共查询到20条相似文献,搜索用时 15 毫秒
1.
Existing coal-fired power plants were not designed to be retrofitted with carbon dioxide post-combustion capture (PCC) and have tended to be disregarded as suitable candidates for carbon capture and storage on the grounds that such a retrofit would be uneconomical. Low plant efficiency and poor performance with capture compared to new-build projects are often cited as critical barriers to capture retrofit. Steam turbine retrofit solutions are presented that can achieve effective thermodynamic integration between a post-combustion CO2 capture plant and associated CO2 compressors and the steam cycle of an existing retrofitted unit for a wide range of initial steam turbine designs. The relative merits of these capture retrofit integration options with respect to flexibility of the capture system and solvent upgradability will be discussed. Provided that effective capture system integration can be achieved, it can be shown that the abatement costs (or cost per tonne of CO2 to justify capture) for retrofitting existing units is independent of the initial plant efficiency. This then means that a greater number of existing power plants are potentially suitable for successful retrofits of post-combustion capture to reduce power sector emissions. Such a wider choice of retrofit sites would also give greater scope to exploit favourable site-specific conditions for CCS, such as ready access to geological storage. 相似文献
2.
Anna Korre Zhenggang Nie Sevket Durucan 《International Journal of Greenhouse Gas Control》2010,4(2):289-300
Due to its compatibility with the current energy infrastructures and the potential to reduce CO2 emissions significantly, CO2 capture and geological storage is recognised as one of the main options in the portfolio of greenhouse gas mitigation technologies being developed worldwide. The CO2 capture technologies offer a number of alternatives, which involve different energy consumption rates and subsequent environmental impacts. While the main objective of this technology is to minimise the atmospheric greenhouse gas emissions, it is also important to ensure that CO2 capture and storage does not aggravate other environmental concerns. This requires a holistic and system-wide environmental assessment rather than focusing on the greenhouse gases only. Life Cycle Assessment meets this criteria as it not only tracks energy and non-energy-related greenhouse gas releases but also tracks various other environmental releases, such as solid wastes, toxic substances and common air pollutants, as well as the consumption of other resources, such as water, minerals and land use. This paper presents the principles of the CO2 capture and storage LCA model developed at Imperial College and uses the pulverised coal post-combustion capture example to demonstrate the methodology in detail. At first, the LCA models developed for the coal combustion system and the chemical absorption CO2 capture system are presented together with examples of relevant model applications. Next, the two models are applied to a plant with post-combustion CO2 capture, in order to compare the life cycle environmental performance of systems with and without CO2 capture. The LCA results for the alternative post-combustion CO2 capture methods (including MEA, K+/PZ, and KS-1) have shown that, compared to plants without capture, the alternative CO2 capture methods can achieve approximately 80% reduction in global warming potential without a significant increase in other life cycle impact categories. The results have also shown that, of all the solvent options modelled, KS-1 performed the best in most impact categories. 相似文献
3.
Teerawat Sanpasertparnich Raphael Idem Irene Bolea David deMontigny Paitoon Tontiwachwuthikul 《International Journal of Greenhouse Gas Control》2010,4(3):499-510
Post-combustion CO2 capture and storage (CCS) presents a promising strategy to capture, compress, transport and store CO2 from a high volume–low pressure flue gas stream emitted from a fossil fuel-fired power plant. This work undertakes the simulation of CO2 capture and compression integration into an 800 MWe supercritical coal-fired power plant using chemical process simulators. The focus is not only on the simulation of full load of flue gas stream into the CO2 capture and compression, but also, on the impact of a partial load. The result reveals that the energy penalty of a low capture efficiency, for example, at 50% capture efficiency with 10% flue gas load is higher than for 90% flue gas load at the equivalent capture efficiency by about 440 kWhe/tonne CO2. The study also addresses the effect of CO2 capture performance by different coal ranks. It is found that lignite pulverized coal (PC)-fired power plant has a higher energy requirement than subbituminous and bituminous PC-fired power plants by 40.1 and 98.6 MWe, respectively. In addition to the investigation of energy requirement, other significant parameters including energy penalty, plant efficiency, amine flow rate and extracted steam flow rate, are also presented. The study reveals that operating at partial load, for example at half load with 90% CO2 capture efficiency, as compared with full load, reduces the energy penalty, plant efficiency drop, amine flow rate and extracted steam flow rate by 9.9%, 24.4%, 50.0% and 49.9%, respectively. In addition, the effect of steam extracted from different locations from a series of steam turbine with the objective to achieve the lowest possible energy penalty is evaluated. The simulation shows that a low extracted steam pressure from a series of steam turbines, for example at 300 kPa, minimizes the energy penalty by up to 25.3%. 相似文献
4.
Takeshi Kuramochi André Faaij Andrea Ramírez Wim Turkenburg 《International Journal of Greenhouse Gas Control》2010,4(3):511-524
Industrial Combined Heat and Power plants (CHPs) are often operated at partial load conditions. If CO2 is captured from a CHP, additional energy requirements can be fully or partly met by increasing the load. Load increase improves plant efficiency and, consequently, part of the additional energy consumption would be offset. If this advantage is large enough, industrial CHPs may become an attractive option for CO2 capture and storage CCS. We therefore investigated the techno-economic performance of post-combustion CO2 capture from small-to-medium-scale (50–200 MWe maximum electrical capacity) industrial Natural Gas Combined Cycle- (NGCC-) CHPs in comparison with large-scale (400 MWe) NGCCs in the short term (2010) and the mid-term future (2020–2025). The analyzed system encompasses NGCC, CO2 capture, compression, and branch CO2 pipeline.The technical results showed that CO2 capture energy requirement for industrial NGCC-CHPs is significantly lower than that for 400 MWe NGCCs: up to 16% in the short term and up to 12% in the mid-term future. The economic results showed that at low heat-to-power ratio operations, CO2 capture from industrial NGCC-CHPs at 100 MWe in the short term (41–44 €/tCO2 avoided) and 200 MWe in the mid-term future (33–36 €/tCO2 avoided) may compete with 400 MWe NGCCs (46–50 €/tCO2 avoided short term, 30–35 €/tCO2 avoided mid-term). 相似文献
5.
Ulrich Liebenthal Sebastian Linnenberg Jochen Oexmann Alfons Kather 《International Journal of Greenhouse Gas Control》2011,5(5):1232-1239
When integrating a post-combustion CO2 capture process and CO2 compression into a steam power plant, the three interface quantities heat, electricity and cooling duty must be satisfied by the power plant, leading to a loss in net efficiency. The heat duty shows to be the largest contributor to the overall net efficiency penalty of the power plant. Additional energy penalty results from the cooling and electric power duty of the capture and compression units.In this work, the dependency of the energy penalty on the quantity and quality of the heat duty is analyzed and quantified for a state-of-the-art hard coal fired power plant. Furthermore, the energy penalty attributed to the additional cooling and power duty is quantified. As a result correlations are provided which enable to predict the impact of the heat, cooling and electricity duty of post-combustion CO2 capture processes on the net output of a steam power plant in a holistic approach. 相似文献
6.
Masoud Kavosh Kumar Patchigolla John Oakey 《International Journal of Greenhouse Gas Control》2010,4(4):603-612
This paper explores the integration and evaluation of a power plant with a CaO-based CO2 capture system. There is a great amount of recoverable heat in the CaO-based CO2 capture process. Five cases for the possible integration of a 600 MW power plant with CaO-based CO2 capture process are considered in this paper. When the system is configured so that recovered heat is used to replace part of the boiler heat load (Case 2), modelling not only shows that this is the system recovering the most heat of 1008.8 MW but also results in the system with the lowest net power output of 446 MW and the second lowest of efficiency of 34.1%. It is indicated that system performance depends both on the amount of heat recovery and the type of heat utilization. When the system is configured so that a 400 MW power plant is built using the recovered heat (Case 4), modelling shows that this is the system with the most net power output of 846 MW, the highest efficiency of 36.8%, the lowest cost of electricity of 54.3 €/MWh and the lowest cost of CO2 avoided of 28.9 €/tCO2. This new built steam cycle will not affect the operation of the reference plant which vents its CO2 to the atmosphere, highly reducing the connection between the CO2 capture process and the reference plant which vents its CO2 to the atmosphere. The average cost of electricity and the cost of CO2 avoided of the five cases are about 58.9 €/kWh and 35.9 €/tCO2, respectively. 相似文献
7.
Joris Koornneef Tim van Keulen Andr Faaij Wim Turkenburg 《International Journal of Greenhouse Gas Control》2008,2(4):448
In this study the methodology of life cycle assessment has been used to assess the environmental impacts of three pulverized coal fired electricity supply chains with and without carbon capture and storage (CCS) on a cradle to grave basis. The chain with CCS comprises post-combustion CO2 capture with monoethanolamine, compression, transport by pipeline and storage in a geological reservoir. The two reference chains represent sub-critical and state-of-the-art ultra supercritical pulverized coal fired electricity generation. For the three chains we have constructed a detailed greenhouse gas (GHG) balance, and disclosed environmental trade-offs and co-benefits due to CO2 capture, transport and storage. Results show that, due to CCS, the GHG emissions per kWh are reduced substantially to 243 g/kWh. This is a reduction of 78 and 71% compared to the sub-critical and state-of-the-art power plant, respectively. The removal of CO2 is partially offset by increased GHG emissions in up- and downstream processes, to a small extent (0.7 g/kWh) caused by the CCS infrastructure. An environmental co-benefit is expected following from the deeper reduction of hydrogen fluoride and hydrogen chloride emissions. Most notable environmental trade-offs are the increase in human toxicity, ozone layer depletion and fresh water ecotoxicity potential for which the CCS chain is outperformed by both other chains. The state-of-the-art power plant without CCS also shows a better score for the eutrophication, acidification and photochemical oxidation potential despite the deeper reduction of SOx and NOx in the CCS power plant. These reductions are offset by increased emissions in the life cycle due to the energy penalty and a factor five increase in NH3 emissions. 相似文献
8.
Bhawna Singh Anders H. Strømman Edgar Hertwich 《International Journal of Greenhouse Gas Control》2011,5(3):457-466
Hybrid life cycle assessment has been used to assess the environmental impacts of natural gas combined cycle (NGCC) electricity generation with carbon dioxide capture and storage (CCS). The CCS chain modeled in this study consists of carbon dioxide (CO2) capture from flue gas using monoethanolamine (MEA), pipeline transport and storage in a saline aquifer.Results show that the sequestration of 90% CO2 from the flue gas results in avoiding 70% of CO2 emissions to the atmosphere per kWh and reduces global warming potential (GWP) by 64%. Calculation of other environmental impacts shows the trade-offs: an increase of 43% in acidification, 35% in eutrophication, and 120–170% in various toxicity impacts. Given the assumptions employed in this analysis, emissions of MEA and formaldehyde during capture process and generation of reclaimer wastes contributes to various toxicity potentials and cause many-fold increase in the on-site direct freshwater ecotoxicity and terrestrial ecotoxicity impacts. NOx from fuel combustion is still the dominant contributor to most direct impacts, other than toxicity potentials and GWP. It is found that the direct emission of MEA contribute little to human toxicity (HT < 1%), however it makes 16% of terrestrial ecotoxicity impact. Hazardous reclaimer waste causes significant freshwater and marine ecotoxicity impacts. Most increases in impact are due to increased fuel requirements or increased investments and operating inputs.The reductions in GWP range from 58% to 68% for the worst-case to best-case CCS system. Acidification, eutrophication and toxicity potentials show an even large range of variation in the sensitivity analysis. Decreases in energy use and solvent degradation will significantly reduce the impact in all categories. 相似文献
9.
D. Wappel G. Gronald R. Kalb J. Draxler 《International Journal of Greenhouse Gas Control》2010,4(3):486-494
The present work is a study to evaluate ionic liquids as a potential solvent for post-combustion CO2 capture. In order to enhance the absorption performance of a CO2 capture unit, different ionic liquids have been designed and tested. The main goal was to get a comparison between a reference liquid and selected ionic liquids. As the reference, a solution of 30 w% monoethanolamine (MEA) and water was used. A large range of different pure and diluted ionic liquids was tested with a special screening process to gain general information about the CO2 absorption performance. Based on these results, a 60 w% ionic liquid solution in water was selected and the vapour–liquid equilibrium was measured experimentally between 40 °C and 110 °C. From these curves the enthalpy of absorption for capturing CO2 into the ionic liquid was determined. With these important parameters one is able to calculate the total energy demand for stripping of CO2 from the loaded solvent for comparison of the ionic liquid based solvent with the reference MEA solvent. The energy demand of this 60 w% ionic liquid is slightly lower than that of the reference solution, resulting in possible energy savings between 12 and 16%. 相似文献
10.
The membrane separation process for CO2 capture can be interfered by the gaseous components and the fine particles in flue gas, especially in desulfurized flue gas. In this work, the pint-sized Polyimide(PI) hollow fiber membrane contactors were self-packed to investigate the membrane CO2 separation from flue gas containing fine particles and gaseous contaminants (SO2,SO3,H2O). First, the effects of SO2, SO3, water vapor, and gypsum particles on the CO2 capture were studied independently and synergistically. The results showed that the effect of SO2 on the membrane separation properties is indistinctive; however, the membrane performance was damaged seriously with the addition of SO3. The high humidity promoted the CO2 separation initially before inhibiting the PI membrane performance. Moreover, the decrease of the CO2/N2 selectivity and the permeation rate were accelerated with the coexistence of SO2. The membrane performance showed an obvious deterioration in the presence of gypsum particles, with a 21% decrease in the CO2/N2 selectivity and 51% decrease in the permeation rate. Furthermore, the gypsum particles exerted dramatic damage. Under the WFGD conditions, the combined effects of SO2, water vapor, and the gypsum particles influenced the stability of the membrane significantly. This tendency is mainly attributed to the deposition of fine particles and aerosol on the membrane surface, which occupied the effective area and enhanced the mass transfer resistance. This study of impurities’ influence could play an important role in further industrial application of membrane CO2 capture. 相似文献
11.
Lars Olof Nord Rahul Anantharaman Olav Bolland 《International Journal of Greenhouse Gas Control》2009,3(4):385-392
In this study, a cycle designed for capturing the greenhouse gas CO2 in a natural gas combined cycle power plant has been analyzed. The process is a pre-combustion CO2 capture cycle utilizing reforming of natural gas and removal of the carbon in the fuel prior to combustion in the gas turbine. The power cycle consists of a H2-fired gas turbine and a triple pressure steam cycle. Nitrogen is used as fuel diluent and steam is injected into the flame for additional NOx control. The heat recovery steam generator includes pre-heating for the various process streams. The pre-combustion cycle consists of an air-blown auto-thermal reformer, water–gas shift reactors, an amine absorption system to separate out the CO2, as well as a CO2 compression block. Included in the thermodynamic analysis are design calculations, as well as steady-state off-design calculations. Even though the aim is to operate a plant, as the one in this study, at full load there is also a need to be able to operate at part load, meaning off-design analysis is important. A reference case which excludes the pre-combustion cycle and only consists of the power cycle without CO2 capture was analyzed at both design and off-design conditions for comparison. A high degree of process integration is present in the cycle studied. This can be advantageous from an efficiency stand-point but the complexity of the plant increases. The part load calculations is one way of investigating how flexible the plant is to off-design conditions. In the analysis performed, part load behavior is rather good with efficiency reductions from base load operation comparable to the reference combined cycle plant. 相似文献
12.
Lars Olof Nord Rahul Anantharaman Marvin Rausand Olav Bolland 《International Journal of Greenhouse Gas Control》2009,3(4):411-421
Most of the current CO2 capture technologies are associated with large energy penalties that reduce their economic viability. Efficiency has therefore become the most important issue when designing and selecting power plants with CO2 capture. Other aspects, like reliability and operability, have been given less importance, if any at all, in the literature.This article deals with qualitative reliability and operability analyses of an integrated reforming combined cycle concept. The plant reforms natural gas into a syngas, the carbon is separated out as CO2 after a water-gas shift section, and the hydrogen-rich fuel is used for a gas turbine. The qualitative reliability analysis in the article consists of a functional analysis followed by a failure mode, effects, and criticality analysis (FMECA). The operability analysis introduces the comparative complexity indicator (CCI) concept.Functional analysis and FMECA are important steps in a system reliability analysis, as they can serve as a platform and basis for further analysis. Also, the results from the FMECA can be interesting for determining how the failures propagate through the system and their effects on the operation of the process. The CCI is a helpful tool in choosing the level of integration and to investigate whether or not to include a certain process feature. Incorporating the analytical approach presented in the article during the design stage of a plant can be advantageous for the overall plant performance. 相似文献
13.
An ideal solvent for CO2 capture by chemical absorption has to meet a number of requirements, such as high CO2 capacity, high rate of reaction, low costs, low corrosive behaviour, low degradation and low vapour pressure; above all, it has to show a low regeneration heat duty. This heat can be approximated as the sum of three terms: the sensible heat to raise the solvent from absorber to desorber temperature, the heat of evaporation required to produce the stripping steam in the reboiler, and the heat necessary to desorb the CO2 from the solution (heat of absorption).Many solvent screening studies focus almost exclusively on solvents that show a low heat of absorption. In these studies, the strong dependence of the three contributors to the overall regeneration heat duty on the chosen process parameters and on one another are often neglected.This work explains why the focus on solvents with a low heat of absorption, without considering the overall process, is not sufficient in quantifying the energy performance of alternative solvents. By using thermodynamic interrelations and underpinned by process simulations it is shown that operating parameters of the process, in particular the desorber pressure, must be taken into consideration in the evaluation of new solvents. 相似文献
14.
Heats of absorption of CO2 with different solvents were measured in this work in a commercially available reaction calorimeter CPA-122 (Chemisens AS, Sweden) as function of temperature, loading and solvent composition over the temperature range from 40 to 120 °C. Studied amines include primary amines (monoethanolamine and 2-amino-2-methyl-1-propanol), tertiary amines (N-methyldiethanolamine and N,N-diethylethanolamine), diamines (1-(2-aminoethyl)-aminoethanol and N-methyl-1,3-propanediamine), triamine (diethylenetriamine), and cyclic amine (piperazine). Combinations of these amines and also mixtures of potassium carbonate and piperazine were tested. Experimental heats of absorption of CO2 with these systems are compared. 相似文献
15.
Thu Nguyen Marcus Hilliard Gary T. Rochelle 《International Journal of Greenhouse Gas Control》2010,4(5):707-715
Amine volatility is a key screening criterion for amines to be used in CO2 capture. Excessive volatility may result in significant economic losses and environmental impact. It also dictates the capital cost of the water wash. This paper reports measured amine volatility in 7 m MEA (monoethanolamine), 8 m PZ (piperazine), 7 m MDEA (n-methyldiethanolamine)/2 m PZ (piperazine), 12 m EDA (ethylenediamine), and 5 m AMP (2-amino-2-methyl-1-propanol) at 40–60 °C with lean and rich loadings giving CO2 partial pressures of 0.5 and 5 kPa at 40 °C. The amine concentrations were chosen to maximize CO2 capture capacity at acceptable viscosity. At the lean loading condition (where volatility is of greatest interest), the amines are ranked in order of increasing volatility: 7 m MDEA/2 m PZ (6/2 ppm), 8 m PZ (8 ppm), 12 m EDA (9 ppm), 7 m MEA (31 ppm), and 5 m AMP (112 ppm). The apparent amine partial molar excess enthalpies in these systems were estimated to range from ~10 to 87 kJ/mol of amine. 相似文献
16.
Matteo C. Romano Paolo Chiesa Giovanni Lozza 《International Journal of Greenhouse Gas Control》2010,4(5):785-797
Among the various configurations of fossil fuel power plants with carbon capture, this paper focuses on pre-combustion techniques applied to natural gas combined cycles. With more detail, the plant configuration here addressed includes: (i) the steam reforming of natural gas, based on an air-blown autothermal process, following a recuperative pre-reforming treatment, (ii) the water gas shift producing CO2 and H2, (iii) the separation of CO2 by means of a mixed physical–chemical absorption system using a MDEA solution, and (iv) a hydrogen fuelled combined cycle.Similar configurations have been studied quite extensively, being among the most attractive for full-scale realizations in a near-mid term future. This paper proposes a detailed thermodynamic study and optimization of the plant configuration, bringing to a reliable performance estimation based on today's best available technology as far as the various plant sections are concerned (gas and steam turbine, natural gas reforming process, CO2 separation). The predicted LHV efficiency for the base configuration is about 50%. Being this value at the top of the range quoted in the open literature studies (35–50%), the paper includes a quite extensive sensitivity analysis, showing that more conservative assumptions may bring to significantly poorer performance, especially considering the pretty large number of operating parameters involved in the process. 相似文献
17.
《International Journal of Greenhouse Gas Control》2007,1(2):188-197
Given the dominance of power plant emissions of greenhouse gases, and the growing worldwide interest in CO2 capture and storage (CCS) as a potential climate change mitigation option, the expected future cost of power plants with CO2 capture is of significant interest. Reductions in the cost of technologies as a result of learning-by-doing, R&D investments and other factors have been observed over many decades. This study uses historical experience curves as the basis for estimating future cost trends for four types of electric power plants equipped with CO2 capture systems: pulverized coal (PC) and natural gas combined cycle (NGCC) plants with post-combustion CO2 capture; coal-based integrated gasification combined cycle (IGCC) plants with pre-combustion capture; and coal-fired oxyfuel combustion for new PC plants. We first assess the rates of cost reductions achieved by other energy and environmental process technologies in the past. Then, by analogy with leading capture plant designs, we estimate future cost reductions that might be achieved by power plants employing CO2 capture. Effects of uncertainties in key parameters on projected cost reductions also are evaluated via sensitivity analysis. 相似文献
18.
Paul Higginbotham Vince White Kevin Fogash Galip Guvelioglu 《International Journal of Greenhouse Gas Control》2011
This paper presents the results of a study to develop Air Products’ air separation unit (ASU) offerings for oxyfuel coal CO2 capture projects. A scalable “reference plant” concept is described to match particular sizes of power generation equipment, taking into account factors such as safety, reliability, operating flexibility, efficiency, and low capital cost. We describe the selection of a process cycle to exploit the low purity requirements, as well as the options for compression machinery and drivers as the scale of the plant increases and the sizes of referenced equipment limit the possibilities. We also explore integration with other elements of the system, such as preheating condensate or heating and expanding pressurised nitrogen. In addition, we consider how the ASU affects the flexibility of the oxyfuel system and discuss how its power consumption can be reduced during periods of high power demand. Finally, the advantages and disadvantages of different execution strategies for air separation unit projects are discussed, as well as alternative commercial models for the supply of oxygen. 相似文献
19.
Victor Darde Kaj Thomsen Willy J.M. van Well Erling H. Stenby 《International Journal of Greenhouse Gas Control》2010,4(2):131-136
The chilled ammonia process absorbs the CO2 at low temperature (2–10 °C). The heat of absorption of carbon dioxide by ammonia is significantly lower than for amines. In addition, degradation problems can be avoided and a high carbon dioxide capacity is achieved. Hence, this process shows good perspectives for decreasing the heat requirement. However, a scientific understanding of the processes is required. The thermodynamic properties of the NH3–CO2–H2O system were described using the extended UNIQUAC electrolyte model developed by Thomsen and Rasmussen in a temperature range from 0 to 110 °C and pressure up to 100 bars. The results show that solid phases consisting of ammonium carbonate and bicarbonate are formed in the absorber. The heat requirements in the absorber and in the desorber have been studied. The enthalpy calculations show that a heat requirement for the desorber lower than 2 GJ/ton CO2 can be reached. 相似文献
20.
Jorge M. Plaza David Van Wagener Gary T. Rochelle 《International Journal of Greenhouse Gas Control》2010,4(2):161-166
Hilliard completed several thermodynamic models in Aspen Plus® for modeling CO2 removal with amine solvents, including MEA–H2O–CO2. This solvent was selected to make a system model for CO2 removal by absorption/stripping. Both the absorber and the stripper used RateSep? to rigorously calculate mass transfer rates. The accuracy of the new model was assessed using a recent pilot plant run with 35 wt.% (9 m) MEA. Absorber loading and removal were predicted within 6%, and the temperature profile was approached within 5 °C. An average 3.8% difference between measured and calculated values was achieved in the stripper. A three-stage flash configuration which efficiently utilizes solar energy was developed. It reduces energy use by 6% relative to a simple stripper. Intercooling was used to reach 90% removal in the absorber at these optimized conditions. 相似文献