共查询到20条相似文献,搜索用时 0 毫秒
1.
Three-dimensional quantitative structure-activity relationship study for phenylsulfonyl carboxylates using CoMFA and CoMSIA 总被引:3,自引:0,他引:3
From both the comparative molecular field analysis (CoMFA) and the comparative molecular similarity indices analysis (CoMSIA), the paper describes two three-dimensional quantitative structure-activity relationship (3D-QSAR) models for the acute toxicity logEC50 (15 min-EC50 in micromoll(-1)) of 56 phenylsulfonyl carboxylates on Photobacterium phosphoreum. Two models yield the leave-one-out cross-validated correlation coefficient q2 values of 0.823 and 0.713, and the conventional correlation coefficient r2 values of 0.958 and 0.933, respectively. The achievement of higher q2 and r2 values of CoMFA model indicates the significance of correlation of steric and electrostatic fields with biological activities. The key features in the CoMFA contour maps are critical to trace the important properties and gain insight into the toxic mechanism of tested compounds. The quality of CoMSIA model is slightly lower than that of CoMFA in terms of q2 and r2 values. Not requiring molecular superposition, CoMSIA is faster than CoMFA in data processing. 相似文献
2.
The general solubility equation (GSE) proposed by Jain and Yalkowsky was used to estimate aqueous solubility of 1026 non-electrolytes. The only parameters used in the GSE are melting points (MP) and octanol-water partition coefficients (Kow). No fitted parameters and no training set are employed in the GSE. The experimental solubility values were taken from the AQUASOL dATAbASE. The average absolute error and the root-mean-square error in the solubility estimates are 0.38 and 0.53 log units, respectively. Thus, with an observed MP and calculated Kow; the users can obtain a reasonable estimation of the aqueous solubility of any organic non-electrolyte. 相似文献
3.
The aqueous solubility of hexafluorobenzene has been determined, at 298.15 K, using a shake-flask method with a spectrophotometric quantification technique. Furthermore, the solubility of hexafluorobenzene in saline aqueous solutions, at distinct salt concentrations, has been measured. Both salting-in and salting-out effects were observed and found to be dependent on the nature of the cationic/anionic composition of the salt. COSMO-RS, the Conductor-like Screening Model for Real Solvents, has been used to predict the corresponding aqueous solubilities at conditions similar to those used experimentally. The prediction results showed that the COSMO-RS approach is suitable for the prediction of salting-in/-out effects. The salting-in/-out phenomena have been rationalized with the support of COSMO-RS σ-profiles. The prediction potential of COSMO-RS regarding aqueous solubilities and octanol-water partition coefficients has been compared with typically used QSPR-based methods. Up to now, the absence of accurate solubility data for hexafluorobenzene hampered the calculation of the respective partition coefficients. Combining available accurate vapor pressure data with the experimentally determined water solubility, a novel air-water partition coefficient has been derived. 相似文献
4.
The physical chemical equations relating solubility to octanol water partition coefficient are presented and used to develop a new correlation between these quantities which includes a melting point (fugacity ratio) correction. The correlation is satisfactory for 45 organic compounds but it is not applicable to organic acids. When applied to very high molecular weight (> 290) compounds the correlation is less satisfactory; either it is believed because the data are inaccurate or because the tendency for these compounds to partition into organic phases is less than expected. This may have profound environmental implications. 相似文献
5.
Measuring the biodegradability of nonylphenol ether carboxylates, octylphenol ether carboxylates, and nonylphenol 总被引:12,自引:0,他引:12
We examined the biodegradability of several metabolites of C8- and C9-alkylphenol ethoxylates, including nonylphenoxyacetic acid (NPEC1), nonylphenoxyethoxyacetic acid (NPEC2), octylphenoxyacetic acid (OPEC1), octylphenoxyethoxyacetic acid (OPEC2), and nonylphenol (NP). Using OECD method 301B (modified Sturm method), OPEC1 and OPEC2 are readily biodegradable: both compounds exceeded 60% of theoretical CO2 formation (ThCO2) by day 28, and required less than 10 days to go from 10% to 60% ThCO2. Also using method 301B, NPEC1 and NPEC2 exceeded 60% ThCO2 at day 28, but did not meet the 10 day window. Using OECD method 301F, the manometric respirometry method that measures oxygen consumption, approximately 62% of NP was biodegraded in 28 days, but required more than 10 days to go from 10% to 60% biodegradation. While the validity of the "10-day window" is currently being debated within OECD, the data show that the common metabolites of C8- and C9-APEs are rapidly degraded in the test systems used, which strongly suggests that they would not accumulate or persist in the environment. 相似文献
6.
The aqueous solubilities of 27 insecticides and related compounds were determined. Diazinon, fensulfothion and paraoxon had solubilities greater than reported in the literature. The presence of impurities and/or additional components in the mixture altered the measured solubility values. Addition of acetone in amounts up to 1% (volume) produced increases in parathion solubility up to 11%. The pH values of the equilibrated solubility systems were, in most instances, acidic and, in several instances, were in the pH 3-4 range. 相似文献
7.
8.
Effect of surfactants, dispersion and temperature on solubility and biodegradation of phenanthrene in aqueous media 总被引:1,自引:0,他引:1
Pantsyrnaya T Blanchard F Delaunay S Goergen JL Guédon E Guseva E Boudrant J 《Chemosphere》2011,83(1):29-33
In the present study surfactant addition with the help of either a mechanical dispersion or a thermal treatment was applied in order to increase the solubility and the bioavailability of phenanthrene in aqueous media, and therefore to promote its biodegradation. Among four tested surfactants (Tween 80, Brij 30, sodium dodecyl sulphate and rhamnolipids), Brij 30 (0.5 gL(-1)) showed the best results allowing us to attain about 20 mgL(-1) of soluble phenanthrene. An additional thermal treatment at 60°C for 24h, 200 rpm permitted to increase the solubility of phenanthrene in the presence of Brij 30 (0.5 gL(-1)) to about 30 mgL(-1). Higher dispersions of phenanthrene particles as well as the reduction of their size were obtained using Ultra-Turrax and French press. The biodegradation of phenanthrene by Pseudomonas putida was then investigated. The reduction of size of phenanthrene particles by mechanical dispersion did not influence its biodegradation, suggesting that P. putida consumed only soluble phenanthrene. The addition of Brij 30 (0.5 gL(-1)) permitted to obtain more phenanthrene metabolized. The use of Brij 30 coupled with a transitory heating of phenanthrene-containing medium at 60°C led to an even more complete biodegradation. This might be a promising way to enhance biodegradation of PAHs. 相似文献
9.
Hedberg Y Herting G Wallinder IO 《Environmental pollution (Barking, Essex : 1987)》2011,159(5):1144-1150
Membrane filtration is commonly performed for solid-liquid separation of aqueous solutions prior to trace metal analysis and when assessing “dissolved” metal fractions. Potential artifacts induced by filtration such as contamination and/or adsorption of metals within the membrane have been investigated for different membrane materials, metals, applied pressures and pre-cleaning steps. Measurements have been conducted on aqueous solutions including well-defined metal standards, ultrapure water, and on runoff water from corroded samples.Filtration using both non-cleaned and pre-cleaned filters revealed contamination and adsorption effects, in particular pronounced for zinc, evident for copper but non-significant for nickel. The results clearly show these artifacts to be non-systematic both for non-cleaned and pre-cleaned membranes. The applied pressure was of minor importance.Measurements of the labile fraction by means of stripping voltammetry clearly elucidate that membrane filtration followed by total metal analysis cannot accurately assess the labile or the dissolved metal fraction. 相似文献
10.
Estimating temperature dependence of solubility and octanol-water partition coefficient for organic compounds using RP-HPLC. 总被引:1,自引:0,他引:1
Temperature dependence data for physical-chemical properties is increasingly required for modelling the fate of chemicals in the environment. Solubility and octanol-water partition coefficient (Kow) are among the most important parameters. A simple and fast method is presented to determine solubility and Kow of organic chemicals at different temperatures (5 degrees C, 15 degrees C, 25 degrees C, 35 degrees C) utilising a variable temperature RP-HPLC column. Correlations between capacity factors (k') and solubility and Kow were determined for some halogenated and methylated benzenes and showed that this approach could be used to predict acceptable results. New values for solubility and Kow as function of temperature for several compounds are presented. 相似文献
11.
12.
New data on the vapour pressures and aqueous solubility of 1,8-dichlorooctane and 1,8-dibromooctane are reported as a function of temperature between 20 °C and 80 °C and 1 °C and 40 °C, respectively. For the vapour pressures, a static method was used during the measurements which have an estimated uncertainty between 3% and 5%. The aqueous solubilities were determined using a dynamic saturation column method and the values are accurate to within ±10%. 1,8-Dichlorooctane is more volatile than 1,8-dibromooctane in the temperature range covered (psat varies from 3 to 250 Pa and from 0.53 to 62 Pa, respectively) and is also approximately three times more soluble in water (mole fraction solubilities at 25 °C of 5.95 × 10−7 and 1.92 × 10−7, respectively). A combination of the two sets of data allowed the calculation of the Henry’s law constants and the air water partition coefficients. A simple group contribution concept was used to rationalize the data obtained. 相似文献
13.
In order to represent aqueous solubility and 1-octanol/water partition coefficient for POPs (persistent organic pollutants) by the UNIFAC model, two pairs of group interaction parameters in Revision 5 of the UNIFAC parameter table were modified. First, the pair of interaction parameters between the aromatic carbon-chloride (ACCl) and water (H2O) groups were corrected by minimizing the deviation between the experimental and calculated values of these properties for chlorinated benzenes, polychlorinated biphenyls, and polychlorinated dibenzo-p-dioxins and dibenzofurans. The corrected interaction parameters provided a better representation of both properties than the calculation results obtained in early works using the UNIFAC model. Second, the unknown pair of interaction parameters between the chloroalkene (Cl(C=C)) and H2O groups, which are required for calculating those properties of the other five POPs (aldrin, chlordane, endrin, dieldrin, and heptachlor), were newly determined from the experimental data on their properties. Finally, this study shows that Revision 5 could also predict solubility of POPs in some organic solvents. The modified parameter table is first suggested as the UNIFAC parameter table applicable to various phase equilibria including aqueous or nonaqueous solubility and partition coefficient of POPs. 相似文献
14.
Zebra mussels (Dreissena polymorpha) were exposed to different types of water containing PGE salts (PtCl4, PdSO4, RhCl3) to investigate the influence of humic substances on the aqueous solubility, uptake and bioaccumulation of noble metals. The results showed a time dependent decrease of the aqueous PGE concentrations in tank water for all groups. This could mainly be related to non-biological processes. The aqueous solubility of Pd and Rh was higher in humic water compared with non-chlorinated tap water, whereas Pt showed opposing results. Highest metal uptake rates and highest bioaccumulation plateaus were found for Pd, followed by Pt and Rh. Pd uptake and bioaccumulation was significantly hampered by humic substances, whose presence appear to increase Pt uptake and bioaccumulation. No clear trend emerged for Rh. Differences in effects of humic matter among the PGE may be explained by formation of metal complexes with different fractions of humic substances. 相似文献
15.
16.
17.
The effects of selected cosolvents ethyl alcohol (EtOH), isopropyl alcohol (IPA), and tertbutyl alcohol (TBA) on the Henry's law constant (H) of tetrachloroethylene (PCE) in aqueous solutions were investigated using the static headspace method. Alcohols in solution at a concentration around 20% and above acted as cosolvents increasing the aqueous solubility of PCE, which resulted in lower H values for PCE as compared to the value of H in deionized water. TBA, the most hydrophobic of the three alcohols, exhibited the strongest cosolvent effects, while EtOH had the weakest effects. A ln-linear relationship was observed between H and the volumetric fraction of alcohol added. Investigation of the solubilization of PCE in alcohol solutions confirmed the cosolvent trend observed for the three alcohols. A ln-ln relationship was observed between H and the enhanced solubility of PCE at a particular alcohol concentration. It was also observed that the value of H is a function of the enhanced solubility regardless of the type of cosolvent used. The results from this research further define the behavior of PCE in alcohol flooding solutions used in the remediation of PCE contaminated media. 相似文献
18.
Study of fuel oxygenates solubility in aqueous media as a function of temperature and tert-butyl alcohol concentration 总被引:1,自引:0,他引:1
Methyl tert-butyl ether (MTBE) is the most widely used oxygenate in gasoline blending and has become one of the world’s most widespread groundwater and surface water pollutants. Alternative oxygenates to MTBE, namely ethyl tert-butyl ether (ETBE), tert-amyl ether (TAME) and diisopropyl ether (DIPE) have been hardly studied yet. The solubility of these chemicals is a key thermodynamic information for the assessment of the fate and transport of these pollutants. This work reports experimental data of water solubility at the range from 278.15 to 313.15 K and atmospheric pressure of ethers used in fuels (MTBE, ETBE, TAME and DIPE) due to the strong influence of temperature on its trend. From the experimental data, temperature dependent polynomials were fitted, thermodynamic parameters were calculated and theoretical models were used for prediction. Finally, the tert-butyl alcohol (TBA) influence in the solubility of MTBE and ETBE in aqueous media was studied. 相似文献
19.
Manikandan Dinesh Babu Arumugam Manikandan Veeran Srinivasan Sridhar Arun Krishnasamy Sekar Rajkumar Perumalsamy Balaji Ramasamy Thirumurugan 《Environmental science and pollution research international》2021,28(26):33927-33941
Environmental Science and Pollution Research - Nanotechnology tends to be a swiftly growing field of research that actively influences and inhibits the growth of bacteria/cancer. Noble metal... 相似文献
20.
The behaviour of N-(phenylsulfonyl)-glycine (PSG) and phenacetin (PHE) in a municipal sewage treatment plant near Heidelberg, Germany, was investigated in the summer of 1997. For that purpose, 10 g of each substance was dissolved and poured simultaneously into the influent. In addition to the spiked compounds, the samples of the influent, the biological stage and the effluent were analyzed for N-(phenylsulfonyl)-sarcosine (PSS), N-methyl-N-(phenylsulfonyl)-amide (MPS), N-methyl-phenacetin, N-methyl-N-(phenylsulfonyl)-epsilon-aminocaproic (PSC) acid and its degradation product N-methyl-N-(phenylsulfonyl)-gamma-aminobutyric (PSB) acid. Within 24 h PHE could be detected almost quantitatively in the effluent. Since N-methyl-phenacetin could not be found in any of the samples, apparently no methylation of the amino-group of PHE took place. The amount of PSG in the effluent was within 24 h 26.0 g, which is more than two fold higher than added. The decrease of PSG between biological stage and effluent and the increase of PSS within the same time correlate well. Therefore, the formation of PSS by microbial methylation of PSG in the sewage treatment plant must be assumed. 相似文献