首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present study examines for the first time the effects of increased salinity on water relations and osmolyte (carbohydrates and amino acids) concentrations in two Mediterranean seagrass species, Posidonia oceanica and Cymodocea nodosa, which are adapted to growth in environments with contrasting salinity and have a known differential sensitivity to alterations in ambient salinity. The specific aim was to obtain insights into their respective capacities to cope with natural or anthropogenically induced (e.g. desalination plants) hypersaline stress and its ecological implications. To this end, large plant fragments of both seagrass species were maintained for 47 days in a laboratory mesocosm system under ambient salinity (37 psu; control) and three chronic hypersaline conditions (39, 41 and 43 psu). Analyses of leaf-tissue osmolality indicated that both species followed a dehydration avoidance strategy, decreasing their leaf water potential (Ψw) as the external salinity increased, but using different physiological mechanisms: whereas P. oceanica leaves exhibited a reduction in osmotic potential (Ψπ), C. nodosa leaves maintained osmotic stability through a decrease in turgor pressure (Ψp) probably mediated through cell-hardening processes. Accordingly, the concentrations of soluble sugars and some amino acids (mainly Pro and Gly) suggested the activation of osmoregulatory processes in P. oceanica leaves, but not in C. nodosa leaves. Osmotic adjustments probably interfered with leaf growth and shoot survival of P. oceanica under hypersaline stress, whereas C. nodosa showed a more efficient physiological capacity to maintain plant performance under the same experimental conditions. These results are consistent with the more euryhaline ecological behaviour of C. nodosa and contribute to understanding the high vulnerability shown by P. oceanica to even mild increments in seawater salinity.  相似文献   

2.
Investigations presented in this paper were aimed at defining the alterations of n-alkane composition in cases of oil-polluted alluvial sediments. Therefore, oil-polluted groundwater samples, taken in five different time intervals during a period of 28 months, were investigated. Samples of alluvial sediments were taken from two boreholes within an oil refinery at Pancevo, Yugoslavia. In both boreholes significant alterations with characteristic degradation of "oil" n-alkanes with no odd- or even-member predominance were observed, as well as subsequent synthesis of new ones with pronounced even-member predominance, and with maxima at C16 and C18. Since no additional contamination of boreholes was observed by analyses of steranes and triterpanes, the observed changes can only be attributed to microbial activity. It is assumed that for the degradation of oil n-alkanes, as well as for the synthesis of "new" n-alkanes, algae such as dinoflagellates are responsible. This assumption was confirmed by identification of n-alcohols with even-member predominance (C14–C20), by identification of cholesterol, as well as of n-fatty acids with even-member predominance (C14–C18) in the extract with n-alkane even-member predominance. Electronic Publication  相似文献   

3.
Tolerance to hyposalinity of the scleractinian coral S. radians was examined in a mesocosm study. Colonies of S. radians were collected from five basins in Florida Bay, USA, which occur along a northeast-to-southwest salinity gradient. Salinity treatments were based on historical salinity records for these basins. Photophysiology of the endosymbiont Symbiodinium spp. (maximum quantum yield; F v/F m) was measured as an indicator of holobiont stress to hyposalinity. Colonies from each basin were assigned four salinity treatments [The Practical Salinity Scale (PSS) was used to determine salinity. Units are not assigned to salinity values because it is a ratio and has no unit as defined by UNESCO (UNESCO Technical papers no. 45, IAPSO Pub. Sci. No. 32, Paris, France, 1985)] (30, 20, 15, and 10) and salinities were reduced 2 per day from ambient (30) to simulate a natural salinity decrease. Colonies treated with salinities of 20 and 15 showed no decrease in F v/F m versus controls (i.e. 30), up to 5 days after reaching their target salinity. This indicates a greater ability to withstand reduced salinity for relatively extended periods of time in S. radians compared to other reef species. Within 1 day after salinity of 10 was reached, there was a significant reduction in F v/F m, indicating a critical threshold for hyposaline tolerance. At the lowest treatment salinity (10), F v/F m for the more estuarine, northeast-basin colonies were significantly higher than the most marine southwest-basin colonies (Twin Key Basin). Our results suggest that historical salinity ranges within basins determine coral population salinity tolerances.  相似文献   

4.
Ozone degradation of a mixture containing methylparaben, ethylparaben, propylparaben, butylparaben and benzylparaben was carried out in aqueous solution. The degradation followed the pseudo-first-order kinetic model and occurs with two ozonation stages with the observed rate constants of second stage ozonation, k obs2, being higher than the observed rate constants in first stage, k obs1. The k obs1 of parabens was found to increase exponentially whilst k obs2 was found to maximize at 35°C. Both k obs1 and k obs2 were found to decrease exponentially with respect to the initial concentration of parabens. Both pH and ozone dose showed positive effects on the rate of degradation. It was also observed that an ozone dose of 0.67 g/h resulted in the removal of 99% of parabens in 12 min, and also the removal of 61 and 32% of chemical oxygen demand (COD) and total organic carbon (TOC), respectively, in 3 h of ozonation time for a 500 μM of solution of parabens.  相似文献   

5.
The effects of light exposure on the photosynthetic activity of kleptoplasts were studied in the sacoglossan mollusc Elysia viridis. The photosynthetic activity of ingested chloroplasts was assessed in vivo by non-destructively measuring photophysiological parameters using pulse amplitude modulation (PAM) fluorometry. Animals kept under starvation were exposed to two contrasting light conditions, 30 μmol photons m−2 s−1 (low light, LL), and 140 μmol photons m−2 s−1 (high light, HL), and changes in photosynthetic activity were monitored by measuring the maximum quantum yield of photosystem II (PSII), F v/F m, the minimum fluorescence, F o, related to chlorophyll a content, and by measuring rapid light-response curves (RLC) of relative electron transport rate (rETR). RLCs were characterised by the initial slope of the curve, αRLC, related to efficiency of light capture, and the maximum rETR level, rETRm,RLC, determined by the carbon-fixation metabolism. Starvation induced the decrease of all photophysiological parameters. However, the retention of photosynthetic activity (number of days for F v/F m > 0), as well as the rate and the patterns of its decrease over time, varied markedly with light exposure. Under HL conditions, a rapid, exponential decrease was observed for F v/F m, αRLC and rETRm,RLC, F o not showing any consistent trend of variation, and retention times ranged between 6 and 15 days. These results suggested that the retention of chloroplast functionality is limited by photoinactivation of PSII reaction center protein D1. In contrast, under LL conditions, a slower decrease in all parameters was found, with retention times varying from 15 to 57 days. F v/F m, αRLC and rETRm,RLC exhibited a bi-phasic pattern composed by a long phase of slow decrease in values followed by a rapid decline, whilst F o decayed exponentially. These results were interpreted as resulting from lower rates of D1 photoinactivation under low light and from the gradual decrease in carbon provided by photosynthesis due to reduction of functional photosynthetic units.  相似文献   

6.
This article reports the design of 13C-dating, the first method to calculate the relative age of molecular substance homologues occurring in fractions from the same soil sample. Soil is a major carbon pool impacting modern climate by CO2 release and uptake. Molecular substances that sequester carbon in soils are poorly known due to the absence of methods to study molecular-level C dynamics over agricultural time scales, e.g., 0–200 years. Here, I design a method to calculate the relative age of the plant-derived C31 n-alkane occurring in 6 fractions from a soil sample naturally 13C-labelled by maize cropping during 23 years. Soil fractions are the bulk soil extract, two humin-encapsulated fractions and three particle-size fractions. Results show that C31 n-alkane homologues have relative ages ranging from −6.7 years for the humin-encapsulated homologue to +25.1 years for the 200–2,000-μm fraction homologue. Such a wide variation of 31.8 years evidences temporal pools of molecular substances in soil. This finding also reveals that physical encapsulation can strikingly change the dynamics of a single molecular substance. 13C-dating thus allows to assess the carbon storage potential of molecular substances from crop soils. Such knowledge will help to identify molecular compounds, associated soil pools and agricultural practices that favour carbon sequestration. 13C-dating is further applicable to any environmental sample containing organic matter subjected to a 13C isotope shift with time. 13C-dating will also help to study the sequestration and delayed release of chemicals in various disciplines, such as pollutants in environmental sciences, pharmaceuticals in medicine, and nutrients in food science.  相似文献   

7.
Studies on the effects of various salinities on the uptake and catabolism of glucose in Vibrio marinus MP-1 revealed several significant shifts in total uptake and respiration as the cells were subjected to increasingly greater concentrations of NaCl. As the salinity increased from 0.30 to 1.0 M NaCl, there was a decrease in the C6/C1 (CO2) ratio. The resulting patterns suggests that the relative participation of the hexose monophosphate pathway in glucose catabolism was altered. This pathway is apparently shut down in the region of the minimum-growth salinity, and may be related to growth limitation at rower salinities. The shift in C6/C1 ratio was not affected by changing the incubation temperature, nor was it dependent specifically on the presence of Na+ or Cl-. As the salinity increased from 0.15 to 0.30 M NaCl, there was a shift in the total uptake patterns which suggests the formation and loss of metabolic by-products derived from the first, second, sixth, and presumably fifth carbons of glucose.This paper was taken in part from a dissertation by the senior author, submitted in partial fulfillment of the requirement for the Ph.D. degree, Oregon State University, Corvallis. Published as technical paper No. 3647, Oregon Agricultural Experiment Station.  相似文献   

8.
Liu  Yanjun  Zhou  Qingxin  Xu  Jie  Xue  Yong  Liu  Xiaofang  Wang  Jingfeng  Xue  Changhu 《Environmental geochemistry and health》2016,38(1):111-122

The objective of this study is to investigate the levels, inter-species-specific, locational differences and seasonal variations of vanadium in sea cucumbers and to validate further several potential factors controlling the distribution of metals in sea cucumbers. Vanadium levels were evaluated in samples of edible sea cucumbers and were demonstrated exhibit differences in different seasons, species and sampling sites. High vanadium concentrations were measured in the sea cucumbers, and all of the vanadium detected was in an organic form. Mean vanadium concentrations were considerably higher in the blood (sea cucumber) than in the other studied tissues. The highest concentration of vanadium (2.56 μg g−1), as well as a higher degree of organic vanadium (85.5 %), was observed in the Holothuria scabra samples compared with all other samples. Vanadium levels in Apostichopus japonicus from Bohai Bay and Yellow Sea have marked seasonal variations. Average values of 1.09 μg g−1 of total vanadium and 0.79 μg g−1 of organic vanadium were obtained in various species of sea cucumbers. Significant positive correlations between vanadium in the seawater and V org in the sea cucumber (r = 81.67 %, p = 0.00), as well as between vanadium in the sediment and V org in the sea cucumber (r = 77.98 %, p = 0.00), were observed. Vanadium concentrations depend on the seasons (salinity, temperature), species, sampling sites and seawater environment (seawater, sediment). Given the adverse toxicological effects of inorganic vanadium and positive roles in controlling the development of diabetes in humans, a regular monitoring programme of vanadium content in edible sea cucumbers can be recommended.

  相似文献   

9.
The effect of ammonium concentration on photosynthetic activity estimated as in vivo chlorophyll fluorescence, i.e. maximal quantum yield (Fv/Fm) and electron transport rate (ETR) and on the accumulation of mycosporine-like amino acids (MAAs), chlorophyll a (chl a), biliproteins (BP) and soluble proteins (SP) in the red algae Porphyra leucosticta Thuret in Le Jolis collected from Lagos (Málaga, Spain) and Porphyra umbilicalis (Linnaeus) J. Agardh from Helgoland (Germany) was evaluated. Discs of both species were incubated with three ammonium concentrations (0, 100 and 300 µM) under artificial PAR and UV radiation for 7 days. Photosynthetic activity decreased under the culture conditions due to UV radiation and ammonium availability. The decrease of both Fv/Fm and maximal ETR was related to ammonium supply, i.e. the lowest decrease occurred in algae growing with the highest concentration of ammonium. In both species, after 7 days of culture, the content of chl a, BP and SP was higher under 300 µM than that under 0 and 100 µM ammonium. In both species, the content of MAAs was increased under 300 µM ammonium compared to the initial value, whereas a decrease under 0 and 100 µM ammonium was observed only in P. leucosticta. The content of MAAs in P. umbilicalis did not present significant differences compared to the initial value, probably because of the high initial content of MAAs. In both Porphyra species, four MAAs were identified: shinorine, porphyra-334, palythine and asterina-330. However, P. leucosticta modified its MAA pattern during the incubation time, reaching the same percentages found for P. umbilicalis, which did not show any change during the experimental period. P. leucosticta exhibited a decrease in BP/SP and BP/chl a ratios through the incubation time and an increase in MAAs/BP. The ratio MAAs/chl a did not show any variation with time or treatment, as was also true for all ratios in P. umbilicalis. In summary, ammonium supply diminished the decrease of Fv/Fm, increased the content of photosynthetic pigments (chlorophyll and biliprotein) and soluble protein, and stimulated of the accumulation of MAAs in the red algae P. leucosticta and P. umbilicalis.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

10.
Temperature and mitochondrial plasticity are well studied in fishes, but little is known about this relationship in invertebrates. The effects of habitat temperature on mitochondrial ultrastructure were examined in three con-familial limpets from the Antarctic (Nacella concinna), New Zealand (Cellana ornata), and Singapore (Cellana radiata). The effects of seasonal changes in temperature were also examined in winter and summer C. ornata. Stereological methods showed that limpet pedal myocytes were 1–2 orders of magnitude smaller in diameter (≈3.5 μm) than in vertebrates, and that the diameter did not vary as a function of temperature. Mitochondrial volume density (Vv(mt,f)) was approximately 2–4 times higher in N. concinna (0.024) than in the other species (0.01 and 0.006), which were not significantly different from each other. Mitochondrial cristae surface density (Sv(im,mt)) was significantly lower in summer C. ornata (24.1 ± 0.50 μm2 μm−3) than both winter C. ornata (32.3 ± 0.95 μm2 μm−3) and N. concinna (34.3 ± 4.43 μm2 μm−3). The surface area of mitochondrial cristae per unit fibre volume was significantly higher in N. concinna, due largely to the greater mitochondrial volume density. These results and previous studies indicate that mitochondrial proliferation in the cold is a common, but not universal response by different species from different thermal habitats. Seasonal temperature decreases on the other hand, leading preferentially to an increase in cristae surface density. Stereological measures also showed that energetic reserves, i.e. lipid droplets and glycogen in the pedal muscle changed greatly with season and species. This was most likely related to gametogenesis and spawning.  相似文献   

11.
Removal of carbamazepine from urban wastewater by sulfate radical oxidation   总被引:2,自引:0,他引:2  
The occurrence of bioactive trace pollutants such as pharmaceuticals in natural waters is an emerging issue. Numerous pharmaceuticals are not completely removed in conventional wastewater treatment plants. Advanced oxidation processes may represent an interesting alternative to completely mineralize organic trace pollutants. In this article, we show that sulfate radicals generated from peroxymonosulfate/CoII are more efficient than hydroxyl radicals generated from the Fenton’s reagent (H2O2/FeII) for the degradation of the pharmaceutical compound, carbamazepine. The second-order rate constant for the reaction of SO4 ·− with carbamazepine is 1.92·109 M−1 s−1. In laboratory grade water and in real urban wastewater, SO4 ·− yielded a faster degradation of carbamazepine compared to HO· . Under strongly oxidizing conditions, a nearly complete mineralization of carbamazepine was achieved, while under mildly oxidizing conditions, several intermediates were identified by LC–MS. These results show for the first time in real urban wastewater that sulfate radicals are more selective than hydroxyl radicals for the oxidation of an organic pollutant and may represent an interesting alternative in advanced oxidation processes.  相似文献   

12.
The influence of abiotic factors on the establishment and success of invasive species is often difficult to determine for most marine ecosystems. However, examining this relationship is critical for predicting the spread of invasive species and predicting which habitats will be most vulnerable to invasion. Here we examine the mortality and physiological sensitivity to salinity of adult colonies of the colonial ascidians Botryllus schlosseri and Botrylloides violaceus. Adult colonies of each species were exposed to abrupt changes in salinity (5, 10, 15, 20, 25, 30 psu) in the laboratory. Salinity ranges used in the laboratory corresponded with those of the field distributions of B. violaceus and B. schlosseri in the Great Bay Estuary, NH. Heart rate was used as a proxy for health to assess the condition of individual colonies. Heart rates were monitored daily for approximately 2 weeks. Results revealed that both species experienced 100% mortality after 1 day at 5 psu and that their heart rates declined with decreasing salinity. Heart rates of B. schlosseri remained consistent between 15 and 30 psu and slowed at 10 psu. Heart rates of B. violaceus remained constant between 20 and 30 psu, but slowed at 15 psu. These laboratory results corresponded to the distribution of these species in estuaries, indicating salinity is a key factor in the distribution and dominance of B. schlosseri and B. violaceus among coastal and estuarine sites. Furthermore, physiological differences to salinity were found between colonies of B. schlosseri in the Venetian Lagoon and colonies in Portsmouth Harbor, suggesting adaptation to environmental variables.  相似文献   

13.
The oxygen consumption curves of two decapod crustaceans (Palaemon serratus, Penaeus monodon) and two prosobranch molluscs (Trunculariopsis trunculus, Nassarius mutabilis) have been detected in the entire pO2 interval from 0 to 160 mmHg, under different conditions of temperature and salinity. From the experimental curves, physiological parameters such as the initial oxygen consumption velocity, the Q 10 values and the oxygen independence indices have been measured. The latter parameters have been obtained using normalised plots which allow their better evaluation. The effects of temperature, salinity and oxygen partial pressure on the oxygen-consumption features have been studied using a factorial experimental plan which allows measurement of the effects of each experimental variable as well as the effects of synergistic interactions between different variables. Received: 27 March 2000 / Accepted: 13 November 2000  相似文献   

14.
The photosynthetic functionality in chloroplasts in the two sacoglossan molluscs Placida dendritica and Elysia viridis from the Trondheim fjord in Norway was studied. P. dendritica and E. viridis with no functional chloroplasts in their digestive system were introduced to the green macroalgae Codium fragile. Our results showed that P. dendritica was not able to retain functional (photosynthetic) chloroplasts. Transmission electron microscopy (TEM) showed that chloroplasts were directly digested when phagocytosed into the digestive cells. Four stages of chloroplast degradation were observed. A corresponding operational quantum yield of chl a fluorescence (ΦPSII ~ 0) indicated autofluorescence, and the presence of highly degraded chl a supported these observations. In contrast, E. viridis was able to retain functional chloroplasts. For this species it took only 1 week for the chloroplasts inside the digestive cells to acquire the same ΦPSII and light utilisation coefficient (α) as C. fragile kept under the same light conditions. Data for 8 days showed a 2–6-fold increase in the maximum photosynthetic rate (P max) and light saturation index (E k) relative to C. fragile. This increase in available light was probably caused by a reduced package effect in the digestive gland of E. viridis relative to C. fragile, resulting in a partial photoacclimation response by reducing the turnover time of electrons (τ). Isolated pigments from C. fragile compared to E. viridis showed the same levels of photosynthetic pigments (chl a and b, neoxanthin, violaxanthin, siphonaxanthin, siphonein and β,ε-carotene) relative to μg chl a (w:w), indicating that the chloroplasts in E. viridis did not synthesise any new pigments. After 73 days of starvation, it was estimated that chloroplasts in E. viridis were able to stay photosynthetic 5–9 months relative to the size of the slugs, corresponding to an RFC of level 8 (a retention ability to retain functional chloroplasts (RFC) for more than 3 months). The reduction in ΦPSII, P max and α as a function of time was caused by a reduction in chloroplast health and number (chloroplast thylakoid membranes and PSII are degraded). These observations therefore conclude that chloroplasts from C. fragile cannot divide or synthesise new pigments when retained by E. viridis, but are able to partially photoacclimate by decreasing τ as a response to more light. This study also points to the importance of siphonaxanthin and siphonein as chemotaxonomic markers for the identification of algal sources of functional chloroplasts.  相似文献   

15.
Cylindrotheca closterium is a common marine diatom living in intertidal environments where it can be present both in the water column and on sediments, depending on the tidal regime. In the present work this diatom was employed to investigate the responses to desiccation and to increase in PAR and UVB intensity, as occurs during emersion. Under these circumstances, the production of active oxygen species (AOS) may be enhanced resulting in an oxidative stress. Stress responses in this species were measured by exposing it to normal (30) and double salinity (60), supplying light of low or high intensity for 12 h, in the latter case either without or with moderate dose rates of UVB. Pulse amplitude modulated fluorometry was used to measure Chl a autofluorescence (F 0), an index of photosynthetic efficiency of PSII (F v/F m) and the relative electron transfer rate (rETR). The oxidative stress was evaluated by analysing GSH pools and SOD activity. It was observed that at double salinity and under low light, intracellular pools of reduced glutathione (GSH) were higher than under the two conditions of high light without and with UVB at both salinities. The antioxidative defence activity of superoxide dismutase (SOD) was far higher under hypersaline conditions. The oxidative damage was evaluated as protein and lipid damage. The results showed that it expressed itself mainly through protein peroxidation: at normal salinity relative protein carbonyl content was (a) twice as high as in cells grown at double salinity, and (b) three times as high under UVB. Total unsaturated lipid contents doubled under hypersalinity conditions. The lipid peroxidation marker malondialdehyde showed the strongest response to low light and UVB at salinity value of 60. Lipid peroxide content was significantly higher at salinity of 60 compared to normal salinity and was the highest under low light and high light with UVB. The simulated emersion condition of the diatom seems to lead to the establishment of a balance between damage and repair, expressed mainly as (a) oxidative protein damage at normal salinity, in particular due to UV radiation, (b) sufficient protection by SOD activity mainly under hypersaline conditions.  相似文献   

16.
Notwithstanding the great importance of the salinity factor in the marine environment, the knowledge of influence of salinity on growth of marine benthic algae is very limited. Rate of growth (mg, cm2) and O2 output of the intertidal red algaPorphyra umbilicalis from Helgoland, North Sea, were measured during a 3 week culture in 3 different salinities (1/2-, 1- and 2-concentrated artificial sea water; Table 1). Under hypertonic conditions (2-concentrated sea water) growth rate and photosynthesis rate were depressed, compared to values obtained in normal concentrated sea water. Under hypotonic conditions (1/2-concentrated sea water), growth expressed in mg was the same as in normal concentrated sea water, or higher when expressed in cm3. Rate of O2 output was almost unaltered in one of the two experiments, lowered in the other. Cell size increased at higher salinity, while swelling of cell walls and intercellular substances as well as the intensity of colouring decreased with salinity. The discrepancies between growth and photosynthesis under hypotonic conditions cannot be completely explained by the observed influences of salinity on morphological structures (cell size, swelling of cell substances). Detailed studies on the time course of photosynthesis and respiration rates, and preparation of a metabolic balance for the algae are necessary.  相似文献   

17.
The photocatalytic degradation of hydrolyzed reactive violet 5 (RV5) using titanium dioxide (TiO2) was investigated in this study. The effects of various factors including the amount of photocatalyst, RV5 concentration, light intensity, and pH on photocatalytic degradation were evaluated. The photodegradation efficiency was 90% after 20 min of irradiation and reached nearly 100% after 80 min under the condition of pH 4 and temperature of 25°C. The decolorization rate typically followed first-order reaction, and increased markedly with increasing amount of photocatalyst, pH as well as light intensity. The total mineralization, based on total organic carbon (TOC) concentration was 53% after 20 min of UV light exposure and approached nearly 100% after 140 min. The final mineralization product was formylformamide. The photodegradation was faster than the mineralization, indicating that the intermediate products of decolorization were resistant to photodegradation. In this study, we found that toxicity of RV5 significantly decreased after decolorization. Our study suggests that the photocatalytic degradation treatment of RV5 with TiO2 in wastewater is a simple and fast method.  相似文献   

18.
This report shows an unexpected toxicity decrease during atrazine photoelectrodegradation in the presence of NaCl. Atrazine is a pesticide classified as endocrine disruptor occurring in industrial effluents and agricultural wastewaters. We therefore studied the effects of the degradation method, electrochemical and electrochemical photo-assisted, and of the supporting electrolyte, NaCl and Na2SO4, on the residual toxicity of treated atrazine solutions. We also studied the toxicity of treated atrazine solutions using Artemia nauplii. Results show that at initial concentration of 20 mg L−1, atrazine was completely removed in up to 30 min using 10 mA cm−2 electrolysis in NaCl medium, regardless of the electrochemical method used. The total organic carbon removal by the photo-assisted method was 82% with NaCl and 95% with Na2SO4. The solution toxicity increased during sole electrochemical treatment in NaCl, as expected. However, the toxicity unexpectedly decreased using the photo-assisted method. This finding is a major discovery because electrochemical treatment with NaCl usually leads to the formation of toxic chlorine-containing organic degradation by-products.  相似文献   

19.
Photochemical degradation of 1-nitropyrene, 2-nitrofluorene, 2,7-dinitrofluorene, 6-nitrochrysene, 3-nitrofluoranthene, 5-nitroacenaphthene, and 9-nitroanthracene was examined in CHCl3, CH2Cl2, DMF, DMF/H2O (80/20), CH3CN, or CH3CN/H2O (80/20). The degradation mostly follows the first order kinetics; but a few follow second order kinetics or undergo self-catalysis. The photodegradation rates follow the order: CHCl3 > CH2Cl2 > DMF > DMF/H2O > CH3CN > CH3CN/H2O. DMF is an exceptional solvent because three of the seven compounds undergo self-catalytic reaction. 9-Nitroanthracene, which has a perpendicular nitro group, is the fastest, while the more compact 1-nitropyrene and 3-nitrofluoranthene are the slowest degrading compounds.  相似文献   

20.
Semiconductor photocatalysis is a solution to issues of environmental pollution and energy shortage because photocatalysis can use solar energy to degrade pollutants. The photocatalytic activity can be improved by using composites of ZnO and other semiconductors. Here, composites of ZnO and polymeric graphite-like C3N4 (g-C3N4) with high photocatalytic activities were prepared by microwave synthesis. Products were characterized by X-ray diffraction, transmission electron microscopy, ultraviolet–visible and Fourier transform infrared spectroscopy. The photocatalytic degradation of Rhodamine B was tested under irradiation from a Xe lamp. Results show that adding graphite-like C3N4 promotes the photocatalytic activity of ZnO. Composites with 1.0 wt% g-C3N4 showed the best photodegradation efficiency, and the reaction average energy was approximately 33.71 kJ mol?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号