首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The production of energy crops in Germany is a growing agronomic sector and is expected to occupy a substantial share of farmland in the near future. At the same time, there are concerns that energy crops might cause increased nitrogen pollution of soil water, surface water and groundwater. Therefore, the Federal State of Saxony, Germany, funded a study on potential effects of an intensified cultivation of energy crops. In frame of this study, we used the Web GIS-based model STOFFBILANZ to simulate N leaching from the rooting zone and N loads of surface water for a reference scenario and an energy crop scenario. For the reference scenario, we used data representing the crop cultivation for the year 2005 at municipality level. We found that the total loads for N leaching from the rooting zone of cropland are highest for the loess region (8,067 t year?1), followed by mountainous region (6,797 t year?1) and lowland (5,443 t year?1). However, highest N fluxes in the leachate from rooting zones have been simulated for lowland (40.6 kg ha?1 year?1) and mountainous region (37.1 kg ha?1 year?1), while nitrate concentrations of leachate were highest for the lowland (101.8 mg l?1). In terms of diffuse N input into surface water, the mountainous region is the most important source area (total N load 6,380 t year?1, flux 34.6 kg ha?1 year?1). Retention by in-stream processes accounts for 15 % (3,784 t year?1) of the total N load leaving the study area (25,136 t year?1). In the 2020 energy crop scenario, shares of rape and silage maize (id., ensiled corn) were limited for each municipality to a maximum of 25 and 33 %, respectively. The conversion of grasslands to crop farming was not allowed. Under these conditions, we found slight to substantial reductions of nitrogen loads for leachate from the rooting zone and for surface waters. The simulated reduction depends strongly on local conditions. Only small reductions (ca. 4–8 %) were found for the lowlands and mountainous regions of Saxony, while reductions for the loess region were substantial (ca. 22 %). A major outcome of our study is that the cultivation of energy crops might reduce N loss if certain preconditions are assumed, for example, without conversion of grasslands to crop farming. However, effects might vary widely depending on local conditions.  相似文献   

2.
We estimated carbon dioxide (CO2) and methane (CH4) emissions by diffusion, ebullition, and degassing in turbines from a semi-arid hydropower reservoir in northeastern Brazil. Sampling sites were allocated within the littoral and deeper waters of one embayment, the main-stream, and at turbines. Annual carbon emissions were estimated at 2.3?×?105?±?7.45?×?104 t C year?1, or in CO2-equivalents (CO2-eq) at 1.33?×?106?±?4.5?×?105 t CO2-eq year?1. Diffusion across the water surface was the main pathway accounting for 96% of total carbon emissions. Ebullition was limited to littoral areas. A slight accumulation of CO2, but not of CH4, in bottom waters close to the turbines inlet led to degassing emissions about 8?×?103 t C year?1. Emissions in littoral areas were higher than in main-stream and contribute to 40% of the total carbon. Carbon (C) emissions per electricity generated, at 60% of installed capacity, is 0.05 t C-CO2-eq MWh?1. The ratio increases to 0.09 t C-CO2 MWh?1, equating 80% of the emissions from natural gas and 40% of diesel or coal power plants. Retention time and benthic metabolism were identified as main drivers for carbon emissions in littoral areas, while water column mixing and rapid water flow are important factors preventing CH4 accumulation and loss by degassing. Our results indicate that Itaparica Reservoir, located in the semi-arid region of Northeastern Brazil, acts as a source of GHGs. Management measurements are needed to prevent emissions to raise in the future.  相似文献   

3.
Closed landfills need after-closure rehabilitation. The chosen option should ensure greenhouse gases release, from the landfill, is not promoted once settled. The objective of this study was to estimate and confront, during different seasons, CH4, CO2 and N2O emissions under three vegetation covers in a closed landfill in Buenos Aires, Argentina. CH4 (methane), CO2 (carbon dioxide) and N2O (nitrous oxide) emissions from landfill’s technosol under spontaneous vegetation (control), Pennisetum purpureum and Miscanthus giganteus (biomass crops), were quantified with non-steady-state non-flow-through chambers, in July 2014 and from February to July 2015. A linear regression analysis was performed to relate the variables “flux of a gas” and “concentration of that gas” from the 3 treatments and 6 dates, separating the 5 sampling times. A high correlation between concentrations and fluxes of CO2 and N2O was found, but no correlation was established for CH4. Mean emissions (2014–2015) varied from: ?2.3 to 639.41 mgCH4 m?2 day?1, 3884 to 46,365 mgCO2 m?2 day?1 and 0.40 to 14.59 mgN2O m?2 day?1. Vegetation covers had no significant effect on CH4 and N2O concentration in time, but they had on CO2 concentration. Season of the year had a significant effect on concentration of the three gases. This is the first study on CH4, CO2 and N2O emissions from a landfill closed 27 years ago covered with biomass crops.  相似文献   

4.
During the last five decades (1961–2009), Spain has experienced a considerable expansion in the nutrient cycle of its agricultural sector and, in particular, a threefold increase in anthropogenic reactive nitrogen inputs, from 536 Gg N year?1 in 1961–1965 to 1673 Gg N year?1 in 2005–2009. Import of feed (soybean, cereals, and cakes) from America and Europe to supply a growing livestock population constitutes the largest share of this increase, along with intensification of synthetic fertilizer use. While in the early 1960s, Spain was nearly self-sufficient in terms of food and feed supply, the net import of agricultural products presently equals domestic crop production, when expressed in terms of nitrogen content (ca. 650 Gg N year?1). The most important driver of this shift appears to be the rapid change in domestic consumption patterns, which evolved from a typical Mediterranean diet to an animal-protein-rich diet similar to the North European and American diets. Besides livestock production mostly for national consumption, the Spanish agricultural system has specialized in vegetal products with low N content such as olive oil, wine, vegetables, and citrus fruit, which are for the most part exported. The nitrogen load exported outside the Spanish borders by rivers is very low (6.5 % of the total net N input). As a result of the high import and low export of reactive nitrogen, the Spanish mainland is suffering from considerable pollution by local emissions of reactive nitrogen forms to air and water.  相似文献   

5.
Globally, more than 30 % of all food that is produced is ultimately lost and/or wasted through inefficiencies in the food supply chain. In the developed world this wastage is centred on the last stage in the supply chain; the end-consumer throwing away food that is purchased but not eaten. In contrast, in the developing world the bulk of lost food occurs in the early stages of the supply chain (production, harvesting and distribution). Excess food consumption is a similarly inefficient use of global agricultural production; with almost 1 billion people now classed as obese, 842 million people are suffering from chronic hunger. Given the magnitude of greenhouse gas emissions from the agricultural sector, strategies that reduce food loss and wastage, or address excess caloric consumption, have great potential as effective tools in global climate change mitigation. Here, we examine the challenges of robust quantification of food wastage and consumption inefficiencies, and their associated greenhouse gas emissions, along the supply chain. We find that the quality and quantity of data are highly variable within and between geographical regions, with the greatest range tending to be associated with developing nations. Estimation of production-phase GHG emissions for food wastage and excess consumption is found to be similarly challenging on a global scale, with use of IPCC default (Tier 1) emission factors for food production being required in many regions. Where robust food waste data and production-phase emission factors do exist—such as for the UK—we find that avoiding consumer-phase food waste can deliver significant up-stream reductions in GHG emissions from the agricultural sector. Eliminating consumer milk waste in the UK alone could mitigate up to 200 Gg CO2e year?1; scaled up globally, we estimate mitigation potential of over 25,000 Gg CO2e year?1.  相似文献   

6.
Efficient use of energy helps to achieve increased production and productivity and contributes to the economy, profitability, and competitiveness of agricultural sustainability of rural communities. Evaluation of wheat and barley production systems in view of energy balance was conducted in Khorasan Razavi Province, Iran. Data were collected by using a face-to-face questionnaire from wheat and barley fields in 2011. Results revealed that total energy input for wheat was 51,040 MJ ha?1 and for barley 44,866; in wheat and barley systems, renewable energy was consumed by 25.43 and 23.53 %, while non-renewable energy was consumed by 74.57 and 76.47 %, respectively. Energy use efficiency, energy productivity, and net energy were 1.7 kg MJ?1, 0.088 kg MJ?1, and 35,987 MJ ha?1 in wheat system and 1.83 kg MJ?1, 0.092 kg MJ?1, and 33,833 MJ ha?1 in barley system, respectively. Energy intensiveness in wheat fields (61.84 MJ $?1) was higher than in barley fields (58.71 MJ $?1). Also, benefit-to-cost ratio in wheat system (1.59) was higher than in barley system (1.35). In general, production in barley fields was more sustainable than wheat production because, in view of ecological indices such as amount of energy use and renewable energy consumption, it was more environment-friendly production.  相似文献   

7.
Overuse of nitrogen (N) fertilizers in agriculture activities has caused severe water pollution in China. The lack of data at producer level hampers decision makers in the development and implementation of efficient policies to curb excessive N-fertilizer use. In a survey of 300 farm households in the Liangzihu Lake basin, we identified factors associated with farmers’ decisions on N-fertilizer use and application rate. Household survey and multiple linear regression models indicate that the average application rate in the study region is 229 kg N ha?1, which exceeds the recommended rate for maximum profit for cereal crops (maize, wheat, and rice) in China of 150–180 kg N ha?1. High N-application rates are associated with low farmland productivity (coefficient = ?15.66, p = 0.02), a high share of off-farm income (coefficient = 27.14, p = 0.003), and a low education level of the household head (coefficient = ?10.83, p = 0.039). Neither physical infrastructure nor access to input markets appears to be related to N-application rates. It may be concluded that excessive use of N in agriculture of Central China is mainly a problem of insufficient awareness and high share of off-farm income.  相似文献   

8.
Salt marshes persist within the intertidal zone when marsh elevation gains are commensurate with rates of sea-level rise (SLR). Monitoring changes in marsh elevation in concert with tidal water levels is therefore an effective way to determine if salt marshes are keeping pace with SLR over time. Surface elevation tables (SETs) are a common method for collecting precise data on marsh elevation change. Southern New England is a hot spot for SLR, but few SET elevation change datasets are available for the region. Our study synthesizes elevation change data collected from 1999 to 2015 from a network of SET stations throughout Rhode Island (RI). These data are compared to accretion and water level data from the same time period to estimate shallow subsidence and determine whether marshes are tracking SLR. Salt marsh elevation increased at a mean overall rate of 1.40 mm year?1 and ranged from ?0.33 to 3.36 mm year?1 at individual stations. Shallow subsidence dampened elevation gain in mid-Narragansett Bay marshes, but in other areas of coastal RI, subsurface processes may augment surface accretion. In all cases, marsh elevation gain was exceeded by the 5.26 mm year?1 rate of increase in sea levels during the study period. Our study provides the first SET elevation change data from RI and shows that most RI marshes are not keeping pace with short- or long-term rates of SLR. It also lends support to previous research that implicates SLR as a primary driver of recent changes to southern New England salt marshes.  相似文献   

9.
Greenhouse gases (GHG) emissions from agricultural farming practice contribute significantly to European GHG inventories. For example, CO2 is emitted when grassland is converted to cropland or when peatlands are drained and cultivated. N2O emissions result from fertilization. Enabling farmers to reduce their GHG emissions requires sufficient information about its pressure–impact relations as well as incentives, such as regulations and funding, that support climate-friendly agricultural management. This paper discusses potentials to improve the supply of information on: farm-specific climate services or impacts, present policy incentives in Germany and England that support climate-friendly farm management and related adaptation requirements. Tools which have been developed for a farm environmental management software (to be added after review because of potential identification) are presented. These tools assess CO2 emissions from grassland conversion to cropland and peatland cultivation, as well as N2O emissions from nitrogen fertilization. As input data, the CO2 tool requires a classification of soil types according to soil organic carbon storage. The input data based on soil profile samples was compared with reference data from the literature. The N2O tool relies on farm data concerning fertilization. These tools were tested on three farms in order to determine their viability with respect to the availability of required data and the differentiation of results, which determines how well site-specific conservation measures can be identified. Assessing CO2 retention function of grassland conservation to cropland on the test farms leads to spatially differentiated results (~100 to ~900 potentially mitigated t CO2 ha?1). Assessed N2O emissions varied from 0.41 to 1.1 t CO2eq. ha?1 a?1. The proposed methods support policies that promote a more differentiated funding of climate conservation measures. Conservation measures and areas can be selected so that they will have the greatest mitigation effects. However, even though present policy instruments in Germany and England, such as Cross Compliance and agri-environmental measures, have the potential to reduce agricultural GHG, they do not appear to guide measures effectively or site-specifically. In order to close this gap, agri-environmental measures with the potential to support climate protection should be spatially optimized. Additionally, the wetland restoration measures which are most effective in reducing GHG emissions should be included in funding schemes.  相似文献   

10.
Nitrogen fertilization (N) is commonly known as a main source of direct nitrous oxide (N2O) emission from agricultural soils. An area of 38 % of the total land surface of Poland was covered by agricultural soils in 2009. In this paper, we aimed at analyzing data regarding the land exploitation for 13 selected subareas of Poland between 1960 and 2009. Seven out of the 13 subareas studied are located in the West (area A), and six subareas are located in southeast of Poland (area B). The total area covered by large farms (>20 ha) differed largely, between area A (10.6 %) and area B (0.9 %) in 2009. Both areas varied in terms of the amount of fertilizers used annually, average crop yield and crop structure. Average direct emissions of N2O from agricultural soils were 1.66 ± 0.09 kg N2O–N ha?1 a?1 for area A, 1.39 ± 0.07 kg N2O–N ha?1 a?1 for area B and 1.46 ± 0.07 kg N2O–N ha?1 a?1 for the whole country between 1960 and 2009.  相似文献   

11.
Assessment of physicochemical parameters of Ganga Canal water was carried out during 2012–2013 at Haridwar (Uttarakhand) with two different sites, i.e., Bhimgoda Barrage (site 1—control site) and Bahadrabad (site 2—contaminated site), where canal water flows with loads of pollution from highly commercial and industrial areas. During investigation, maximum turbidity (287.72 ± 56.28 JTU), total solids (1167.60 ± 303.90 mg l?1), free CO2 (1.88 ± 0.22 mg l?1), total hardness (60.14 ± 1.13 mg l?1), pH (7.1 ± 0.13), nitrate (0.048 ± 0.010), nitrite (0.019 ± 0.001), biochemical oxygen demand (2.866 ± 1.098), chemical oxygen demand (6.8 ± 2.61) and phosphate (0.087 ± 0.015), while minimum velocity (1.71 ± 0.19 ms?1), transparency (0.12 ± 0.08 m) and dissolved oxygen (7.95 ± 0.44 mg l?1) were recorded in monsoon season at site 2 in comparison with site 1. The mean values of these parameters were compared with WHO and ISI standards and found significant differences (p < 0.05) in the mean values of turbidity, total solids, pH, dissolved oxygen, free CO2 and total hardness with sampling sites. The turbidity of both the sites 1 and 2 was recorded above the permissible limit. Turbidity of site 2 is much higher than of site 1, so it is counted as more polluted. The values of the studied parameters were more during monsoon season and summer season at site 2 as compared to site 1. The results indicated that most of the physicochemical parameters from Ganga Canal system were within or at periphery in comparison with permissible limit of ISI and WHO for drinking water and therefore may be suitable for domestic purposes, but it requires perceptible consideration due to intense changes in climate and increase in pollution.  相似文献   

12.
Declining crop and livestock production due to a degrading land resource base and changing climate among other biophysical and socio-economic constraints, is increasingly forcing rural households in Zimbabwe and other parts of Southern Africa to rely on common natural resource pools (CNRPs) to supplement their household food and income. Between 2011 and 2013, we combined farmer participatory research approaches, remote sensing and geographic information systems (GIS) to (1) understand the contribution of CNRPs to household food and income in Dendenyore and Ushe smallholder communities in Hwedza District, eastern Zimbabwe and (2) assess changes of the CNRPs in both space and time, and their implications on climate change adaptation. Across study sites, wetlands and woodlands were ranked as the most important CNRPs. Extraction and use patterns of products from the different pools differed among households of different resource endowment. Resource-constrained households (RG3) sold an average of 183 kg household?1 year?1 of wild loquats fruits (Uapaca kirkiana), realising about US$48, while resource-endowed farmers (RG1) had no need to sale any. The RG3 households also realised approximately US$70 household?1 year?1 from sale of crafts made from water reeds (Phragmites mauritianus). Empirical data closely supported communities’ perceptions that CNRPs had declined significantly in recent years compared with two to three decades ago. More than 60 % of the respondents perceived that the availability of natural resources drawn from wetlands and woodlands, often used for food, energy and crafts, has decreased markedly since the 1980s. Classification of land cover in a GIS environment indicated that CNRPs declined between 1972 and 2011, supporting farmers’ perceptions. Overall, woodlands declined by 37 % in both communities, while the total area under wetlands decreased by 29 % in Ushe, a drier area and 49 % in Dendenyore, a relatively humid area. The over-reliance in CNRPs by rural communities could be attributed to continued decline in crop yields linked to increased within-season rainfall variability, and the absence of alternative food and income sources. This suggests limited options for rural communities to adapt to the changing food production systems in the wake of climate change and variability and other challenges such as declining soil fertility. There is therefore a need to design adaptive farm management options that enhance both crop and livestock production in a changing climate as well as identifying other livelihood alternatives outside agriculture to reduce pressure on CNRPs. In addition, promotion of alternative sources of energy such as solar power and biogas among rural communities could reduce the cutting of trees for firewood from woodlands.  相似文献   

13.
The Welsh Government is committed to reduce greenhouse gas (GHG) emissions from agricultural systems and combat the effects of future climate change. In this study, the ECOSSE model was applied spatially to estimate GHG and soil organic carbon (SOC) fluxes from three major land uses (grass, arable and forest) in Wales. The aims of the simulations were: (1) to estimate the annual net GHG balance for Wales; (2) to investigate the efficiency of the reduced nitrogen (N) fertilizer goal of the sustainable land management scheme (Glastir), through which the Welsh Government offers financial support to farmers and land managers on GHG flux reduction; and (3) to investigate the effects of future climate change on the emissions of GHG and plant net primary production (NPP). Three climate scenarios were studied: baseline (1961–1990) and low and high emission climate scenarios (2015–2050). Results reveal that grassland and cropland are the major nitrous oxide (N2O) emitters and consequently emit more GHG to the atmosphere than forests. The overall average simulated annual net GHG balance for Wales under baseline climate (1961–1990) is equivalent to 0.2 t CO2e ha?1 y?1 which gives an estimate of total annual net flux for Wales of 0.34 Mt CO2e y?1. Reducing N fertilizer by 20 and 40 % could reduce annual net GHG fluxes by 7 and 25 %, respectively. If the current N fertilizer application rate continues, predicted climate change by the year 2050 would not significantly affect GHG emissions or NPP from soils in Wales.  相似文献   

14.
Monitoring the dynamics of vegetation growth and its response to climate change is important to understand the mechanisms underlying ecosystem behaviors. This study investigated the relationship between vegetation growth and climate change during the growing seasons on the Loess Plateau in China by analyzing the normalized difference vegetation index (NDVI) derived from the Land Long Term Data Record dataset from 1982 to 2011. Results showed that growing-season NDVI had increased at an annual rate of 0.0028, particularly in the semi-arid and semi-humid regions. By contrast, the NDVI first increased from 1982 to 1994 (0.0013 year?1, P < 0.05) and then decreased from 1994 to 2011 (0.0016 year?1, P < 0.05) in the arid region. Temperature had a positive effect on NDVI in most periods within and across seasons in the semi-humid region but had no significant effect in the arid region. Precipitation had a positive effect on NDVI in the arid region in summer and in the semi-arid region in autumn. Summer precipitation was important for autumn vegetation growth in the arid region, whereas summer temperature increased autumn vegetation growth in the semi-arid and semi-humid regions. Further analyses supported the lag-time effects of climate change on vegetation growth on the Loess Plateau. Precipitation shifts had 15- to 18-month time lag effects on vegetation growth in the three climate regions. Vegetation NDVI had a 17-month lag response to temperature in the semi-arid region. Human activities should not be neglected in analyzing the relationship between vegetation growth and climate change on the Loess Plateau.  相似文献   

15.
The objective of this research is to investigate the reduction in fuel consumption and emission in spark ignition engine using blended bioethanol-gasoline and novel radiator-tube heater. Different percentages of ethanol – 0, 5, 10, 15, 20, 25 and 30% – are employed. The blended fuel is then pre-heated by sending it into a tube-heater-installed upper tank radiator which has different shape. The results show a significant reduction in fuel consumption and emission in engine. The best economical fuel consumption occurs in the tube-heater with a fin pipe of 10 mm space at 2.153 × 10?3 cc per cycle or 5.632%. However, the most economical fuel consumption occurs when 25% of bioethanol is added to fuel at 3.175?×?10?3 per cycle. This decreases fuel consumption by 8.306%. The highest decrease in fuel consumption occurs when fuel blended with 25% of bioethanol and tube-heater of 10 mm 6.236?×?10?3 cc per cycle or 16.313% is combined. In terms of emission reduction, the tube-heater with a space of 20 mm between fins (Tube 20) using a fuel mixture of 25% ethanol and 75% gasoline produced the lowest CO emissions.  相似文献   

16.
Studies of nutrient emissions into surface waters are usually only performed for years in recent decades. However, estimating nutrient emissions for the more distant past enables us to identify the main factors responsible for the increasing nutrient contamination since the end of the nineteenth century. We focussed on the Oder River System for 1875–1944, divided into 10-year periods. Nutrient emissions into surface waters were calculated with the model MONERIS (MOdelling Nutrient Emissions in RIver Systems). For seven different pathways and eight sources, the total nitrogen (TN) emissions were quantified. The TN-emissions into the surface waters for 1880 amounted to 25,300 t?year?1, and by 1940, this value had almost doubled to 46,600?t?year?1. In 1880, 57% of TN-emissions into the surface waters derived from urban systems, due to the high amount of untreated waste water. In 1940, only 34% of TN-emissions into surface waters derived from urban systems, despite a population growth of about 27% since 1880; point sources via newly constructed waste water treatment plants (WWTPs) increased from 4% (1880) to 26% (1940). During the study period, the main changes in diffuse TN-emissions from agriculture were caused by inorganic fertilizer application and nitrogen deposition, while TN-emissions via urban sources were shifted to point sources due to population growth and the construction of new WWTPs. Furthermore, estimated TN-concentrations could make a contribution to construct benchmarks for nutrient concentrations according to the physiochemical properties to implement the European Water Framework Directive (WFD 2000).  相似文献   

17.
Many agro(eco)systems in Africa have been degraded as a result of past disturbances, including deforestation, overgrazing, and over exploitation. These systems can be managed to reduce carbon emissions and increase carbon sinks in vegetation and soil. The scope for soil organic carbon gains from improved management and restoration within degraded and non-degraded croplands and grasslands in Africa is estimated at 20–43 Tg C year?1, assuming that 'best' management practices can be introduced on 20% of croplands and 10% of grasslands. Under the assumption that new steady state levels will be reached after 25 years of sustained management, this would correspond with a mitigation potential of 4–9% of annual CO2 emissions in Africa. The mechanisms that are being put in place to implement the Kyoto Protocol - through C emission trading - and prevailing agricultural policies will largely determine whether farmers can engage in activities that enhance C sequestration in Africa. Mitigation of climate change by increased carbon sequestration in the soil appears particularly useful when addressed in combination with other pressing regional challenges that affect the livelihood of the people, such as combating land degradation and ensuring food security, while at the same time curtailing global anthropogenic emissions.  相似文献   

18.
The nutrient discharges from point and diffuse sources in more than 200 German river basins were estimated for the periods 1983–1987 and 1993–1997 employing the MONERIS model. This model distinguishes between six diffuse pathways and point source emissions from waste water treatment plants and direct industrial discharges. It was estimated that the total nitrogen input into the German river systems amounts to about 819,000 t N year–1 in the period 1993 to 1997. These emissions have decreased since the mid-eighties by about 266,000 t N year–1, mainly caused by the reduction of point discharges. For phosphorus the emissions have been reduced by 56,290 t P year–1 and amount to 37,250 t P year–1 in the period 1993–1997. Based on emission data a retention module estimates riverine nutrient loads. The comparison of the model output with the observed loads shows a deviation as low as 30% and 50% for nitrogen and phosphorus, respectively. The regional resolution of the model indicates the relative importance of different pathways for phosphorus and nitrogen input into river systems. Electronic Publication  相似文献   

19.
The objective of this paper is to analyse the impacts of climate change on a pine forest stand in Central Siberia (Zotino) to assess benefits and risks for such forests in the future. We use the regional statistical climate model STARS to develop a set of climate change scenarios assuming a temperature increase by mid-century of 1, 2, 3 and 4 K. The process-based forest growth model 4C is applied to a 200-year-old pine forest to analyse impacts on carbon and water balance as well as the risk of fire under these climate change scenarios. The climate scenarios indicate precipitation increases mainly during winter and decreases during summer with increasing temperature trend. They cause rising forest productivity up to about 20 % in spite of increasing respiration losses. At the same time, the water-use efficiency increases slightly from 2.0 g C l?1 H2O under current climate to 2.1 g C l?1 H2O under 4 K scenario indicating that higher water losses from increasing evapotranspiration do not appear to lead to water limitations for the productivity at this site. The simulated actual evaporation increases by up to 32 %, but the climatic water balance decreases by up to 20 % with increasing temperature trend. In contrast, the risk of fire indicated by the Nesterov index clearly increases. Our analysis confirms increasing productivity of the boreal pine stand but also highlights increasing drought stress and risks from abiotic disturbances which could cancel out productivity gains.  相似文献   

20.
The impacts of climate change on crop yield have increasingly been of concern. In this study, we investigated the impacts of trends in sunshine duration (S) and maximum temperature (T max) on rice yields in Jiangsu Province at both the provincial and county level during the period from 1980 to 2008. The results showed that although S and T max both were positively correlated with rice yields, the combined impacts of the decreasing trend of S (0.37 h/decade) and the increasing trend of T max (0.34 °C/decade) in August caused a reduction of 0.16 t ha?1 in rice yields (approximately 1.8 %) in Jiangsu Province, and the trend of S had played a dominant role in the yield losses. Further analyses suggest that the increasing concentration of aerosols from rapid economic development in Jiangsu Province has caused a significant solar dimming at least since 1960, making mitigations and adaptation measurements on regional haze impact imperative. Our study provides a prototype for detecting negative feedback on agricultural production caused by intensified anthropogenic activities that aim only to create rapid economic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号