共查询到9条相似文献,搜索用时 15 毫秒
1.
2.
Tributyltin(TBT), an organometal used as an antifouling biocide, has been reported to induce masculinization of fish. Benzo [a]pyrene (BaP), a widespread carcinogenic polycyclic aromatic hydrocarbon, has been reported that its microsomal metabolites can produce an estrogenic response when tested in vitro. This study was therefore designed to examine the potential in vivo influence of TBT, BaP and their mixture on sex hormone levels in serum of Sebastiscus marmoratus, which were given 2 separate intraperitoneally (ip) injections(a single injection every 7 d) of TBT(0.5, 1, 5 and 10 mg/kg), BaP(0.5, 1, 5 and 10 mg/kg), or both in combination(0.5, 1, 5 and 10 mg/kg); control fish received olive oil vehicle only. Six days after the 2nd injection, serum samples were collected and analyzed for sex hormone levels and alkali labile protein phosphorus (ALPP), which is related to the yolk precursor protein vitellogenin. The pollutants at all doses significantly reduced serum testosterone, estradiol and ALPP content after 2 injections compared with the corresponding controls. The reduction of the estradiol levels should be response for the decrease of the vitellogenin levels. The results in the present study suggested that aromatase seems not the major target acted by TBT and BaP in fish. This study demonstrated that TBT or BaP exposure both inhibit the reproductive potential in female Sebastiscus marmoratus. Combined effect of TBT and BaP on the serum testosterone, estradiol and ALPP was not antagonism from the anticipation. 相似文献
3.
Relation of hepatic EROD activity and CYP1A level in Sebastiscus marmoratus exposed to benzo[a]pyrene 总被引:2,自引:0,他引:2
This study was designed to investigate the in vivo effects of benzo[a]pyrene (BaP) on hepatic ethoxyresorufin-O-deethylase (EROD) activity and its correlation with cytochrome P450 1A (CYP1A) protein levels in Sebastiscus marmoratus, which were exposed through a water column to BaP (10, 100, 1000 ng/L, respectively) or were treated with intraperitoneal injections of BaP (0.5, 1, 5, 10 mg/kg, respectively) every 7 d. The results showed that after 25 d of waterborne exposure to 1000 ng/L BaP, fish hepatic CYP1A levels and EROD activity were significantly induced. In contrast, EROD activity was not altered 7 d after second ip injections, whereas, CYP1A protein levels were increased. Dose-dependent increase of biliary BaP metabolites demonstrated that the catalytic activity of CYP1A was induced by treatment with BaP. The lowest observable effect concentration with regard to biliary BaP metabolites (100 ng/L) was much lower than that with reference to EROD activity (1000 ng/L). The results suggest that biliary polycyclic aromatic hydrocarbon (PAH) metabolites were shown to better reflect the contamination gradients of PAHs than EROD activity. It appeared to be necessary to measure CYP1A protein levels to complement the EROD activity in relevant toxicological assessments. 相似文献
4.
Relation of hepatic EROD activity and cytochrome P4501A level in Sebastiscus
marmoratus exposed to benzo[a]pyrene 总被引:1,自引:0,他引:1
This study was designed to investigate the in vivo effects of benzo[a]pyrene (BaP) on hepatic ethoxyresorufin-O-deethylase (EROD) activity and its correlation with cytochrome P4501A (CYP1A) protein levels in Sebastiscus marmoratus, which were exposed through a water column to BaP (10, 100, 1000 ng/L, respectively) or were treated with intraperitoneal injections of BaP (0.5, 1, 5, 10 mg/kg, respectively) every 7 d. The results showed that after 25 d of waterborne exposure to 1000 ng/L BaP, fish hepatic CYP1A levels and EROD activity were significantly induced. In contrast, EROD activity was not altered 7 d after second intraperitoneal injections, whereas, CYP1A protein levels were increased. Dose-dependent increase of biliary BaP metabolites demonstrated that the catalytic activity of CYP1A was induced by treatment with BaP. The lowest observable effect concentration with regard to biliary BaP metabolites (100 ng/L) was much lower than that with reference to EROD activity (1000 ng/L). The results suggest that biliary polycyclic aromatic hydrocarbon (PAH) metabolites were shown to better reflect the contamination gradients of PAHs than EROD activity. It appeared to be necessary to measure CYP1A protein levels to complement the EROD activity in relevant toxicological assessments. 相似文献
5.
BaP和Cd单一复合对BaP蚯蚓亚细胞分配的影响 总被引:1,自引:0,他引:1
选用钙离子通道阻断剂氯化镧(LaCl3)和巯基蛋白阻断剂N-乙马来酰亚胺(NEM)对赤子爱胜蚓进行预暴露,然后构建BaP单一或Cd-BaP复合污染,研究不同阻断剂对BaP在蚯蚓不同亚细胞组分(Fraction C:细胞溶质组分;Fraction D:固体颗粒组分;Fraction E:细胞碎片组分)中分配积累特征的影响.结果表明,无论单一或复合污染,BaP主要分布于细胞碎片组分中(占55.42%~69.96%),其次为固体颗粒组分(占27.91%~32.90%),在细胞溶质组分中的浓度最低(占2.13%~11.67%).单一BaP污染下,两种阻断剂对BaP的作用相近,即LaCl3和NEM的加入均能不同程度地促进3个亚细胞组分中BaP的积累.而在Cd和BaP复合污染下,两种阻断剂对BaP的分布积累的影响略有不同,LaCl3能够促进复合污染下BaP在3个亚细胞组分中的积累,而NEM促进了复合污染下BaP在固体颗粒组分和细胞碎片组分中的积累,但抑制了BaP在细胞溶质组分中的积累,浓度从原来的0.99mg/kg降低至0.59mg/kg.因此,钙离子通道和巯基蛋白可能参与BaP在蚯蚓亚细胞的分配积累,相比单一污染,Cd的复合污会进一步改变BaP的积累分配特征. 相似文献
6.
7.
研究了6株真菌对土壤中芘和苯并芘(BaP)的降解动态,用Michaelis-Menton和Monod动力学模型对结果进行拟合.结果表明,6株真菌对芘和BaP的降解速率有显著性差异,降解率相差不大.产黄青霉(Penicillium chrysogenum,SF04),在42d内对BaP的降解能力最强,可达71.31%,对芘的降解能力相对最弱.镰刀菌(Fusariumsp.,SF11),黑曲霉(Aspergillusniger,SF05),木霉(Trichodermasp.,SF02)和毛霉(Mucorsp.,SF06)42d对芘的降解率分别为86.22%,86.18%,85.41%,85.04%,对BaP的降解率分别为71.11%,69.44%,69.05%,69.72%.木霉(Trichodermasp.,SF02)和毛霉(Mucorsp.,SF06)对芘和BaP的降解速率均很快. 相似文献
8.
The effects of interspecific fungal interactions between Trametes versicolor and Phanerochaete chrysosporium on laccase activity and enzymatic oxidation of polycyclic aromatic hydrocarbons (PAHs) were investigated. A deadlock between the two mycelia rather than replacement of one fungus by another was observed on an agar medium. The laccase activity in crude enzyme extracts from interaction zones reached a maximum after a 5-day incubation, which was significantly higher than that from regions of T. versicolor or P. chrysosporium alone. The enhanced induction of laccase activity lasted longer in half nutrition than in normal nutrition. A higher potential to oxidize benzo[a]pyrene by a crude enzyme preparation extracted from the interaction zones was demonstrated. After a 48 hr incubation period, the oxidation of benzo[a]pyrene by crude enzyme extracts from interaction zones reached 26.2%, while only 9.5% of benzo[a]pyrene was oxidized by crude extracts from T. versicolor. The oxidation was promoted by the co-oxidant 2,2'-azinobis-3-ethylbenzthiazoline-6-sulphonate diammonium salt (ABTS). These findings indicate that the application of co-culturing of white-rot fungi in bioremediation is a potential ameliorating technique for the restoration of PAH-contaminated soil. 相似文献
9.
Biodegradation of benzo[a]pyrene in soil by Mucor sp. SF06 and Bacillus sp. SB02 co-immobilized on vermiculite 总被引:1,自引:1,他引:1
Two indigenous microorganisms, Bacillus sp. SB02 and Mucor sp. SF06, capable of degrading polycyclic aromatic hydrocarbons (PAHs) were co-immobilized on vermiculite by physical adsorption and used to degrade benzo[a] pyrene (BaP). The characteristics of BaP degradation by both free and co-immobilized microorganism were then investigated and compared. The removal rate using the immobilized bacterial-fungal mixed consortium was higher than that of the freely mobile mixed consortium. 95.3% of BaP was degraded using the co-immobilized system within 42 d, which was remarkably higher than the removal rate of that by the free strains. The optimal amount of inoculated co-immobilized system for BaP degradation was 2%. The immobilized bacterial-fungal mixed consortium also showed better water stability than the free strains. Kinetics of BaP biodegradation by co-immobilized SF06 and SB02 were also studied. The results demonstrated that BaP degradation could be well described by a zero-order reaction rate equation when the initial BaP concentration was in the range of 10--200 mg/kg. The scanning electronic microscope (SEM) analysis showed that the co-immobilized microstructure was suitable for the growth of SF06 and SB02. The mass transmission process of co-immobilized system in soil is discussed. The results demonstrate the potential for employing the bacterial-fungal mixed consortium, co-immobilized on vermiculite, for in situ bioremediation of BaP. 相似文献