells. Because of the large variance in biomass between individuals and species, the current critical level is supported by the assessment of visible leaf symptoms rather than growth reduction.  相似文献   

7.
Potato (Solanum tuberosum cv. Bintje) was grown in open-top chambers under three carbon dioxide (ambient and seasonal mean concentrations of 550 and 680 mumol mol-1 CO2) and two ozone concentrations (ambient and an 8 h day-1 seasonal mean of 50 nmol mol-1 O3) between emergence and final harvest. Periodic non-destructive measurements were made and destructive harvests were carried out at three key developmental stages (24, 49 and 101 days after emergence) to establish effects on growth and tuber yield. Season-long exposure to elevated O3 reduced above-ground dry weight at final harvest by 8.4% (P < 0.05), but did not affect tuber yields. There was no significant interaction between CO2 and O3 for any of the growth and yield variables examined. Non-destructive analyses revealed no significant effect of elevated CO2 on plant height, leaf number or green leaf area ratio. However, destructive harvests at tuber initiation and 500 degrees Cd after emergence showed that above-ground dry weight (8 and 7% respectively) and tuber yield (88 and 44%) were significantly increased (P < 0.05) in the 550 mumol mol-1 CO2 treatment. Responses to 550 and 680 mumol mol-1 CO2 were not significantly different for most parameters examined, suggesting the existence of an upper limit to the beneficial influence of CO2 enrichment. Significant effects on above-ground dry weight and tuber yield were no longer apparent at final harvest, although tuber numbers were increased (P < 0.05) under elevated CO2, particularly in the smaller size categories. The results show that the O3 treatment imposed was insufficient to reduce tuber yields and that, although elevated CO2 enhanced crop growth during the early stages of the season, this beneficial effect was not sustained to maturity.  相似文献   

8.
Zhang  Fan  Xu  Nuohan  Zhang  Zhenyan  Zhang  Qi  Yang  Yaohui  Yu  Zhitao  Sun  Liwei  Lu  Tao  Qian  Haifeng 《Environmental science and pollution research international》2023,30(13):35972-35984

The rhizosphere microbiome plays critical roles in plant growth and is an important interface for resource exchange between plants and the soil environment. Crops at various growing stages, especially the seedling stage, have strong shaping effects on the rhizosphere microbial community, and such community reconstruction will positively feed back to the plant growth. In the present study, we analyzed the variations of bacterial and fungal communities in the rhizosphere of four crop species: rice, soybean, maize, and wheat during successive cultivations (three repeats for the seedling stages) using 16S rRNA gene and internal transcribed spacer (ITS) high-throughput sequencing. We found that the relative abundances of specific microorganisms decreased after different cultivation times, e.g., Sphingomonas, Pseudomonas, Rhodanobacter, and Caulobacter, which have been reported as plant-growth beneficial bacteria. The relative abundances of potential plant pathogenic fungi Myrothecium and Ascochyta increased with the successive cultivation times. The co-occurrence network analysis showed that the bacterial and fungal communities under maize were much more stable than those under rice, soybean, and wheat. The present study explored the characteristics of bacteria and fungi in crop seedling rhizosphere and indicated that the characteristics of indigenous soil flora might determine the plant growth status. Further study will focus on the use of the critical microorganisms to control the growth and yield of specific crops.

  相似文献   

9.
The beneficial uptake of nutrients by wetland plants is countered to some extent by nutrient release back into the aquatic environment due to vegetative die-back. This current study examined whether Leersia oryzoides, a common wetland plant, exhibits luxury uptake of nutrients from simulated farm runoff. The study also tested whether with subsequent decomposition, these nutrients are released back into the water column. When exposed to elevated (>2mg/L N and P) runoff, L. oryzoides assimilated significantly higher concentrations of nitrogen (p<0.001) and phosphorus (p<0.001) in above-ground biomass as compared to non-enriched treatments (<0.05 mg/L N and P). Subsequently, senescence of enriched above-ground biomass yielded significantly higher concentrations of phosphorus (2.19+/-0.84 mg P/L). Using L. oryzoides as our model, this study demonstrates nitrogen and phosphorus sequestration during the growing season and release of phosphorus in the winter.  相似文献   

10.
EDU or ethylenediurea (N-[2-(2-oxo-1-imidazolidinyl)ethyl]-N'-phenylurea) has been used in experiments to assess ozone effects on vegetation under field conditions because it provides protection against oxidative damage. Tests have mainly been conducted on crop plants, but for woody species only few reports have provided evidence that it can be used in long-term experiments. In this study we tested the technique of stem injection of EDU to study the effects of ozone exposure on Populus nigra cv. Wolterson over one growing season. Cuttings of Populus nigra were grown in pots in the field and between mid-July and early September plants were repeatedly injected with EDU solution (5 mg/plant) or with water at 14-day intervals. Significant differences were found between EDU- and water-injected plants: water-treated plants had more foliar injury, more chlorotic leaves, and shedding of leaves started earlier, suggesting EDU was effective in preventing visible ozone injury and acceleration of senescence. Photosynthetic rates, measured for one leaf age, showed no differences but were mostly higher for the EDU-treated plants. At the end of the growing season diameter increment was 16% higher and there was a non-significant trend for above-ground biomass to be increased by 9% for the EDU-treated plants. This experiment has provided evidence that for this clone serious ozone damage occurs at relatively low concentrations and that EDU can provide protection against visible injury, as well as against longer term growth reductions.  相似文献   

11.
A contaminant transport model was developed to simulate the fate and transport of organic compounds such as TNT (2,4,6-trinitrotoluene), using the single-root system. Onions were planted for this system with 50-ml plastic tubes. Mass in the soil, soil solution, root and leaf was monitored using 14C-TNT. Model parameters were acquired from the experiments in the single-root system and were used to simulate total TNT concentration in soil, providing the average concentrations in the rhizosphere and bulk soil as well as root and leaf compartments. Because the existing RCF (root concentration factor) and TSCF (transpiration stream concentration factor) equations based on logKow (octanol-water partition coefficient) were not correlated to TNT uptake, a new term, root uptake rate (Rur), and a new Tscf equation, based on the experimental data, were introduced in the proposed model. The results from both modeling and experimental studies showed higher concentrations of TNT in the rhizosphere than in the bulk soil, because mass transported from the surrounding soil into the rhizosphere was higher than that by root uptake.  相似文献   

12.
Phytoremediation is a promising technique for cleaning petroleum contaminated soils. In this study, the effects of two grass species (Festuca arundinacea Schreb. and Festuca pratensis Huds.), infected (E(+)) and non-infected (E(-)) by endophytic fungi (Neotyphodium coenophialum and Neotyphodium uncinatum, respectively) on the degradation of petroleum hydrocarbons in an aged petroleum contaminated soil was investigated. Plants were grown in the soil for 7 months and unplanted soil considered as control. At the end of the experiment, total and oil-degrading bacteria, dehydrogenase activity, water-soluble phenols, total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAHs) contents were measured in the soil. The results demonstrated that E(+) plants contained more root and shoot biomass than E(-) plants and created higher levels of water-soluble phenols and dehydrogenase activity in the soil, while there was no significant difference in bacterial counts of planted soils. Planting stimulated total and oil-degrading bacterial numbers, dehydrogenase activity and the soil content of water-soluble phenols. Regardless of endophyte infection, PAH and TPH removal in the rhizosphere of plants were 80-84 and 64-72% respectively, whereas the removals in controls were 56 and 31%, respectively. It was revealed that TPHs in retention time range of n-alkanes with C(10)-C(25) chain lengths and TPH were more degraded in the rhizosphere of E(+) plants compared to E(-) ones. Thus, grasses infected with endophytic fungi could be more efficient for removal of TPH from oil-contaminated soils.  相似文献   

13.
The concentrations of O3 are increasing, which may have potential adverse effects on crop yield. This paper deals with assessing the intraspecific variability of two wheat cultivars (PBW 343 and M 533) at different growth stages using open top chambers. Mean O3 concentrations were 50.2 and 53.2 ppb, and AOT40 values were 9 and 12.1 ppm h, respectively, in 2008–2009 and 2009–2010. Reproductive stage showed higher AOT40 values (6.9 and 9.2 ppm h) compared to vegetative (2.23 and 2.9 ppm h). Critical levels of a 3-month AOT 40 of 3 ppm h led to 6 % yield reduction in two wheat cultivars for two consecutive years. Variations in photosynthesis rate, stomatal conductance (gs), Fv/Fm ratio, photosynthetic pigments, primary and secondary metabolites, morphological parameters, and yield attributes were measured at vegetative and reproductive stages. Reductions in number of leaves, leaf area, total biomass, root/shoot ratio, RGR, photosynthetic pigments, protein content, and Fv/Fm ratio in PBW 343 were more than M 533 at reproductive stage. Photosynthetic rate did not vary between the cultivars, but gs was higher in PBW 343 compared to M 533 under ambient O3. Higher total phenolics and peroxidase activity were recorded in M 533 at reproductive stage conferring higher resistance at latter age. Results of O3 resistance showed that M 533 was sensitive compared to PBW 343 during vegetative stage but developed more resistance at reproductive stage. PBW 343 with larger leaf area and high gs is more sensitive than M 533 with smaller leaf area and low gs. The study suggests that the sensitivity varied with plant growth stage, and the plant showing higher sensitivity during vegetative period developed more resistance during reproductive period due to higher defense mechanism. Though the yield reductions were same in both cultivars under ambient O3, the mechanism of acquiring the resistance is different between the cultivars.  相似文献   

14.
Jiang LY  Yang XE  He ZL 《Chemosphere》2004,55(9):1179-1187
Phytoremediation is a promising approach for cleaning up soils contaminated with heavy metals. Information is needed to understand growth response and uptake mechanisms of heavy metals by some plant species with exceptional capability in absorbing and superaccumulating metals from soils. Greenhouse study, field trial, and old mined area survey were conducted to evaluate growth response and Cu phytoextraction of Elsholtzia splendens in contaminated soils, which has been recently identified to be tolerant to high Cu concentration and have great potential in remediating contaminated soils. The results from this study indicate that the plant exhibited high tolerance to Cu toxicity in the soils, and normal growth was attained up to 80 mg kg(-1) available soil Cu (the NH4OAc extractable Cu) or 1000 mg kg(-1) total Cu. Under the field conditions, a biomass yield of 9 ton ha(-1) was recorded at the soil available Cu level of 77 mg kg(-1), as estimated by the NH4OAc extraction method. Concentration-dependent uptake of Cu by the plant occurred mainly at the early growth stage, and at the late stage, there is no difference in shoot Cu concentrations grown at different extractable soil Cu levels. The extractability of Cu from the highly polluted soil is much greater by the roots than that by the shoots. The NH4OAc extractable Cu level in the polluted soil was reduced from 78 to 55 mg kg(-1) in the soil after phytoextraction and removal of Cu by the plant species for one growth season. The depletion of extractable Cu level in the rhizosphere was noted grown in the mined area, even at high Cu levels, the NH4OAc extractable Cu in the rhizosphere was 30% lower than that in the bulk soil. These results indicate that phytoextraction of E. splendens can effectively reduce the plant-available Cu level in the polluted soils.  相似文献   

15.
We determined the organic carbon released by roots of maize plants (Zea mays L.) when grown in soils amended with compost and its soluble fractions. In rhizobox systems, soil and roots are separated from the soil of a lower compartment by a nylon membrane. Treatments are applied to the upper compartment, while in the lower compartment luminescent biosensors measure the bioavailable organic carbon released by roots (rhizodeposition). The rhizobox-plants systems were amended with a compost (COM), its water extract (TEA), the hydrophobic (HoDOM) and hydrophilic (HiDOM) fractions of the dissolved organic matter (DOM) extracted from the compost. After root development, the lower untreated compartments were sampled and sliced into thin layers. The bioavailable organic carbon in each layer was assessed with the lux-marked biosensor Pseudomonas fluorescens 10586 pUCD607, and compared with total organic carbon (TOC) analyses. The TOC values ranged between 8.4 and 9.6 g kg(-1) and did not show any significant differences between bulk and rhizosphere soil samples in any treatment. Conversely, the biosensor detected significant differences in available C compounds for rhizosphere soils amended with various organic materials. Concentrations of available organic compounds in the first 2 mm of soil rhizosphere were 1.69 (control), 1.09 (COM), 2.87 (HiDOM), 4.73 (HoDOM) and 2.14 (TEA)micromol Cg(-1) soil g(-1) roots. The applied rhizobox-biosensor integrated method was successful in detecting and quantifying effects of organic amendments on organic carbon released by maize plant roots. This approach may become important in assessing the carbon cycle in agricultural soils and soil-atmosphere compartments.  相似文献   

16.
Very few investigations have examined the direct impacts of vehicle exhausts on plants and attempted to separate out the key pollutants responsible for observed effects. This paper describes a multi-phase investigation into this topic, using 12 herbaceous species typical of urban areas and representing different functional groups. Fumigations were conducted in solardomes with diesel exhaust pollutants at concentrations designed to simulate those close to a major highway in inner London. A wide range of effects were detected, including growth stimulation and inhibition, changes in gas exchange and premature leaf senescence. This was complemented by controlled fumigations with NO, NO(2) and their mixture, as well as a transect study away from a busy inner London road. All evidence suggested that NO(x) was the key phytotoxic component of exhaust emissions, and highlights the potential for detrimental effects of vehicle emissions on urban ecosystems.  相似文献   

17.
In the Champagne vineyard, most of the areas treated in early 2000 with the newly approved herbicide flazasulfuron had vines with altered growth and yellow leaves throughout the growing season. In order to clarify the physiological perturbations caused on the non-target grapevine and their potential consequences, C nutrition of grape plants grown in vineyards treated or not with flazasulfuron in 2000 was characterized during the following season. Vines from treated areas exhibited yellow leaves and an alteration of photosynthetic activity, characterized by declines in leaf gas exchanges (by 85%) and photosynthetic pigment concentrations (by 88%), and a marked disorganization of the leaf plastids. The herbicide also caused a decrease in leaf starch and soluble carbohydrate levels (-74% and -90%, respectively). Surprisingly, some vines re-greened after bloom, then exhibiting similar carbohydrate physiology to those grown in a non-treated area. Thus, recovery of CO(2) fixation rates, plastid ultra-structure, pigment concentrations and carbohydrate levels was found in re-greening leaves. Unlike the informations available in the literature, our results showed that flazasulfuron may be phytotoxic for grapevine. However, this toxicity was overcome the following year, indicating that vines have the potential to recover from this herbicide stress after one season.  相似文献   

18.
A Kunz  V Reginatto  N Durán 《Chemosphere》2001,44(2):281-287
Textile effluents cause a high environmental impact when released into the environment without correct treatment. In this work, we have evaluated the capacity of treatment of a textile effluent using a biological and a chemical method using the sequence Phanerochaete chrysosporium-ozone. The fungal treatment was performed by direct incubation of a fungus spore suspension in textile effluent for nine days. Then, the effluent was ozonized at pH 11 and room temperature. Color, total organic carbon, molecular mass distribution and total phenols were determined. In biological experiments, enzymatic activity (lignin peroxidase, manganese peroxidase and laccase) were also monitored. Toxicity tests were carried out with Scenedesmus subspicatus and with Escherichia coli. Good decoloration, total phenols reduction and textile effluent molecular mass reduction were obtained during the process. No significant total organic carbon reduction was observed. The toxicity of the textile effluent was reduced with both test organisms showing no inhibition at the end of the treatment.  相似文献   

19.
Liao YC  Chien SW  Wang MC  Shen Y  Hung PL  Das B 《Chemosphere》2006,65(2):343-351
The effect of transpiration (high and low) on Pb uptake by leaf lettuce and on water soluble low molecular weight organic acids (LMWOAs) in rhizosphere has been studied. After two weeks of growth the plants were cultured in greenhouse for more four weeks and two days. Pb(NO(3))(2) solutions of different concentrations (100, 200, and 300 mg l(-1) of Pb) were then added to the quartz sand pots of different plants and studies were initiated. Blank experiments (without treating the quartz sand pots with Pb(NO(3))(2) solutions) were also run in parallel. No significant differences in the growth of the plants with the concentrations of added Pb(NO(3))(2) solutions were observed by both low and high transpirations at the end of the 0, 3rd, and 10th days of studies. The total evaporation of the volatiles during 10 days did not depend on the concentration of Pb(2+) but with high transpiration the rate of evaporation was significantly higher than with low transpiration. Uptake of Pb by shoots and roots of the plants was found to be proportional to the concentration of various Pb(NO(3))(2) solutions added and more accumulation was observed in roots than in shoots at the end of 3rd and 10th days. High transpiration created more Pb uptake than low transpiration did. One volatile acid, propionic acid and nine non-volatile acids, lactic, glycolic, oxalic, succinic, fumaric, oxalacetic, D-tartaric, trans-aconitic, and citric acids in rhizosphere quartz sands were identified and quantified by gas chromatography (GC) analysis. D-Tartaric and citric acids were major among the non-volatile acids. The amount of LMWOAs in rhizosphere quartz sands increased with the higher amount of Pb uptake and also with the duration of studies. The total quantities of the LMWOAs in the rhizosphere quartz sands were significantly higher under high transpiration with 300 mg l(-1) Pb solution addition at the end of 10th day. The present study shows prominent correlation between transpiration and uptake of heavy metal and interesting correlation between Pb contaminated level and quantity of water soluble LMWOAs in rhizosphere quartz sands. The latter thus deserves of further studies.  相似文献   

20.
The goals of the present work were as follows: to obtain the dormant forms of R. opacus 1cp; to study the phenotypic variability during their germination; to compare phenotypic variants during the growth on selective and elective media; and to reveal changes in the ability of the strain to destruct xenobiotics that had not been degradable before dormancy. It was shown that Rhodococcus opacus 1cp (the strain degrading chlorinated phenols) became able to utilize a broader spectrum of xenobiotics after storage in the dormant state. Germination of the dormant forms of R. opacus 1cp on an agarized medium was followed by emergence and development of phenotypic variants that could grow on 4-chlorophenol and 2,4,6-trichlorophenol without adaptation. The cells of R. opacus 1cp phenotypic variants also utilized all of the tested chlorinated phenols: 2,3-, 2,5-, and 2,6-dichloro-, 2,3,4- and 2,4,5-trichloro-, pentachlorophenol, and 1,2,4,5-tetrachlorobenzene in concentrations up to 60 mg/L, though at the lower rates than 4-CP and 2,4,6-TCP. The improved degradation of chlorinated phenols by R. opacus strain 1cp exposed to the growth arrest conditions demonstrates the significance of dormancy for further manifestation of the adaptive potential of populations. A new principle of selection of variants with improved biodegradative properties was proposed. It embraces introduction of the dormancy stage into the cell life cycle with subsequent direct inoculation of morphologically different colonies into the media with different toxicants, including those previously not degraded by the strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号