首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This work provides the essential information and approaches for integration of carbon dioxide (CO2) capture units into power plants, particularly the supercritical type, so that energy utilization and CO2 emissions can be well managed in the subject power plants. An in-house model, developed at the University of Regina, Canada, was successfully used for simulating a 500 MW supercritical coal-fired power plant with a post-combustion CO2 capture unit. The simulations enabled sensitivity and parametric study of the net efficiency of the power plant, the coal consumption rate, and the amounts of CO2 captured and avoided. The parameters of interest include CO2 capture efficiency, type of coal, flue gas delivery scheme, type of amine used in the capture unit, and steam pressure supplied to the capture unit for solvent regeneration. The results show that the advancement of MEA-based CO2 capture units through uses of blended monoethanolamine–methyldiethanolamine (MEA–MDEA) and split flow configuration can potentially make the integration of power plant and CO2 capture unit less energy intensive. Despite the increase in energy penalty, it may be worth capturing CO2 at a higher efficiency to achieve greater CO2 emissions avoided. The flue gas delivery scheme and the steam pressure drawn from the power plant to the CO2 capture unit should be considered for process integration.  相似文献   

2.
A common characteristic of carbon capture and storage systems is the important energy consumption associated with the CO2 capture process. This important drawback can be solved with the analysis, synthesis and optimization of this type of energy systems. The second law of thermodynamics has proved to be an essential tool in power and chemical plant optimization. The exergy analysis method has demonstrated good results in the synthesis of complex systems and efficiency improvements in energy applications.In this paper, a synthesis of pinch analysis and second law analysis is used to show the optimum window design of the integration of a calcium looping cycle into an existing coal power plant for CO2 capture. Results demonstrate that exergy analysis is an essential aid to reduce energy penalties in CO2 capture energy systems. In particular, for the case of carbonation/calcination CO2 systems integrated in existing coal power plants, almost 40% of the additional exergy consumption is available in the form of heat. Accordingly, the efficiency of the capture cycle depends strongly on the possibility of using this heat to produce extra steam (live, reheat and medium pressure) to generate extra power at steam turbine. The synthesis of pinch and second law analysis could reduce the additional coal consumption due to CO2 capture 2.5 times, from 217 to 85 MW.  相似文献   

3.
In this study, a cycle designed for capturing the greenhouse gas CO2 in a natural gas combined cycle power plant has been analyzed. The process is a pre-combustion CO2 capture cycle utilizing reforming of natural gas and removal of the carbon in the fuel prior to combustion in the gas turbine. The power cycle consists of a H2-fired gas turbine and a triple pressure steam cycle. Nitrogen is used as fuel diluent and steam is injected into the flame for additional NOx control. The heat recovery steam generator includes pre-heating for the various process streams. The pre-combustion cycle consists of an air-blown auto-thermal reformer, water–gas shift reactors, an amine absorption system to separate out the CO2, as well as a CO2 compression block. Included in the thermodynamic analysis are design calculations, as well as steady-state off-design calculations. Even though the aim is to operate a plant, as the one in this study, at full load there is also a need to be able to operate at part load, meaning off-design analysis is important. A reference case which excludes the pre-combustion cycle and only consists of the power cycle without CO2 capture was analyzed at both design and off-design conditions for comparison. A high degree of process integration is present in the cycle studied. This can be advantageous from an efficiency stand-point but the complexity of the plant increases. The part load calculations is one way of investigating how flexible the plant is to off-design conditions. In the analysis performed, part load behavior is rather good with efficiency reductions from base load operation comparable to the reference combined cycle plant.  相似文献   

4.
When integrating a post-combustion CO2 capture process and CO2 compression into a steam power plant, the three interface quantities heat, electricity and cooling duty must be satisfied by the power plant, leading to a loss in net efficiency. The heat duty shows to be the largest contributor to the overall net efficiency penalty of the power plant. Additional energy penalty results from the cooling and electric power duty of the capture and compression units.In this work, the dependency of the energy penalty on the quantity and quality of the heat duty is analyzed and quantified for a state-of-the-art hard coal fired power plant. Furthermore, the energy penalty attributed to the additional cooling and power duty is quantified. As a result correlations are provided which enable to predict the impact of the heat, cooling and electricity duty of post-combustion CO2 capture processes on the net output of a steam power plant in a holistic approach.  相似文献   

5.
Post-combustion CO2 capture and storage (CCS) presents a promising strategy to capture, compress, transport and store CO2 from a high volume–low pressure flue gas stream emitted from a fossil fuel-fired power plant. This work undertakes the simulation of CO2 capture and compression integration into an 800 MWe supercritical coal-fired power plant using chemical process simulators. The focus is not only on the simulation of full load of flue gas stream into the CO2 capture and compression, but also, on the impact of a partial load. The result reveals that the energy penalty of a low capture efficiency, for example, at 50% capture efficiency with 10% flue gas load is higher than for 90% flue gas load at the equivalent capture efficiency by about 440 kWhe/tonne CO2. The study also addresses the effect of CO2 capture performance by different coal ranks. It is found that lignite pulverized coal (PC)-fired power plant has a higher energy requirement than subbituminous and bituminous PC-fired power plants by 40.1 and 98.6 MWe, respectively. In addition to the investigation of energy requirement, other significant parameters including energy penalty, plant efficiency, amine flow rate and extracted steam flow rate, are also presented. The study reveals that operating at partial load, for example at half load with 90% CO2 capture efficiency, as compared with full load, reduces the energy penalty, plant efficiency drop, amine flow rate and extracted steam flow rate by 9.9%, 24.4%, 50.0% and 49.9%, respectively. In addition, the effect of steam extracted from different locations from a series of steam turbine with the objective to achieve the lowest possible energy penalty is evaluated. The simulation shows that a low extracted steam pressure from a series of steam turbines, for example at 300 kPa, minimizes the energy penalty by up to 25.3%.  相似文献   

6.
Absorption by chemical solvents combined with CO2 long-term storage appears to offer interesting and commercial applicable CO2 capture technology. However one of the main disadvantages is related to the large quantities of heat required to regenerate the amine solvent that means an important power plant efficiency penalty. Different studies have analyzed alternatives to reduce the heat duty on the reboiler and the thermal integration requirements on existing power cycles. In these studies integration principles have been well set up, but there is a lack of information about how to achieve an integrated design and the thermal balances of the modified cycle flowsheet. This paper proposes and provides details about a set of modifications of a supercritical steam cycle to overcome the energy requirements through energetic integration with the aim of reducing the efficiency and power output penalty associated with CO2 capture process. Modifications include a new designed low-pressure heater flowsheet to take advantage of the CO2 compression cooling for postcombustion systems and integration of amine reboiler into a steam cycle. It has been carried out several simulations in order to obtain power plant performance depending on sorbent regeneration requirements.  相似文献   

7.
This paper presents application of the chemical looping combustion (CLC) method in natural gas-fired combined cycles for power generation with CO2 capture. A CLC combined cycle consisting of single CLC-reactor system, an air turbine, a CO2-turbine and a steam cycle has been designated as the base-case cycle. The base-case cycle can achieve net plant efficiency of about 52% at an oxidation temperature of 1200 °C. In order to achieve a reasonable efficiency at lower oxidation temperatures, reheat is introduced into the air turbine by employing multi CLC-reactors. The results show that the single reheat CLC-combined cycle can achieve net plant efficiency of above 51% at oxidation temperature of 1000 °C and above 53% at the oxidation temperature of 1200 °C including CO2 compression to 110 bar. The double reheat cycle results in marginal efficiency improvement as compared to the single reheat cycle. The CLC-cycles are also compared with a conventional combined cycle with and without post-combustion capture in amine solution. All the CLC-cycles show higher net plant efficiencies with close to 100% CO2 capture as compared to a conventional combined cycle with post-combustion capture, which is very promising.  相似文献   

8.
This study investigates the possibility of capturing CO2 from flue gas under pressurised conditions, which could prove to be beneficial in comparison to working under atmospheric conditions. Simulations of two hybrid combined cycles with pressurised fluidised bed combustion and CO2 capture are presented. CO2 is captured from pressurised flue gas by means of chemical absorption after the boiler but before expansion. The results show a CO2 capture penalty of approximately 8 percentage points (including 90% CO2 capture rate and compression to 110 bar), which makes the efficiency for the best performing cycle 43.9%. It is 5.2 percentage points higher than the most probable alternative, i.e. using a natural gas fired combined cycle and a pulverised coal fired condensing plant separately with the same fuel split ratio. The largest part of the penalty is associated with the lower mass flow of flue gas after CO2 capture, which leads to a decrease in work output in the expander and potential for feed water heating. The penalty caused by the regeneration of absorbent is quite low, since the high pressure permits the use of potassium carbonate, which requires less regeneration heat than for example the more commonly proposed monoethanolamine. Although the efficiencies of the cycles look promising it will be important to perform a cost estimate to be able to make a fair comparison with other systems. Such a cost estimate has not been done in this study. A significant drawback of these hybrid cycles in that respect is the complex nature of the systems that will have a negative effect on the economy.  相似文献   

9.
Existing coal-fired power plants were not designed to be retrofitted with carbon dioxide post-combustion capture (PCC) and have tended to be disregarded as suitable candidates for carbon capture and storage on the grounds that such a retrofit would be uneconomical. Low plant efficiency and poor performance with capture compared to new-build projects are often cited as critical barriers to capture retrofit. Steam turbine retrofit solutions are presented that can achieve effective thermodynamic integration between a post-combustion CO2 capture plant and associated CO2 compressors and the steam cycle of an existing retrofitted unit for a wide range of initial steam turbine designs. The relative merits of these capture retrofit integration options with respect to flexibility of the capture system and solvent upgradability will be discussed. Provided that effective capture system integration can be achieved, it can be shown that the abatement costs (or cost per tonne of CO2 to justify capture) for retrofitting existing units is independent of the initial plant efficiency. This then means that a greater number of existing power plants are potentially suitable for successful retrofits of post-combustion capture to reduce power sector emissions. Such a wider choice of retrofit sites would also give greater scope to exploit favourable site-specific conditions for CCS, such as ready access to geological storage.  相似文献   

10.
A post-combustion CO2 capture process intended for offshore operations has been designed and optimised for integration with a natural gas-fired power plant on board a floating structure developed by the Norway-based company Sevan Marine ASA—designated Sevan GTW (gas-to-wire). The concept is constrained by the structure of the floater carrying a SIEMENS modular power system rated at 450 MWe, with a capture rate of 90% and CO2 compression (1.47 Mtpa) for pipeline pressure at 12 MPa. A net efficiency of 45% (based on a lower heating value) is estimated for the system with CO2 capture, thus suggesting that the post-combustion CO2 capture system is accountable for a fuel penalty of nine percentage points.The rationale behind the technology selection is the urgency of replacing the dispersed aero-derivative gas turbines which power the offshore oil and gas production units in Norwegian waters with near-zero emission power.As (inherently) fresh water usually constitutes a limiting factor in sea operations, efforts are made to obtain a neutral water balance to obtain an optimal design. This is primarily achieved by controlling the cleaned flue gas temperature at the top of the absorber column.  相似文献   

11.
This study examines energetic and exergetic performances of display cases’ units used in market applications depending on different refrigerants. Besides CO2 emission potential of each refrigerant based on exergetic irreversibility obtained from analyses is calculated by the method of Total Equivalent Warming Impact (TEWI). In this study, 1 kW cooling capacity and vapor compression cooling cycle is taken as reference and refrigerants of R-22, R-134a, R-404A, and R-507 together with alternative refrigerant R-407C and R152a are examined separately. According to analyses, R-404A gas, used widely in market applications, has low performance with average COP 3.89 and average exergy efficiency 55.20%. R-152a gas has the best performance by the thermodynamics parameters including COP 4.49, exergy efficiency 63.79%, and 0.23 kW power consumption and emission parameter 14097.490 ton CO2/year. Although COP is used as a criterion to evaluate the systems, this study finally emphasizes the importance of exergy analysis and TEWI method which are important methods to determine irreversibility and emission potential of the systems.  相似文献   

12.
The application of post-combustion capture (PCC) processes in coal fired power stations can result in large reductions of the CO2-emissions, but the consequential decrease in generation efficiency is an important draw-back. The leading PCC technology is based on chemical absorption processes as this technology is the one whose scale-up status is closest to full-scale capture in power plants. The energy performance of this process is analysed in this contribution. The analysis shows that the potential for improvement of the energy performance is quite large. It is demonstrated that further development of the capture technology and the power plant technology can lead to generation efficiencies for power plants with 90% CO2 capture which are equivalent to the current generation efficiencies without CO2 capture, i.e. 0.4 (HHV), leading to an additional resource consumption of 16%. These improvements are possible throughout a combined improvement for the capture process and power generation processes.  相似文献   

13.
The membrane flash process utilizing waste thermal energy was developed to achieve an energy-saving technology and to substitute it for a conventional regenerator. The operating conditions of the membrane flash at high temperature were studied. The petroleum refining process and iron manufacturing process were proposed for candidate processes that actually had waste energy sources. The DEA concentration and the flashing pressure had optimum values to improve the performance and reduce the energy consumption for CO2 recovery. Energy consumptions and costs for CO2 recovery in the membrane flash and chemical absorption were estimated by a process simulator and discussed under the same conditions. The membrane flash can achieve lower energy capture than the chemical absorption for the above industrial processes. The membrane flash is suitable for the CO2 emission sources that had high CO2 concentration independently of the plant scale. The chemical absorption can be applied if the plant scale is large and also the CO2 concentration is low.  相似文献   

14.
Post combustion carbon dioxide (CO2) capture is one of the most commonly adopted technologies for reducing industrial CO2 emissions, which is now an important goal given the widespread concern over global warming. Research on amine-based CO2 capture has mainly focused on improving effectiveness and efficiency of the CO2 capture process. Our research work focuses on studying the relationships among the significant parameters influencing CO2 production because an enhanced understanding of the intricate relationships among the parameters involved in the process is critical for improving efficiency of the CO2 capture process. This paper presents a statistical study that explores the relationships among parameters involved in the amine-based post combustion CO2 capture process at the International Centre for CO2 Capture (ITC) located in Regina, Saskatchewan of Canada. A multiple regression technique has been applied for analysis of data collected at the CO2 capture pilot plant at ITC. The parameters have been carefully selected to avoid issues of multicollinearity, and four mathematical models among the key parameters identified have been developed. The models have been tested, and accuracy of the models is found to be satisfactory. The models developed in this study describe part of the CO2 capture process and can help to predict performance of the CO2 capture process at ITC under different conditions. Some results from a preliminary validation process will also be presented.  相似文献   

15.
In this work the feasibility of a CO2 capture system based on sodium carbonate–bicarbonate slurry and its integration with a power plant is studied. The results are compared to monoethanolamine (MEA)-based capture systems. Condensing power plant and combined heat and power plant with CO2 capture is modelled to study the feasibility of combined heat and power plant for CO2 capture.Environmental friendly sodium carbonate would be an interesting chemical for CO2 capture. Sodium carbonate absorbs CO2 forming sodium bicarbonate. The low solubility of sodium bicarbonate is a weak point for the sodium carbonate based liquid systems since it limits the total concentration of carbonate. In this study the formation of solid bicarbonate is allowed, thus forming slurry, which can increase the capacity of the solvent. With this the energy requirement of stripping of the solvent could potentially be around 3.22 MJ/kg of captured CO2 which is significantly lower than with MEA based systems which typically have energy consumption around 3.8 MJ/kg of captured CO2.Combined heat and power plants seem to be attractive for CO2 capture because of the high total energy efficiency of the plants. In a condensing power plant the CO2 capture decreases directly the electricity production whereas in a combined heat and power plant the loss can be divided between district heat and electricity according to demand.  相似文献   

16.
The capture of CO2 from a hot stove gas in steel making process containing 30 vol% CO2 by chemical absorption in a rotating packed bed (RPB) was studied. The RPB had an inner diameter of 7.6 cm, an outer diameter of 16 cm, and a height of 2 cm. The aqueous solutions containing 30 wt% of single and mixed monoethanolamine (MEA), 2-(2-aminoethylamino)ethanol (AEEA), and piperazine (PZ) were used. The CO2 capture efficiency was found to increase with increasing temperature in a range of 303–333 K. It was also found to be more dependent on gas and liquid flow rates but less dependent on rotating speed when the speed was higher than 700 rpm. The obtained results indicated that the mixed alkanolamine solutions containing PZ were more effective than the single alkanolamine solutions. This was attributed to the highest reaction rate of PZ with CO2. A higher portion of PZ in the mixture was more favorable to CO2 capture. The highest gas flow rates allowed to achieve a desired CO2 capture efficiency and the correspondent height of transfer unit (HTU) were determined at different aqueous solution flow rates. Because all the 30 wt% single and mixed alkanolamine solutions could result in a HTU less than 5.0 cm at a liquid flow rate of 100 mL/min, chemical absorption in a RPB instead of a packed bed adsorber is therefore suggested to capture CO2 from the flue gases in steel making processes.  相似文献   

17.
This study assesses potential environmental impacts of the absorption-based carbon dioxide (CO2) capture unit that is integrated to coal-fired power plant for post-combustion treatment of flue gas. The assessment was performed by identifying potential pollutants and their sources as well as amounts of emissions from the CO2 capture unit and also by reviewing toxicology, potential implications to human health and the environment, as well as the environmental laws and regulations associated with such pollutants. The assessment shows that, while offering a significant environmental benefit through a reduction of greenhouse gas emissions, the installation of CO2 capture units for post-combustion treatment might induce unintentional and potential burdens to human health and the environment through four emission pathways, including treated gas, process wastes, fugitive emissions, and accidental releases. Such burdens nevertheless can be predetermined and properly mitigated through a well-established environmental management program and mitigation measures. Recommendations to minimize these impacts are provided in this paper.  相似文献   

18.
19.
Canadian oil sands are considered to be the second largest oil reserves in the world. However, the upgrading of bitumen from oil sands to synthetic crude oil (SCO) requires nearly ten times more hydrogen (H2) than conventional crude oils. The current H2 demand for oil sands operations is met mostly by steam reforming of natural gas (SMR). The future expansion of oil sands operations is likely to quadruple the demand of H2 for oil sand operations in the next decade.This paper presents modified process schemes that capture CO2 at minimum energy penalty in modern SMR plants. The approach is to simulate a base case H2 plant without CO2 capture and then look for the best operating conditions that minimize the energy penalty associated with CO2 capture while maximizing H2 production. The two CO2 capture schemes evaluated in this study include a membrane separation process and the monoethanolamine (MEA) absorption process. A low energy penalty is observed when there is lower CO2 production and higher steam production. The process simulation results show that the H2 plant with CO2 capture has to be operated at lower steam to carbon ratio (S/C), higher inlet temperature of the SMR and lower inlet temperatures for the water gas-shift (WGS) converters to attain lowest energy penalty. Also it is observed that both CO2 capture processes, the membrane process and the MEA absorption process, are comparable in terms of energy penalty and CO2 avoided when both are operated at conditions where lowest energy penalty exists.  相似文献   

20.
CO2 capture and storage has gained widespread attention as an option for reducing greenhouse gas emissions. Chemical absorption and stripping of CO2 with hot potassium carbonate (K2CO3) solutions has been used in the past, however potassium carbonate solutions have a low CO2 absorption efficiency. Various techniques can be used to improve the absorption efficiency of this system with one option being the addition of promoters to the solvent and another option being an improvement in the mass transfer efficiency of the equipment. This study has focused on improving the efficiency of the packed column by replacing traditional packings with newer types of packing which have been shown to have enhanced mass transfer performance. Three different packings (Super Mini Rings (SMRs), Pall Rings and Mellapak) have been studied under atmospheric conditions in a laboratory scale column for CO2 absorption using a 30 wt% K2CO3 solution. It was found that SMR packing resulted in a mass transfer coefficient approximately 20% and 30% higher than that of Mellapak and Pall Rings, respectively. Therefore, the height of packed column with SMR packing would be substantially lower than with Pall Rings or Mellapak. Meanwhile, the pressure drop using SMR was comparable to other packings while the gas flooding velocity was higher when the liquid load was above 25 kg m−2 s−1. Correlations for predicting flooding gas velocities and pressure drop were fitted to the experimental data, allowing the relevant parameters to be estimated for use in later design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号