首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 0 毫秒
1.
The populations of many species are structured such that mating is not random and occurs between members of local patches. When patches are founded by a single female and all matings occur between siblings, brothers may compete with each other for matings with their sisters. This local mate competition (LMC) selects for a female-biased sex ratio, especially in species where females have control over offspring sex, as in the parasitic Hymenoptera. Two factors are predicted to decrease the degree of female bias: (1) an increase in the number of foundress females in the patch and (2) an increase in the fraction of individuals mating after dispersal from the natal patch. Pollinating fig wasps are well known as classic examples of species where all matings occur in the local patch. We studied non-pollinating fig wasps, which are more diverse than the pollinating fig wasps and also provide natural experimental groups of species with different male morphologies that are linked to different mating structures. In this group of wasps, species with wingless males mate in the local patch (i.e. the fig fruit) while winged male species mate after dispersal. Species with both kinds of male have a mixture of local and non-local mating. Data from 44 species show that sex ratios (defined as the proportion of males) are in accordance with theoretical predictions: wingless male species<wing-dimorphic male species<winged male species. These results are also supported by a formal comparative analysis that controls for phylogeny. The foundress number is difficult to estimate directly for non-pollinating fig wasps but a robust indirect method leads to the prediction that foundress number, and hence sex ratio, should increase with the proportion of patches occupied in a crop. This result is supported strongly across 19 species with wingless males, but not across 8 species with winged males. The mean sex ratios for species with winged males are not significantly different from 0.5, and the absence of the correlation observed across species with wingless males may reflect weak selection to adjust the sex ratio in species whose population mating structure tends not to be subdivided. The same relationship is also predicted to occur within species if individual females adjust their sex ratios facultatively. This final prediction was not supported by data from a wingless male species, a male wing-dimorphic species or a winged male species. Received: 27 July 1998 / Received in revised form: 11 January 1999 / Accepted: 16 January 1999  相似文献   

2.
Fisher’s 1930 theory of sex allocation predicts a population-wide 1:1 ratio of parental investment. We tested this prediction in the European beewolf, a sphecid wasp that hunts for honeybees as larval food. Because the method to quantify parental investment is of crucial importance, we compared the suitability of several different investment measures. Female/male cost ratios were determined from a sample and the total investment in sons and daughters was calculated. In addition, the actual number of prey items for sons and daughters was directly determined by excavating nests and counting the cuticle remains of the prey. Though mortality was high (70%), it had only a weak effect on the estimate of the investment ratio. Based on commonly used measures like fresh and dry weight of emerged adults, the investment ratio did not deviate from Fisher’s prediction of equal investment. However, progeny weight considerably underestimates investment in males and investment in large progeny. Measures that reflect the allocation of resources more directly (amount of provisions, brood cell volume) revealed a significant male bias and thus contradicted Fisher’s theory. Three kinds of explanation are discussed. First, non-adaptive explanations are unlikely. Second, from the spectrum of alternative adaptive theories, only models that assume a non-linear relationship between amount of investment and progeny fitness seem to be relevant for the study species. Third, though the number of prey in a brood cell seems to be a rather good measure of parental investment in European beewolves, some problems in measuring parental investment remain. These problems are of broad significance. Received: 17 June 1999 / Received in revised form: 6 July 1999 / Accepted: 11 July 1999  相似文献   

3.
The theory of parental investment and brood sex ratio manipulation predicts that parents should invest in the more costly sex during conditions when resources are abundant. In the polygynous great reed warbler, Acrocephalus arundinaceus, females of primary harem status have more resources for nestling provisioning than secondary females, because polygynous males predominantly assist the primary female whereas the secondary female has to feed her young alone. Sons weigh significantly more than daughters, and are hence likely to be the more costly sex. In the present study, we measured the brood sex ratio when the chicks were 9 days old, i.e. the fledging sex ratio. As expected from theory, we found that female great reed warblers of primary status had a higher proportion of sons in their broods than females of lower (secondary) harem status. This pattern is in accordance with the results from two other species of marsh-nesting polygynous birds, the oriental reed warbler, Acrocephalus orientalis, and the yellow-headed blackbird Xanthocephalus xanthocephalus. As in the oriental reed warbler, we found that great reed warbler males increased their share of parental care as the proportion of sons in the brood increased. We did not find any difference in fitness of sons and daughters raised in primary and secondary nests. The occurrence of adaptive sex ratio manipulations in birds has been questioned, and it is therefore important that three studies of polygynous bird species, including our own, have demonstrated the same pattern of a male-biased offspring sex ratio in primary compared with secondary nests. Received: 1 June 1999 / Received in revised form: 10 January 2000 / Accepted: 12 February 2000  相似文献   

4.
Sex ratios were bimodally distributed in a population of the monogynous and monandrous ant Leptothorax nylanderi during each of 3 study years. The population-wide investment ratios suggested worker control of sex allocation. Nest-level variation in the proportional investment in virgin queens was not affected by the presence or absence of a queen and only slightly by collecting year, but was correlated with nest size, total sexual investment and, unexpectedly, with differences in nestmate relatedness: small, low-investment nests and nests with several worker lineages produced male-biased sex ratios. Colonies containing several worker lineages arise from usurpation of mature colonies by unrelated founding queens and the fusion of unrelated colonies under strong nest site limitation. In contrast to facultatively polygynous and polyandrous species of social insects, where workers can maximize their inclusive fitness by adjusting sex ratios according to the degree of relatedness asymmetry, workers in mixed colonies of L. nylanderi do not benefit from manipulating sex allocation, as here relatedness asymmetries appear to be the same as in homogeneous colonies. Received: 7 December 1999 / Received in revised form: 29 February 2000 / Accepted: 13 March 2000  相似文献   

5.
Group histories and offspring sex ratios in ringtailed lemurs (Lemur catta)   总被引:2,自引:0,他引:2  
Birth sex ratios were examined for ringtailed lemurs (Lemur catta) at the Duke University Primate Center. This population provides a long-term database of births under a variety of demographic and management conditions, including two semi-freeranging groups between which males transfer freely and females defend stable territorial boundaries. We examined three hypotheses usually considered in studies of primate sex ratio bias. The Trivers-Willard hypothesis predicts that dominant females produce males, local resource competition at the population level (LRC-population) predicts that the dispersing sex (males) will be overproduced in dense populations, and local resource competition among individuals (LRC-individual) predicts that dominant females overproduce the philopatric sex (females). We also examined a fourth hypothesis, local resource enhancement (LRE), which is usually subsumed under LRC-individual in studies of primate sex ratio evolution. LRE predicts that under certain conditions, females will produce the sex that provides later cooperative benefits, such as alliance support for within- or between-group competition. Our data provide support for LRE: females overproduce daughters given prospects of new group formation, either through group fission or threatened expulsion of young mothers. Behavioral data from Duke and also wild populations show that daughters serve mothers as important allies in this context and LRE effects also have been documented in other mammals that experience similar group histories. Nonsignificant trends in the data supported the LRC-population hypothesis, and we suggest that LRC interacts with LRE to explain offspring sex ratios in ringtailed lemurs. Received: 27 August 1999 / Received in revised form: 6 March 2000 / Accepted: 18 March 2000  相似文献   

6.
We examined whether several facultatively gregarious encyrtid (Hymenoptera: Encyrtidae) endoparasitoids of brown soft scale, Coccus hesperidum L., manifest precise sex allocation under field conditions. Metaphycus luteolus (Timberlake), Metaphycus angustifrons (Compere), Metaphycus stanleyi (Compere), and Microterys nietneri (Motshulsky) evince brood sex ratios that are female-biased and extremely precise (low variance in the number of sons per host). Typically, this sex allocation pattern is attributed to extreme local mate competition (LMC) in which only one foundress exploits a patch of hosts and mating occurs mostly between her offspring. However, such a pattern of sex allocation was not detected for Metaphycus helvolus (Compere). Also, a large proportion of the broods in all five species contained only daughters; thus, an excess of male-only broods was expected if unmated females (i.e., females that can produce only sons) contribute offspring before mating. All-male broods were rare in our samples. This finding coupled with the life history characteristics of these wasps, such as the exploitation of aggregated hosts and the long life span and mobility of males, suggest that nonlocal mating is frequent. Our empirical work suggests that it is advantageous to allocate precise sex ratios in cases in which mating opportunities for males are not restricted to their natal host and/or when multiple foundresses exploit large patches of hosts. Limited theoretical work also supports this prediction but more detailed studies of this taxon’s mating structure and other life history characteristics are necessary to understand their sex allocation decisions.  相似文献   

7.
In the parasitoid wasp Spalangia endius more offspring and a greater proportion of daughters were oviposited in, and emerged from 0-day-old versus 3-day-old hosts. Offspring that developed on the younger hosts (1) were larger at adulthood, (2) developed more quickly, (3) had higher survivorship to adulthood, and (4) were more often able to chew their way out of the host. Sons and daughters did not differ in how host age affected their size, development rate, or survivorship. The greater proportion of daughters from the younger hosts may be adaptive, as described by the host quality model (a variant of the Trivers and Willard hypothesis). It is adaptive if greater size or more rapid development has a more positive effect on a daughter’s than a son’s fitness and the positive effect is large enough to compensate for sons being trapped disproportionately to daughters in the older hosts. Despite greater success at drilling the younger hosts, mothers did not try to drill them sooner or more often. Having previously oviposited on the older rather than the younger hosts had no detrimental effect on the mother’s subsequent longevity or offspring production. Received: 8 March 2000 / Revised: 9 June 2000 / Accepted: 24 June 2000  相似文献   

8.
Maternal investment in offspring is expected to vary according to offspring sex when the reproductive success of the progeny is a function of differential levels of parental expenditure. We conducted a longitudinal investigation of rhesus macaques to determine whether variation in male progeny production, measured with both DNA fingerprinting and short tandem repeat marker typing, could be traced back to patterns of maternal investment. Males weigh significantly more than females at birth, despite an absence of sex differences in gestation length. Size dimorphism increases during infancy, with maternal rank associated with son’s, but not daughter’s, weight at the end of the period of maternal investment. Son’s, but not daughter’s, weight at 1 year of age is significantly correlated with adult weight, and male, but not female, weight accounts for a portion of the variance in reproductive success. Variance in annual offspring output was three- to fourfold higher in males than in females. We suggest that energetic costs of rearing sons could be buffered by fetal delivery of testosterone to the mother, which is aromatized to estrogen and fosters fat accumulation during gestation. We conclude that maternal investment is only slightly greater in sons than in daughters, with mothers endowing sons with extra resources because son, but not daughter, mass has ramifications for offspring sirehood. However, male reproductive tactics supersede maternal investment patterns as fundamental regulators of male fitness. Received: 23 July 1999 / Received in revised form: 23 February 2000 / Accepted: 13 March 2000  相似文献   

9.
Although most birds are monogamous, theory predicts that greater female parental investment and female-biased adult sex ratios will lower the polygyny threshold. This should result in polygynous mating, unless obligate biparental care or the spatial and temporal distribution of fertilizable females constrains a male’s ability to take advantage of a lowered polygyny threshold. Here we present data on the extent of male sexually dimorphic plumage, adult sex ratios and breeding season synchrony in three populations of a socially monogamous seabird, the brown booby Sula leucogaster. For one of these populations, San Pedro Mártir Island, we also present data on differences in male and female parental investment, mortality and probability of pairing. The extent of plumage dimorphism varied among populations. Sex ratios were female biased in all populations. On San Pedro Mártir Island, parental investment was female biased, females failed more often than males to find a mate, but there was no polygyny. We suggest that on San Pedro Mártir: (1) a period of obligate biparental care coupled with a relatively synchronous breeding season constrained the ability of males to take advantage of a high environmental polygamy potential and (2) the resulting socially monogamous mating system, in combination with the female-biased adult sex ratio, caused females to be limited by the availability of males despite their greater parental investment. Received: 18 November 1999 / Accepted: 24 January 2000  相似文献   

10.
The local resource enhancement (LRE) model predicts that in cooperatively breeding species, sex ratios will be biased in favor of the more helpful sex. In this study, we assess the assumptions underlying the LRE model in a population of cooperatively breeding wild dogs (Lycaon pictus) in Northern Botswana monitored over a 15-year period. In this population, litter size and pup survival to 1 year are strongly affected by pack size and the breeding female’s age, but adult males have a stronger and more linear effect on females’ reproductive performance than do adult females. This asymmetry in the benefits derived from male and female helpers is reflected in male-biased sex ratios in litters at the time pups emerge from the den. Sex ratio biases are most pronounced in the litters of the youngest mothers who live in significantly smaller packs than older females. The presence of potential rivals for the dominant female’s position depresses pup production at the time of emergence, suggesting that competition among females for breeding positions may also contribute to the selective forces affecting birth sex ratios.  相似文献   

11.
In sexually size dimorphic species, individuals of the larger sex often suffer from enhanced mortality during the nestling period. This has been attributed to higher nutritional requirements of the larger sex, which may render this sex more vulnerable to adverse food conditions. However, sex-biased mortality might not exclusively depend on the differences in food demand but also on other phenotypic differences, e.g., in competitiveness. Interference competition between the sexes and position in the laying sequence in particular may be essential components contributing to biased mortality.By creating synchronously-hatched unisex broods in the sexually size dimorphic black-headed gull, we specifically tested the effect of sex-specific food demand by excluding interference competition between the sexes as well as hatching asynchrony. To test the effect of egg quality, which varies with the position in the laying sequence, we composed each nest of chicks from eggs of all different positions in the laying sequence.All-male nests showed significantly enhanced mortality compared to all-female nests from the beginning of the development of the sexual size dimorphism onwards. This underlines the role of a higher food demand in biased mortality of the larger sex.In males but not females, asymptotic body mass and skeletal size were negatively associated with position in the laying sequence, while survival was not affected by position. As a consequence, sexual size dimorphism at the end of the nestling period was less pronounced compared to the natural situation. These data show that, although male growth is more sensitive to a decrease in egg quality, the higher mortality of last hatched chicks in natural nests is mainly due to hatching asynchrony and egg size but not egg content.  相似文献   

12.
We investigated the fledging probability of oystercatcher, Haematopus ostralegus, chicks as a function of hatching order, brood size, territory quality and food availability. Sibling dominance was related to the hatching order in both low- (’leapfrogs’) and high-quality (’residents’) territories. Differences in hatchling mass might have aided the establishment of a dominance hierarchy, since breeders produced small late eggs and hatchlings. These mass differences were most pronounced in leapfrogs, and in large broods in years with lower food availability (’poor’ years). Late hatchlings fledged less often and with lower body masses compared to early hatchlings in all situations. Leapfrogs produced smaller broods and hatched their broods more asynchronously in poor years than leapfrogs breeding in years with more available food (’good’ years) and residents breeding in both poor and good years. Large brood sizes resulted in lower survival of hatchlings in poor years. These results favour the ’brood reduction’ hypothesis. However, contrary to the expectations of this hypothesis, hatching order also affected fledging success in residents. Moreover, large brood size resulted in higher survival of hatchlings in good years, particularly in residents. Thus, although large broods experienced losses due to sibling competition in some years, they nevertheless consistently produced more fledglings per brood in all years, both as leapfrogs and residents. We believe this effect is due to parental quality correlating with initial brood size. Most leapfrogs, at best, fledged one chick successfully each year, losing chicks due to starvation. Nevertheless, leapfrog broods were reduced in size after hatching significantly less quickly than resident broods. These results suggest that breeders lay and hatch insurance eggs to compensate for unpredictable losses due to the high predation rates on both nests (ca 50%) and chicks (ca 90%), in accordance with the ’nest failure’ hypothesis. Received: 14 February 2000 / Revised: 27 September 2000 / Accepted: 10 June 2000  相似文献   

13.
Empirical evidence is growing that the offspring sex ratio in birds can be biased in relation to the body condition of parents during breeding. The sex ratio bias may come about because (1) the actual production of the two sexes may be skewed and/or (2) there may be a sex bias in early nestling mortality contingent on parental condition. By manipulating parental condition and giving them a control brood to rear, thereby eliminating effects operating via the eggs, we examined the extent to which parental condition influences the post-hatching survival of male and female lesser black-backed gulls, Larus fuscus. We found that the pre-fledging survival of male chicks was strongly reduced in all-male broods reared by parents in poor condition. Pre-fledging survival of female chicks was, however, unaffected by parental condition or brood sex composition. Thus, independently of any production biases, sex differences in nestling mortality alone can bias the offspring sex ratio at fledging in relation to the prevailing rearing conditions. In other studies on gulls we have, however, also shown that females in poor condition at laying preferentially produce female eggs. Clearly a bias in fledging sex ratio can occur within the same species due to a combination of differential production and differential post-laying mortality; the latter can involve a differential effect of poor egg quality on male and female offspring, differential effects of brood sex composition on their survival and a difference in the capacity of parents to rear males and females. All of these processes need to be taken into account in attempting to understand offspring sex ratios. Received: 15 February 2000 / Revised: 7 August 2000 / Accepted: 26 August 2000  相似文献   

14.
Sex allocation theory posits that mothers should preferentially invest in sons when environmental conditions are favorable for breeding, their mates are of high quality, or they are in good body condition. We tested these three hypotheses in rhinoceros auklets (Cerorhinca monocerata), monomorphic seabirds that lay a single-egg clutch, in 2 years that differed in environmental conditions for breeding. Results supported the environment and mate quality hypotheses, but these effects were interactive: offspring sex was independent of paternal traits in the poor year for breeding, while females mated to larger and more ornamented males reared more sons in the better year. Conversely, offspring sex was unrelated to female condition, as indexed by hatching date. We propose that good rearing conditions enable females to rear sons possessing the desirable phenotypic attributes of their mates. Results also supported two critical assumptions of sex allocation theory: (1) dimorphism in offspring condition at independence: daughters fledged with higher baseline levels of corticosterone than sons and (2) differential costs of rearing sons versus daughters: mothers rearing sons when environmental conditions were poor completed parental care in poorer condition than mothers rearing daughters in the same year and mothers rearing either sex when conditions were better. These novel results may help to explain the disparate results of previous studies of avian sex allocation.  相似文献   

15.
In anarchistic honey-bee colonies, many workers’ sons are reared despite the presence of the queen. Worker-laid eggs are normally eaten by other workers in queenright colonies. Workers are thought to discriminate between queen-laid and worker-laid eggs by the presence or absence of a queen-produced egg-marking pheromone. This study compared the survival of three classes of eggs (worker-laid eggs from anarchistic colonies, worker-laid eggs from non-anarchistic queenless colonies, and queen-laid eggs) in both queenright normal colonies and queenright anarchistic colonies, in order to test the hypothesis that anarchistic workers evade policing by laying more acceptable eggs. As expected, few worker-laid eggs from non-anarchistic colonies survived more than 2 h. In contrast, worker-laid eggs from anarchistic colonies had much greater acceptability, which in some trials equalled the acceptability of queen-laid eggs. Anarchistic colonies were generally less discriminatory than normal queenright colonies towards worker-laid eggs, whether these originated from anarchistic colonies or normal queenless colonies. This indicates that the egg-removal aspect of the anarchistic syndrome involves both worker laying of eggs with greater acceptability and reduced discriminatory behaviour of policing workers. Received: 19 July 1999 / Received in revised form: 3 November 1999 / Accepted: 20 November 1999  相似文献   

16.
In monogamous species, females often choose between males according to the quality of the territories they defend, but the extent to which females themselves contribute to territory defence is frequently underestimated. Here we test for differences in male and female roles during paired scent-marking bouts, a key component of territorial defence, in a monogamous antelope. In two populations (Kenya, Zimbabwe) of klipspringer, Oreotragus oreotragus, both males and females usually scent-marked at the same site, but there were significant differences between sexes in terms of investment within bouts. Females initiated most bouts, thus dictating the marking strategy of the pair. Males initiated relatively few bouts, but deposited more scent marks per bout than females and were usually the last to scent-mark before leaving the site; they marked on the same branches as the female and thus overmarked her scent. Both sexes deposited more marks during paired than solo visits. Immediately preceding and following scent-marking bouts, males approached females and females left males more often than expected. Female scent-marking rates were higher when they were receptive than at other times, and this increase was matched by elevated marking rates of males. Females may increase marking rates when they are receptive in order to test the quality of their mate or to incite male competition. However, these ideas are unlikely to explain female scent-marking behaviour outside the mating season, which appears to be related primarily to territorial defence. We suggest that these differences in investment in scent-marking bouts are consistent with predictions that females may be autonomously territorial and that overmarking of female scent by males is a form of mate-guarding. Received: 17 November 1999 / Received in revised form: 24 February 2000 / Accepted: 13 March 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号