首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel concept for capturing CO2 from biomass combustion using CaO as an active solid sorbent of CO2 is discussed and experimentally tested. According to the CaO/CaCO3 equilibrium, if a fuel could be burned at a sufficiently low temperature (below 700 °C) it would be possible to capture CO2in situ” with the CaO particles at atmospheric pressure. A subsequent step involving the regeneration of CaCO3 in a calciner operating at typical conditions of oxyfired-circulating fluidized combustion would deliver the CO2 ready for purification, compression and permanent geological storage. Several series of experiments to prove this concept have been conducted in a 30 kW interconnected fluidized bed test facility at INCAR-CSIC, made up of two interconnected circulating fluidized bed reactors, one acting as biomass combustor-carbonator and the other as air-fired calciner (which is considered to yield similar sorbent properties than those of an oxyfired calciner). CO2 capture efficiencies in dynamic tests in the combustor-carbonator reactor were measured over a wide range of operating conditions, including different superficial gas velocities, solids circulation rates, excess air above stoichiometric, and biomass type (olive pits, saw dust and pellets). Biomass combustion in air is effective at temperatures even below the 700 °C, necessary for the effective capture of CO2 by carbonation of CaO. Overall CO2 capture efficiencies in the combustor-carbonator higher than 70% can be achieved with sufficiently high solids circulation rates of CaO and solids inventories. The application of a simple reactor model for the combined combustion and CO2 capture reactions allows an efficiency factor to be obtained from the dynamic experimental test that could be valuable for scaling up purposes.  相似文献   

2.
Calcium looping (CaL) is a promising post-combustion CO2 capture technology which is carried out in a dual fluidized bed (DFB) system with continuous looping of CaO, the CO2 carrier, between two beds. The system consists of a carbonator, where flue gas CO2 is adsorbed by CaO and a regenerator, where captured CO2 is released. The CO2-rich regenerator flue gas can be sequestered after gas processing and compression. A parametric study was conducted on the 10 kWth DFB facility at the University of Stuttgart, which consists of a bubbling fluidized bed carbonator and a riser regenerator. The effect of the following parameters on CO2 capture efficiency was investigated: carbonator space time, carbonator temperature and calcium looping ratio. The active space time in the carbonator, which is a function of the space time and the calcium looping ratio, was found to strongly correlate with the CO2 capture efficiency. BET and BJH techniques provided surface area and pore volume distribution data, respectively, for collected sorbent samples. The rate of sorbent attrition was found to be 2 wt.%/h which is below the expected sorbent make-up rate required to maintain sufficient sorbent activity. Steady-state CO2 capture efficiencies greater than 90% were achieved for different combinations of operational parameters. Moreover, the experimental results obtained were briefly compared with results derived from reactor modeling studies. Finally, the implications of the experimental results with respect to commercialization of the CaL process have been assessed.  相似文献   

3.
Post-combustion carbonate looping processes are based on the capture of carbon dioxide from the flue gases of an existing power plant in a circulating fluidized bed reactor (CFB) of calcium oxide (the carbonator) particles. The calcination of calcium carbonate in a new oxy-fired CFBC power plant regenerates the sorbent (calcium oxide particles) and obtains high purity carbon dioxide. This communication presents experimental results from a small test facility (30 kWt) operated in continuous mode using two interconnected CFB reactors as carbonator and calciner. Capture efficiencies between 70 and 97% have been obtained under realistic flue gas conditions in the carbonator reactor (temperatures around 650 °C). The similarity between process conditions and those existing in CFBC power plants should allow a rapid scaling up of this technology. The next steps for this process development are also outlined.  相似文献   

4.
Post-combustion CO2 capture and storage (CCS) presents a promising strategy to capture, compress, transport and store CO2 from a high volume–low pressure flue gas stream emitted from a fossil fuel-fired power plant. This work undertakes the simulation of CO2 capture and compression integration into an 800 MWe supercritical coal-fired power plant using chemical process simulators. The focus is not only on the simulation of full load of flue gas stream into the CO2 capture and compression, but also, on the impact of a partial load. The result reveals that the energy penalty of a low capture efficiency, for example, at 50% capture efficiency with 10% flue gas load is higher than for 90% flue gas load at the equivalent capture efficiency by about 440 kWhe/tonne CO2. The study also addresses the effect of CO2 capture performance by different coal ranks. It is found that lignite pulverized coal (PC)-fired power plant has a higher energy requirement than subbituminous and bituminous PC-fired power plants by 40.1 and 98.6 MWe, respectively. In addition to the investigation of energy requirement, other significant parameters including energy penalty, plant efficiency, amine flow rate and extracted steam flow rate, are also presented. The study reveals that operating at partial load, for example at half load with 90% CO2 capture efficiency, as compared with full load, reduces the energy penalty, plant efficiency drop, amine flow rate and extracted steam flow rate by 9.9%, 24.4%, 50.0% and 49.9%, respectively. In addition, the effect of steam extracted from different locations from a series of steam turbine with the objective to achieve the lowest possible energy penalty is evaluated. The simulation shows that a low extracted steam pressure from a series of steam turbines, for example at 300 kPa, minimizes the energy penalty by up to 25.3%.  相似文献   

5.
Gas conditioning is commonly referred to as the required processing for a produced natural gas to achieve transport and sales specifications. In this paper, gas conditioning as the processing required in the interface between CO2 capture and transport is studied for nine different natural gas fired power plant concepts and three different CO2 transport processes. Conditioning processes for both pipeline and ship transport are described and an enhanced process for volatile removal is developed. The energy requirement for the conditioning processes is normally between 90 and 120 kWh/tonne CO2; however, this depends on the pressure and composition of the captured CO2-rich stream. The loss of CO2 in the water purge is small for most capture processes. The waste streams from the gas conditioning processes can contain large amounts of CO2 and should therefore be further processed or reintroduced at an appropriate point upstream in the capture or gas conditioning process if possible. The integration benefit may vary depending on the composition of the CO2-rich stream. It could be particularly interesting for processes with “innovative reactors” (membranes, sorbents, chemical looping) to integrate CO2 capture and gas conditioning.  相似文献   

6.
While the demand for reduction in CO2 emission is increasing, the cost of the CO2 capture processes remains a limiting factor for large-scale application. Reducing the cost of the capture system by improving the process and the solvent used must have a priority in order to apply this technology in the future. In this paper, a definition of the economic baseline for post-combustion CO2 capture from 600 MWe bituminous coal-fired power plant is described. The baseline capture process is based on 30% (by weight) aqueous solution of monoethanolamine (MEA). A process model has been developed previously using the Aspen Plus simulation programme where the baseline CO2-removal has been chosen to be 90%. The results from the process modelling have provided the required input data to the economic modelling. Depending on the baseline technical and economical results, an economical parameter study for a CO2 capture process based on absorption/desorption with MEA solutions was performed.Major capture cost reductions can be realized by optimizing the lean solvent loading, the amine solvent concentration, as well as the stripper operating pressure. A minimum CO2 avoided cost of € 33 tonne−1 CO2 was found for a lean solvent loading of 0.3 mol CO2/mol MEA, using a 40 wt.% MEA solution and a stripper operating pressure of 210 kPa. At these conditions 3.0 GJ/tonne CO2 of thermal energy was used for the solvent regeneration. This translates to a € 22 MWh−1 increase in the cost of electricity, compared to € 31.4 MWh−1 for the power plant without capture.  相似文献   

7.
The feasibility of the sorption enhanced water gas shift (SEWGS) process under sour conditions is shown. The sour-SEWGS process constitutes a second generation pre-combustion carbon capture technology for the application in an IGCC. As a first critical step, the suitability of a K2CO3 promoted hydrotalcite-based CO2 sorbent is demonstrated by means of adsorption and regeneration experiments in the presence of 2000 ppm H2S. In multiple cycle experiments at 400 °C and 5 bar, the sorbent displays reversible co-adsorption of CO2 and H2S. The CO2 sorption capacity is not significantly affected compared to sulphur-free conditions. A mechanistic model assuming two different sites for H2S interaction explains qualitatively the interactions of CO2 and H2S with the sorbent. On the type A sites, CO2 and H2S display competitive sorption where CO2 is favoured. The type B sites only allow H2S uptake and may involve the formation of metal sulphides. This material behaviour means that the sour-SEWGS process likely eliminates CO2 and H2S simultaneously from the syngas and that an almost CO2 and H2S-free H2 stream and a CO2 + H2S stream can be produced.  相似文献   

8.
The capture of CO2 from a hot stove gas in steel making process containing 30 vol% CO2 by chemical absorption in a rotating packed bed (RPB) was studied. The RPB had an inner diameter of 7.6 cm, an outer diameter of 16 cm, and a height of 2 cm. The aqueous solutions containing 30 wt% of single and mixed monoethanolamine (MEA), 2-(2-aminoethylamino)ethanol (AEEA), and piperazine (PZ) were used. The CO2 capture efficiency was found to increase with increasing temperature in a range of 303–333 K. It was also found to be more dependent on gas and liquid flow rates but less dependent on rotating speed when the speed was higher than 700 rpm. The obtained results indicated that the mixed alkanolamine solutions containing PZ were more effective than the single alkanolamine solutions. This was attributed to the highest reaction rate of PZ with CO2. A higher portion of PZ in the mixture was more favorable to CO2 capture. The highest gas flow rates allowed to achieve a desired CO2 capture efficiency and the correspondent height of transfer unit (HTU) were determined at different aqueous solution flow rates. Because all the 30 wt% single and mixed alkanolamine solutions could result in a HTU less than 5.0 cm at a liquid flow rate of 100 mL/min, chemical absorption in a RPB instead of a packed bed adsorber is therefore suggested to capture CO2 from the flue gases in steel making processes.  相似文献   

9.
Capture and storage of CO2 from fossil fuel fired power plants is drawing increasing interest as a potential method for the control of greenhouse gas emissions. An optimization and technical parameter study for a CO2 capture process from flue gas of a 600 MWe bituminous coal fired power plant, based on absorption/desorption process with MEA solutions, using ASPEN Plus with the RADFRAC subroutine, was performed. This optimization aimed to reduce the energy requirement for solvent regeneration, by investigating the effects of CO2 removal percentage, MEA concentration, lean solvent loading, stripper operating pressure and lean solvent temperature.Major energy savings can be realized by optimizing the lean solvent loading, the amine solvent concentration as well as the stripper operating pressure. A minimum thermal energy requirement was found at a lean MEA loading of 0.3, using a 40 wt.% MEA solution and a stripper operating pressure of 210 kPa, resulting in a thermal energy requirement of 3.0 GJ/ton CO2, which is 23% lower than the base case of 3.9 GJ/ton CO2. Although the solvent process conditions might not be realisable for MEA due to constraints imposed by corrosion and solvent degradation, the results show that a parametric study will point towards possibilities for process optimisation.  相似文献   

10.
Industrial Combined Heat and Power plants (CHPs) are often operated at partial load conditions. If CO2 is captured from a CHP, additional energy requirements can be fully or partly met by increasing the load. Load increase improves plant efficiency and, consequently, part of the additional energy consumption would be offset. If this advantage is large enough, industrial CHPs may become an attractive option for CO2 capture and storage CCS. We therefore investigated the techno-economic performance of post-combustion CO2 capture from small-to-medium-scale (50–200 MWe maximum electrical capacity) industrial Natural Gas Combined Cycle- (NGCC-) CHPs in comparison with large-scale (400 MWe) NGCCs in the short term (2010) and the mid-term future (2020–2025). The analyzed system encompasses NGCC, CO2 capture, compression, and branch CO2 pipeline.The technical results showed that CO2 capture energy requirement for industrial NGCC-CHPs is significantly lower than that for 400 MWe NGCCs: up to 16% in the short term and up to 12% in the mid-term future. The economic results showed that at low heat-to-power ratio operations, CO2 capture from industrial NGCC-CHPs at 100 MWe in the short term (41–44 €/tCO2 avoided) and 200 MWe in the mid-term future (33–36 €/tCO2 avoided) may compete with 400 MWe NGCCs (46–50 €/tCO2 avoided short term, 30–35 €/tCO2 avoided mid-term).  相似文献   

11.
In this work the feasibility of a CO2 capture system based on sodium carbonate–bicarbonate slurry and its integration with a power plant is studied. The results are compared to monoethanolamine (MEA)-based capture systems. Condensing power plant and combined heat and power plant with CO2 capture is modelled to study the feasibility of combined heat and power plant for CO2 capture.Environmental friendly sodium carbonate would be an interesting chemical for CO2 capture. Sodium carbonate absorbs CO2 forming sodium bicarbonate. The low solubility of sodium bicarbonate is a weak point for the sodium carbonate based liquid systems since it limits the total concentration of carbonate. In this study the formation of solid bicarbonate is allowed, thus forming slurry, which can increase the capacity of the solvent. With this the energy requirement of stripping of the solvent could potentially be around 3.22 MJ/kg of captured CO2 which is significantly lower than with MEA based systems which typically have energy consumption around 3.8 MJ/kg of captured CO2.Combined heat and power plants seem to be attractive for CO2 capture because of the high total energy efficiency of the plants. In a condensing power plant the CO2 capture decreases directly the electricity production whereas in a combined heat and power plant the loss can be divided between district heat and electricity according to demand.  相似文献   

12.
The present work is a study to evaluate ionic liquids as a potential solvent for post-combustion CO2 capture. In order to enhance the absorption performance of a CO2 capture unit, different ionic liquids have been designed and tested. The main goal was to get a comparison between a reference liquid and selected ionic liquids. As the reference, a solution of 30 w% monoethanolamine (MEA) and water was used. A large range of different pure and diluted ionic liquids was tested with a special screening process to gain general information about the CO2 absorption performance. Based on these results, a 60 w% ionic liquid solution in water was selected and the vapour–liquid equilibrium was measured experimentally between 40 °C and 110 °C. From these curves the enthalpy of absorption for capturing CO2 into the ionic liquid was determined. With these important parameters one is able to calculate the total energy demand for stripping of CO2 from the loaded solvent for comparison of the ionic liquid based solvent with the reference MEA solvent. The energy demand of this 60 w% ionic liquid is slightly lower than that of the reference solution, resulting in possible energy savings between 12 and 16%.  相似文献   

13.
The oxyfuel process is one of the most promising options to capture CO2 from coal fired power plants. The combustion takes place in an atmosphere of almost pure oxygen, delivered from an air separation unit (ASU), and recirculated flue gas. This provides a flue gas containing 80–90 vol% CO2 on a dry basis. Impurities are caused by the purity of the oxygen from the ASU, the combustion process and air ingress. Via liquefaction a CO2 stream with purity in the range from 85 to 99.5 vol% can be separated and stored geologically. Impurities like O2, NOX, SOX, and CO may negatively influence the transport infrastructure or the geological storage site by causing geochemical reactions. Therefore the maximum acceptable concentrations of the impurities in the separated CO2 stream must be defined regarding the requirements from transportation and storage. The main objective of the research project COORAL therefore is to define the required CO2 purity for capture and storage.  相似文献   

14.
This paper evaluates the opportunities and associated costs for post-combustion capture at a world-scale complex refinery. It is concluded that it is technically feasible to apply post-combustion capture at such a refinery. The costs for capture and sequestration from a gasifier are calculated to be lowest at about 30 Euro per ton; this process currently already produces a concentrated CO2 stream. Next, the CO2 source most suited for capture appears to be a combined stack, but there are a number of other sources that may be targeted at comparable costs. In total these sources may form about 40% of the overall refinery emissions. Our evaluations show the costs of capture from such sources based on available amine technology will be in the range of 90–120 Euro per ton, which is about 3–4 times higher than the current carbon trading values. The capture of CO2 from a large amount of smaller CO2 sources will bring along even much higher costs. A high-level study of the CO2 emissions profile of a number of Shell refineries shows that, typically, up to 50% of the emitted CO2 may be captured at similar costs. About 10–20% of concentrated CO2 associated with hydrogen manufacturing may be captured at lower costs. The remainder of emitted dilute CO2 will bring along significantly higher costs. Based on this study, it is concluded for the justification of the implementation of post-combustion capture at refineries, either a significant increase in carbon trading values, mandatory regulations, or a major technological break-through is required.  相似文献   

15.
We sketch four possible pathways how carbon dioxide capture and storage (CCS) (r)evolution may occur in the Netherlands, after which the implications in terms of CO2 stored and avoided, costs and infrastructural requirements are quantified. CCS may play a significant role in decarbonising the Dutch energy and industrial sector, which currently emits nearly 100 Mt CO2/year. We found that 15 Mt CO2 could be avoided annually by 2020, provided some of the larger gas fields that become available the coming decade could be used for CO2 storage. Halfway this century, the mitigation potential of CCS in the power sector, industry and transport fuel production is estimated at maximally 80–110 Mt CO2/year, of which 60–80 Mt CO2/year may be avoided at costs between 15 and 40 €/t CO2, including transport and storage. Avoiding 30–60 Mt CO2/year by means of CCS is considered realistic given the storage potential represented by Dutch gas fields, although it requires planning to assure that domestic storage capacity could be used for CO2 storage. In an aggressive climate policy, avoiding another 50 Mt CO2/year may be possible provided that nearly all capture opportunities that occur are taken. Storing such large amounts of CO2 would only be possible if the Groningen gas field or large reservoirs in the British or Norwegian part of the North Sea will become available.  相似文献   

16.
This study investigates the possibility of capturing CO2 from flue gas under pressurised conditions, which could prove to be beneficial in comparison to working under atmospheric conditions. Simulations of two hybrid combined cycles with pressurised fluidised bed combustion and CO2 capture are presented. CO2 is captured from pressurised flue gas by means of chemical absorption after the boiler but before expansion. The results show a CO2 capture penalty of approximately 8 percentage points (including 90% CO2 capture rate and compression to 110 bar), which makes the efficiency for the best performing cycle 43.9%. It is 5.2 percentage points higher than the most probable alternative, i.e. using a natural gas fired combined cycle and a pulverised coal fired condensing plant separately with the same fuel split ratio. The largest part of the penalty is associated with the lower mass flow of flue gas after CO2 capture, which leads to a decrease in work output in the expander and potential for feed water heating. The penalty caused by the regeneration of absorbent is quite low, since the high pressure permits the use of potassium carbonate, which requires less regeneration heat than for example the more commonly proposed monoethanolamine. Although the efficiencies of the cycles look promising it will be important to perform a cost estimate to be able to make a fair comparison with other systems. Such a cost estimate has not been done in this study. A significant drawback of these hybrid cycles in that respect is the complex nature of the systems that will have a negative effect on the economy.  相似文献   

17.
Calcium oxide (CaO) is a material that is being widely investigated in the context of CO2 capture. One such application is as a CO2 sorbent in the sorption-enhanced steam methane reforming processes (SERP). CO2 is captured in an adsorption mode, where the conversion of CH4 to H2 is also enhanced, and released later in a separate desorption mode. This work presents an analysis of the relation between different process conditions and parameters during both adsorption and desorption modes. The interrelation between these conditions and the sorbent properties as well as the targeted carbon capture ratio is analysed. Conditions relevant for capturing 85% of carbon in the feed on CaO are determined and interlinked. A steam-to-carbon ratio of 4.2 has been determined to be relevant under 600 °C and 17 bar adsorption conditions. Similarly, process conditions relevant for regenerating the sorbent are determined and interlinked. For purge steam-to-CO2 ratio of 1.8 at a desorption pressure of 1 bar, relevant desorption temperature has been calculated to be 820 °C. System simulations under these adsorption and desorption conditions resulted in a system efficiency of 50.8%. Effect of tuning process operating conditions on system efficiency as well as the efficiency penalty associated with the regeneration of the sorbent are investigated by process simulations using Aspen Plus®. Possible system heat integration routes to reduce the efficiency penalty are proposed and the results of the process simulations are presented.  相似文献   

18.
This paper explores the integration and evaluation of a power plant with a CaO-based CO2 capture system. There is a great amount of recoverable heat in the CaO-based CO2 capture process. Five cases for the possible integration of a 600 MW power plant with CaO-based CO2 capture process are considered in this paper. When the system is configured so that recovered heat is used to replace part of the boiler heat load (Case 2), modelling not only shows that this is the system recovering the most heat of 1008.8 MW but also results in the system with the lowest net power output of 446 MW and the second lowest of efficiency of 34.1%. It is indicated that system performance depends both on the amount of heat recovery and the type of heat utilization. When the system is configured so that a 400 MW power plant is built using the recovered heat (Case 4), modelling shows that this is the system with the most net power output of 846 MW, the highest efficiency of 36.8%, the lowest cost of electricity of 54.3 €/MWh and the lowest cost of CO2 avoided of 28.9 €/tCO2. This new built steam cycle will not affect the operation of the reference plant which vents its CO2 to the atmosphere, highly reducing the connection between the CO2 capture process and the reference plant which vents its CO2 to the atmosphere. The average cost of electricity and the cost of CO2 avoided of the five cases are about 58.9 €/kWh and 35.9 €/tCO2, respectively.  相似文献   

19.
The pulp and paper industry is placed in a unique position as biomass used as feedstock is now in increasingly high demand from the energy sector. Increased demand for biomass increases pressure on the availability of this resource, which might strengthen the need for recycling of paper. In this study, we calculate the energy use and carbon dioxide emissions for paper production from three pulp types. Increased recycling enables an increase in biomass availability and reduces life-cycle energy use and carbon dioxide emissions. Recovered paper as feedstock leads to lowest energy use (22 GJ/t) and CO2 emissions (−1100 kg CO2/t) when biomass not used for paper production is assumed to be converted into bio-energy. Large differences exist between paper grades in e.g. electricity and heat use during production, fibre furnish, filler content and recyclability. We found large variation in energy use over the life-cycle of different grades. However, in all paper grades, life-cycle energy use decreases with increased recycling rates and increased use of recovered fibres. The average life-cycle energy use of the paper mix produced in The Netherlands, where the recycling rate is approximately 75%, is about 14 GJ/t. This equals CO2 savings of about 1 t CO2/t paper if no recycled fibres would be used.  相似文献   

20.
Desires to enhance the energy security of the United States have spurred renewed interest in the development of abundant domestic heavy hydrocarbon resources including oil shale and coal to produce unconventional liquid fuels to supplement conventional oil supplies. However, the production processes for these unconventional fossil fuels create large quantities of carbon dioxide (CO2) and this remains one of the key arguments against such development. Carbon dioxide capture and storage (CCS) technologies could reduce these emissions and preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited within the U.S. indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. Nevertheless, even assuming wide-scale availability of cost-effective CO2 capture and geologic storage resources, the emergence of a domestic U.S. oil shale or coal-to-liquids (CTL) industry would be responsible for significant increases in CO2 emissions to the atmosphere. The authors present modeling results of two future hypothetical climate policy scenarios that indicate that the oil shale production facilities required to produce 3 MMB/d from the Eocene Green River Formation of the western U.S. using an in situ retorting process would result in net emissions to the atmosphere of between 3000 and 7000 MtCO2, in addition to storing potentially 900–5000 MtCO2 in regional deep geologic formations via CCS in the period up to 2050. A similarly sized, but geographically more dispersed domestic CTL industry could result in 4000–5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000–22,000 MtCO2 stored in regional deep geologic formations over the same period. While this analysis shows that there is likely adequate CO2 storage capacity in the regions where these technologies are likely to deploy, the reliance by these industries on large-scale CCS could result in an accelerated rate of utilization of the nation's CO2 storage resource, leaving less high-quality storage capacity for other carbon-producing industries including electric power generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号