首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An ideal solvent for CO2 capture by chemical absorption has to meet a number of requirements, such as high CO2 capacity, high rate of reaction, low costs, low corrosive behaviour, low degradation and low vapour pressure; above all, it has to show a low regeneration heat duty. This heat can be approximated as the sum of three terms: the sensible heat to raise the solvent from absorber to desorber temperature, the heat of evaporation required to produce the stripping steam in the reboiler, and the heat necessary to desorb the CO2 from the solution (heat of absorption).Many solvent screening studies focus almost exclusively on solvents that show a low heat of absorption. In these studies, the strong dependence of the three contributors to the overall regeneration heat duty on the chosen process parameters and on one another are often neglected.This work explains why the focus on solvents with a low heat of absorption, without considering the overall process, is not sufficient in quantifying the energy performance of alternative solvents. By using thermodynamic interrelations and underpinned by process simulations it is shown that operating parameters of the process, in particular the desorber pressure, must be taken into consideration in the evaluation of new solvents.  相似文献   

2.
The simulation tool ASPEN Plus® is used to model the full CO2-capture process for chemical absorption of CO2 by piperazine-promoted potassium carbonate (K2CO3/PZ) and the subsequent CO2-compression train. Sensitivity analysis of lean loading, desorber pressure and CO2-capture rate are performed for various solvent compositions to evaluate the optimal process parameters. EbsilonProfessional® is used to model a 600 MWel (gross) hard coal-fired power plant. Numerical equations for power losses due to steam extraction for solvent regeneration are derived from simulation runs. The results of the simulation campaigns are used to find the process parameters that show the lowest specific power loss. Subsequently, absorber and desorber columns are dimensioned to evaluate investment costs for these main components of the CO2-capture process. Regeneration heat duty, net efficiency losses and column investment costs are then compared to the reference case of CO2-capture by monoethanolamine (MEA).CO2-capture by piperazine-promoted potassium carbonate with subsequent CO2-compression to 110 bar shows energetic advantages over the reference process which uses MEA. Additionally, investment costs for the main components in the CO2-capture process (absorber and desorber columns) are lower due to the enhanced reaction kinetics of the investigated K2CO3/PZ solvent which leads to smaller component sizes.  相似文献   

3.
The chilled ammonia process absorbs the CO2 at low temperature (2–10 °C). The heat of absorption of carbon dioxide by ammonia is significantly lower than for amines. In addition, degradation problems can be avoided and a high carbon dioxide capacity is achieved. Hence, this process shows good perspectives for decreasing the heat requirement. However, a scientific understanding of the processes is required. The thermodynamic properties of the NH3–CO2–H2O system were described using the extended UNIQUAC electrolyte model developed by Thomsen and Rasmussen in a temperature range from 0 to 110 °C and pressure up to 100 bars. The results show that solid phases consisting of ammonium carbonate and bicarbonate are formed in the absorber. The heat requirements in the absorber and in the desorber have been studied. The enthalpy calculations show that a heat requirement for the desorber lower than 2 GJ/ton CO2 can be reached.  相似文献   

4.
Hilliard completed several thermodynamic models in Aspen Plus® for modeling CO2 removal with amine solvents, including MEA–H2O–CO2. This solvent was selected to make a system model for CO2 removal by absorption/stripping. Both the absorber and the stripper used RateSep? to rigorously calculate mass transfer rates. The accuracy of the new model was assessed using a recent pilot plant run with 35 wt.% (9 m) MEA. Absorber loading and removal were predicted within 6%, and the temperature profile was approached within 5 °C. An average 3.8% difference between measured and calculated values was achieved in the stripper. A three-stage flash configuration which efficiently utilizes solar energy was developed. It reduces energy use by 6% relative to a simple stripper. Intercooling was used to reach 90% removal in the absorber at these optimized conditions.  相似文献   

5.
The carbon dioxide capture potential of amine amino acid salts (AAAS), formed by mixing equinormal amounts of amino acids; e.g. glycine, β-alanine and sarcosine, with an organic base; 3-(methylamino)propylamine (MAPA), was assessed by comparison with monoethanolamine (MEA), and with amino acid salt (AAS) from amino acid neutralized with an inorganic base; potassium hydroxide (KOH). Carbon dioxide absorption and desorption experiments were carried out on the solvent systems at 40 °C and 80 °C respectively. Experimental results showed that amine amino acid salts have similar CO2 absorption properties to MEA of the same concentration. They also showed good signs of stability during the experiments. Amino acid salt from an inorganic base, KOH, showed lower performance in CO2 absorption than the amine amino acid salts (AAAS) mainly due to a lower equilibrium temperature sensitivity. AAAS showed better performance than MEA of same concentration. AAAS from neutralization of sarcosine with MAPA showed the best performance and the performance could be further enhanced when promoted with excess MAPA. The solvent comparison is semi-quantitative since the bubble structure, and thus gas–liquid interfacial area may not be the same for all experiments, however superficial gas velocities were kept constant.  相似文献   

6.
New comprehensive numerically solved 1D and 2D absorption rate/kinetics models have been developed, for the first time, to interpret the experimental kinetic data obtained with a laminar jet apparatus for the absorption of carbon dioxide (CO2) in CO2 loaded mixed solutions of mixed amine system of methyldiethanolamine (MDEA) and monoethanolamine (MEA). Three MDEA/MEA weight ratios ranging from 27/03 to 23/07, over a concentration range of 2.316–1.996 kmol/m3 for MDEA and of 0.490–1.147 kmol/m3 for MEA were studied. The models take into account the coupling between chemical equilibrium, mass transfer, and the chemical kinetics of all possible chemical reactions involved in the CO2 reaction with MDEA/MEA solvent. The partial differential equations of the 1D model were solved by two numerical techniques; the finite difference method (FDM) based on in-house coded Barakat–Clark scheme and the finite element method (FEM) based on COMSOL software. The FEM comprehensive model was then used to solve the set of partial differential equations in the 2D cylindrical coordinate system setting. Both FDM and FEM produced very accurate results for both the 1D and 2D models, which were much better than our previously published simplified model. The reaction rate constant obtained for MEA blended into MDEA at 298–333 K was kMEA = 5.127 × 108 exp(−3373.8/T). In addition, the 2D model, for the first time, has provided the concentration profiles of all the species in both the radial and axial directions of the laminar jet, thereby enabling an understanding of the correct sequence in which the reaction steps involved in the reactive absorption of CO2 in aqueous mixed amines occur.  相似文献   

7.
The CO2 absorption capacities of potassium glycinate, potassium sarcosinate (choline, proline), mono-ethanolamine (MEA), and tri-ethanolamine were evaluated to find the optimal absorbent for separating CO2 from gaseous products by a CO2 purification process. The absorption loading, desorption efficiency, cost, and environmental tolerance were assessed to select the optimal absorbent. MEA was found to be the optimum absorbent for separating the CO2 and H2 mixture in gaseous product. The maximum absorption loading rate was 0.77 mol CO2 per mol MEA at temperature of 20°C and absorbent concentration of 2.5 mol/L, whereas desorption efficiency was 90% by heating for 3 h at 130°C. MEA was found to be an optimal absorbent for the purification process of CO2 during gaseous production.  相似文献   

8.
The present work is a study to evaluate ionic liquids as a potential solvent for post-combustion CO2 capture. In order to enhance the absorption performance of a CO2 capture unit, different ionic liquids have been designed and tested. The main goal was to get a comparison between a reference liquid and selected ionic liquids. As the reference, a solution of 30 w% monoethanolamine (MEA) and water was used. A large range of different pure and diluted ionic liquids was tested with a special screening process to gain general information about the CO2 absorption performance. Based on these results, a 60 w% ionic liquid solution in water was selected and the vapour–liquid equilibrium was measured experimentally between 40 °C and 110 °C. From these curves the enthalpy of absorption for capturing CO2 into the ionic liquid was determined. With these important parameters one is able to calculate the total energy demand for stripping of CO2 from the loaded solvent for comparison of the ionic liquid based solvent with the reference MEA solvent. The energy demand of this 60 w% ionic liquid is slightly lower than that of the reference solution, resulting in possible energy savings between 12 and 16%.  相似文献   

9.
Carbon dioxide is the major greenhouse gas responsible for global warming. Man-made CO2 emissions contribute approximately 63% of greenhouse gases and the cement industry is responsible for approximately 5% of CO2 emissions emitting nearly 900 kg of CO2 per 1000 kg of cement. CO2 from a cement plant was captured and purified to 98% using the monoethanolamine (MEA) based absorption process. The capture cost was $51 per tonne of CO2 captured, representing approximately 90% of total cost. Steam was the main operating cost representing 39% of the total capture cost. Switching from coal to natural gas reduces CO2 emissions by about 18%. At normal load, about 36 MW of waste heat is available for recovery to satisfy the parasitic heat requirements of MEA process; however, it is very difficult to recover.  相似文献   

10.
In this work, the rate of absorption of carbon dioxide by aqueous ammonia solvent has been studied by applying a newly built wetted wall column. The absorption rate in aqueous ammonia was measured at temperatures from 279 to 304 K for 1 to 10 wt% aqueous ammonia with loadings varying from 0 to 0.8 mol CO2/mol NH3. The absorption rate in 30 wt% aqueous mono-ethanolamine (MEA) was measured at 294 and 314 K with loadings varying from 0 to 0.4 as comparison.It was found that at 304 K, the rate of absorption of carbon dioxide by 10 wt% NH3 solvent was comparable to the rates for 30 wt% MEA at 294 and 314 K (a typical absorption temperature for this process). The absorption rate using ammonia was however significantly lower at temperatures of 294 K and lower as applied in the Chilled Ammonia Process. However, at these low temperatures, the rate of absorption in ammonia has only a small temperature dependency.The rate of absorption decreases strongly with decreasing ammonia concentrations and increasing CO2 loadings.The rate of absorption of carbon dioxide by aqueous ammonia solvent was modeled using the measurements of the unloaded solutions and the zwitter-ion mechanism. The model could successfully predict the experimental measurements of the absorption rate of CO2 in loaded ammonia solutions.  相似文献   

11.
Capture and storage of CO2 from fossil fuel fired power plants is drawing increasing interest as a potential method for the control of greenhouse gas emissions. An optimization and technical parameter study for a CO2 capture process from flue gas of a 600 MWe bituminous coal fired power plant, based on absorption/desorption process with MEA solutions, using ASPEN Plus with the RADFRAC subroutine, was performed. This optimization aimed to reduce the energy requirement for solvent regeneration, by investigating the effects of CO2 removal percentage, MEA concentration, lean solvent loading, stripper operating pressure and lean solvent temperature.Major energy savings can be realized by optimizing the lean solvent loading, the amine solvent concentration as well as the stripper operating pressure. A minimum thermal energy requirement was found at a lean MEA loading of 0.3, using a 40 wt.% MEA solution and a stripper operating pressure of 210 kPa, resulting in a thermal energy requirement of 3.0 GJ/ton CO2, which is 23% lower than the base case of 3.9 GJ/ton CO2. Although the solvent process conditions might not be realisable for MEA due to constraints imposed by corrosion and solvent degradation, the results show that a parametric study will point towards possibilities for process optimisation.  相似文献   

12.
The kinetics of the reaction between carbon dioxide (CO2) and mixed solutions of methyldiethanolamine (MDEA) and piperazine (PZ) was investigated experimentally in a laminar jet apparatus. The experimental kinetic data were obtained under no interfacial turbulence and over a temperature range from 313 to 333 K, MDEA/PZ wt% concentration ratios of 27/3, 24/6 and 21/9, and CO2 loadings from 0.0095 to 0.33 mol CO2/mol amine. In addition, a new absorption-rate/kinetics model for the kinetics of the mixed of solvents was developed, which takes into account the coupling between chemical equilibrium, mass transfer, and all possible chemical reactions involved in the CO2 reaction with MDEA/PZ solvent. The partial differential equations of this model were solved by the finite element numerical method (FEM) based on COMSOL software. The obtained experimental kinetics data were used to obtain the kinetic parameters of CO2 absorption into MDEA/PZ solutions. The reaction-rate constant obtained for PZ blended with MDEA was kPZ = 2.572 × 1012 exp(?5211/T). The 2D model for the blended amines MDEA/PZ has revealed the concentration profiles of all the species in both the radial and axial directions of the laminar jet which has enabled a better understanding of the correct sequence in which the reaction steps involved in the reactive absorption of CO2 in aqueous mixed MDEA/PZ solution occur. It also revealed that PZ may be depleted by the time the solvent blend of MDEA/PZ with a loading greater than 0.015 mol/mol amine is exposed to CO2 from the top of the laminar jet absorber.  相似文献   

13.
Carbon dioxide absorption using amine based solvents is a well-known approach for carbon dioxide removal. Especially with the increasing concerns about greenhouse gas emissions, there is a need for an optimization approach capable of multifactor calibration and prediction of interactions. Since conventional methods based on empirical relations are not efficiently applicable, this study investigates use of Response Surface Methodology as a strong optimization tool. A bubble column reactor was used and the effect of solvent concentration (10.0, 20.0 and 30.0 vol%), flow rate (4.0, 5.0 and 6.0 L min−1), diffuser pore size (0.5, 1.0 and 1.5 mm) and temperature (20.0, 25.0 and 30.0°C) on the absorption capacity and also overall mass transfer coefficient was evaluated. The optimization results for maintaining maximum capacity and overall mass transfer coefficient revealed that different optimization targets led to different tuned operational factors. Overall mass transfer coefficient decreased to 34.7 min−1 when the maximum capacity was the desired target. High reaction rate along with the highest absorption capacity was set as desirable two factor target in this application. As a result, a third scenario was designed to maximize both mass transfer coefficient and absorption capacity simultaneously. The optimized condition was achieved when a gas flow rate of 5.9 L min−1, MEA solution of 29.6 vol%, diffuser pore size of 0.5 mm and temperature of 20.6°C was adjusted. At this condition, mass transfer coefficient reached a maximum of 38.4 min−1, with a forecasted achievable absorption capacity of 120.5 g CO2 per kg MEA.  相似文献   

14.
Use of amines is one of the leading technologies for post-combustion carbon dioxide capture from gas and coal-fired power plants. This study assesses the potential environmental impact of emissions to air that result from use of monoethanol amine (MEA) as an absorption solvent for the capture of carbon dioxide (CO2). Depending on operation conditions and installed reduction technology, emissions of MEA to the air due to solvent volatility losses are expected to be in the range of 0.01–0.8 kg/tonne CO2 captured. Literature data for human and environmental toxicity, together with atmospheric dispersion model calculations, were used to derive maximum tolerable emissions of amines from CO2 capture. To reflect operating conditions with typical and with elevated emissions, we defined a scenario MEA-LOW, with emissions of 40 t/year MEA and 5 t/year diethyl amine (DEYA), and a scenario MEA-HIGH, with emissions of 80 t/year MEA and 15 t/year DEYA. Maximum MEA deposition fluxes would exceed toxicity limits for aquatic organisms by about a factor of 3–7 depending on the scenario. Due to the formation of nitrosamines and nitramines, the estimated emissions of DEYA are close to or exceed safety limits for drinking water and aquatic ecosystems. The “worst case” scenario approach to determine maximum tolerable emissions of MEA and other amines is in particular useful when both expected environmental loads and the toxic effects are associated with high uncertainties.  相似文献   

15.
In this work the feasibility of a CO2 capture system based on sodium carbonate–bicarbonate slurry and its integration with a power plant is studied. The results are compared to monoethanolamine (MEA)-based capture systems. Condensing power plant and combined heat and power plant with CO2 capture is modelled to study the feasibility of combined heat and power plant for CO2 capture.Environmental friendly sodium carbonate would be an interesting chemical for CO2 capture. Sodium carbonate absorbs CO2 forming sodium bicarbonate. The low solubility of sodium bicarbonate is a weak point for the sodium carbonate based liquid systems since it limits the total concentration of carbonate. In this study the formation of solid bicarbonate is allowed, thus forming slurry, which can increase the capacity of the solvent. With this the energy requirement of stripping of the solvent could potentially be around 3.22 MJ/kg of captured CO2 which is significantly lower than with MEA based systems which typically have energy consumption around 3.8 MJ/kg of captured CO2.Combined heat and power plants seem to be attractive for CO2 capture because of the high total energy efficiency of the plants. In a condensing power plant the CO2 capture decreases directly the electricity production whereas in a combined heat and power plant the loss can be divided between district heat and electricity according to demand.  相似文献   

16.
The carbon dioxide capture and release from aqueous 2,2′-iminodiethanol (DEA) and N-methyl-2,2′-iminodiethanol (MDEA) have been investigated by means of 13C NMR spectroscopy. We have designed two experimental procedures using a gas mixture containing 12% (v/v) CO2 in N2 or air and 0.667 M aqueous solutions of DEA and MDEA. To understand the CO2–amine reaction equilibria, separate experiments of CO2 absorption (at 293, 313 and 333 K) and desorption (at boiling temperature, room pressure) were carried out. The 13C NMR analysis has allowed us to establish: (1) the percentage of CO2 stored in solution as HCO3?, CO32? and DEA carbamate; (2) the formation of DEA carbamate as a function of absorption temperature and time; (3) the slower decomposition of DEA carbamate than that of bicarbonate. In the experiments planned to test the reuse of the regenerated amines, the absorbent solution was continuously circulated in a closed cycle while it was absorbing CO2 in the absorber (set at 293 K) and simultaneously regenerating amine in the desorber (set at 388 K). After the equilibrium has been reached (13 h), the CO2 absorption efficiency is comprised between 84.0% (DEA) and 82.6% (MDEA) and the average amine regeneration efficiency ranges between 69.6% (DEA) and 78.2% (MDEA). Additionally, MDEA is more stable towards thermal degradation than DEA.  相似文献   

17.
The chemical reactions involved in CO2 absorption in amine systems are studied. For each mechanism, available experimental data are considered and quantum mechanical calculations carried out. Base-catalyzed bicarbonate formation is found to be a likely mechanism for all amine bases, not only tertiary amines. Direct formation of bicarbonate species from carbamate species is found to be unlikely. The carbamate formation has been proposed to take place through a single-step termolecular reaction, or through a two step mechanism with a zwitterionic intermediate. Quantum mechanical calculations suggest that if there is such a zwitterionic intermediate, it is likely to be short-lived.Quantum mechanical calculations together with solvation models are shown to predict the base strength and carbamate stability of different amine solvents with a useful degree of accuracy. Solvent effects and electron donation and withdrawal through bonds are identified as important factors in determining the overall reactivity of different amine solvents. Results suggest a strong correlation between the carbamate stability and base strength of amine solvents and their reaction kinetics.  相似文献   

18.
A reaction calorimeter was used to determine the enthalpies of absorption of CO2 in aqueous ammonia and in aqueous solutions of ammonium carbonate at temperatures of 35–80 °C. The heat of absorption of CO2 with 2.5 wt% aqueous ammonia solution was found to be about 70 kJ/mol CO2, which is lower than that with MEA (around 85 kJ/mol) at 35 and 40 °C. The value decreases with increased loading, but not to as low a value as expected by the carbonate–bicarbonate reaction (26.88 kJ/mol). The enthalpy of absorption of CO2 in aqueous ammonia at 60 and 80 °C decreases with loadings at first, then increases between 0.2 mol CO2/mol NH3 and 0.6 mol CO2/mol NH3, and then decreases again. The behavior of the heat of absorption of CO2 in 10 wt% ammonium carbonate solution was found to be the same as that of aqueous ammonia at loadings above 0.6 mol CO2/mol NH3. The heat of absorption increases with increasing temperature. The heats of absorption are directly related to the extent of the various reactions with CO2 and can be assessed from the species variation in the liquid phase.  相似文献   

19.
Studies of the kinetics of sulfur dioxide (SO2)- and oxygen (O2)-induced degradation of aqueous monoethanolamine (MEA) during the absorption of carbon dioxide (CO2) from flue gases derived from coal- or natural gas-fired power plants were conducted as a function of temperature and the liquid phase concentrations of MEA, O2, SO2 and CO2. The kinetic data were based on the initial rate which shows the propensity for amine degradation and obtained under a range of conditions typical of the CO2 absorption process (3–7 kmol/m3 MEA, 6% O2, 0–196 ppm SO2, 0–0.55 CO2 loading, and 328–393 K temperature). The results showed that an increase in temperature and the concentrations of MEA, O2 and SO2 resulted in a higher MEA degradation rate. An increase in CO2 concentration gave the opposite effect. A semi-empirical model based on the initial rate, ?rMEA = {6.74 × 109 e?(29,403/RT)[MEA]0.02([O]2.91 + [SO2]3.52)}/{1 + 1.18[CO2]0.18} was developed to fit the experimental data. With the higher order of reaction, SO2 has a higher propensity to cause MEA to degrade than O2. Unlike previous models, this model shows an improvement in that any of the parameters (i.e. O2, SO2, and CO2) can be removed without affecting the usability of the model.  相似文献   

20.
Estimating and analyzing the temporal and spatial patterns of methane emissions from agriculture (MEA) will help China formulate mitigation and adaptation strategies for the nation’s agricultural sector. Based on the Tier 2 method presented in the 2006 guidelines of the Intergovernmental Panel on Climate Change (IPCC) and on existing reports, this article presents a systematic estimation of MEA in China from 1990 to 2006, with a particular emphasis on trends and spatial distribution. Results from our study indicate that China’s MEA rose from 16.37 Tg yr−1 in 1990 to 19.31 Tg yr−1 in 2006, with an average annual increase of 1.04%. Over the study period, while emissions from field burning of crop residues remained rather low, those from rice cultivation and from livestock typically decreased and increased, respectively, showing extremely opposite trends that chiefly resulted from changes in the cultivated areas for different rice seasons and changes in the populations of different animal species. Over the study period, China’s high-MEA regions shifted generally northward, chiefly as a result of reduced emissions from rice cultivation in most of China’s southern provinces and a substantial growth in emissions from livestock enteric fermentation in most of China’s northern, northeastern, and northwestern provinces. While this article provides significant information on estimates of MEA in China, it also includes some uncertainties in terms of estimating emissions from each source category. We conclude that China’s MEA will likely continue to increase in the future and recommend a demonstration study on MEA mitigation along the middle and lower reaches of the Yellow River. We further recommend enhanced data monitoring and statistical analysis, which will be essential for preparation of the national greenhouse gas (GHG) inventory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号