首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This work investigates thermal radiation in oxy-fuel flames, based on experiments and modelling. Experiments were conducted in a 100 kW test facility in air and oxy-fuel combustion atmospheres, using two different types of fuels, lignite and propane. In-flame measurements of gas composition, temperature and total radiation intensity, were performed and used as input to radiation modelling to examine the influence of oxy-fuel conditions on gas and particle radiation characteristics. In the modelling, the spectral properties of CO2 and H2O are treated by means of a statistical narrow band model and particle radiation is modelled for both scattering and non-scattering particles.Experiments on the propane flame show that the flame radiation conditions are drastically influenced by the recycling conditions. With OF 27 conditions (27% oxygen in the feed gas) and dry recycling, the temperature is slightly lower compared to air-fired conditions, but the emitted intensity is significantly increased. Modelling shows that this is mainly caused by a significantly increased soot radiation. Propane flame images show that the presence of soot in oxy-fuel conditions varies strongly with recycling conditions. The contribution due to an increased emission by CO2 is of minor importance. In the lignite experiments similar flame temperatures were kept during air and oxy-fuel combustion (OF 25 conditions with dry recycling). The measurements show that the intensity levels in both flames are similar which is due to a strong particle radiation in both environments. The modelling reveals that the dominance by particle radiation contra gas radiation is closely related to whether the particles are scattering or non-scattering.  相似文献   

2.
The aim of this study was to develop and apply an advanced, measurement based method for the estimation of annual CH4 and N2O emissions and thus gain improved understanding on the actual greenhouse gas (GHG) balances of combustion of fossil fuels, peat, biofuels and REF. CH4 and N2O emissions depend strongly on combustion conditions, and therefore the emission factors used in the calculation of annual emissions contain significant uncertainties. Fluidised bed combustion (FBC) has many good properties for combustion of different types of fuels and fuels of varying quality, e.g., biofuels and wastes. Therefore, it is currently increasing its market share. In this study, long term measurements (up to 50 days) were carried out at seven FBC boilers representing different size classes, loadings and fuel mixes. Both decreasing load and increasing share of coal in fuel mix increased N2O emissions. Measurement results from different loading levels were combined with the common loading curves of similar plants in Finland to estimate annual emissions. Based on the results, recommendations for emission factors for the Finnish GHG emission inventory are given. The role of FBC as a potential technology for the utilisation of biofuels and wastes with future GHG reduction requirements is discussed.  相似文献   

3.
EGR is one of the most significant strategies for reducing especially nitrogen oxides (NOx) emissions from internal combustion engines. The thermal efficiency of spark ignition engines is lower than compression ignition engines because of its lower compression ratio. If the compression ratio is increased to obtain higher thermal efficiency, there may be a knocking tendency in spark ignition engines. EGR can be used in order to reduce NOx emissions and avoid knocking phenomena at higher compression ratios. In-cylinder temperature at the end of combustion is decreased and heat capacity of fresh charge is increased when EGR applied. Besides EGR, spark timing is another significant parameter for reducing exhaust emissions such as nitrogen oxides, and unburned hydrocarbon (UHC). In this study the effects of EGR and spark timing on spark ignition engine were investigated numerically. KIVA codes were used in order to model combustion process. The combustion process has been modeled for a single cylinder, four stroke and gasoline direct injection (GDI) spark ignition engine. The results showed that in-cylinder pressure and heat release rate decrease as EGR ratio increase. In-cylinder pressure increases with the advancing of spark timing. Advancing spark timing increases the heat release rate and in-cylinder temperature. The simulation results also showed that EGR reduced exhaust gas temperature and NOx emissions.  相似文献   

4.
Carbon dioxide emissions will continue being a major environmental concern due to the fact that coal will remain a major fossil-fuel energy resource for the next few decades. To meet future targets for the reduction of greenhouse gas (GHG) emissions, capture and storage of CO2 is required. Carbon capture and storage technologies that are currently the focus of research centres and industry include: pre-combustion capture, post-combustion capture, and oxy-fuel combustion. This review deals with the oxy-fuel coal combustion process, primarily focusing on pulverised coal (PC) combustion, and its related research and development topics. In addition, research results related to oxy-fuel combustion in a circulating fluidised bed (CFB) will be briefly dealt with.During oxy-fuel combustion, a combination of oxygen, with a purity of more than 95 vol.%, and recycled flue gas (RFG) referred to as oxidant is used for combusting the fuel producing a gas consisting of mainly CO2 and water vapour, which after purification and compression, is ready for storage. The high oxygen demand is supplied by a cryogenic air separation process, which is the only commercially available mature technology. The separation of oxygen from air as well as the purification and liquefaction of the CO2-enriched flue gas consumes significant auxiliary power. Therefore, the overall net efficiency is expected to be decreased by 8–12% points, corresponding to a 21–35% increase in fuel consumption. Alternatively, ion transport membranes (ITMs) are proposed for oxygen separation, which might be more energy efficient. However, since ITMs are far away from becoming a mature technology, it is widely expected that cryogenic air separation will be the selected technology in the near future. Oxygen combustion is associated with higher temperatures compared with conventional air combustion. Both fuel properties as well as limitations of steam and metal temperatures of the various heat exchanger sections of the boiler require a moderation of the temperatures in the combustion zone and in the heat-transfer sections. This moderation in temperature is accomplished by means of recycled flue gas. The interdependencies between the fuel properties, the amount and temperature of the recycled flue gas, and the resulting oxygen concentration in the combustion atmosphere are reviewed.The different gas atmosphere resulting from oxy-fuel combustion gives rise to various questions related to firing, in particular, with respect to the combustion mechanism, pollutant reduction, the risk of corrosion, and the properties of the fly ash or its resulting deposits. In this review, detailed nitrogen and sulphur chemistry was investigated in a laboratory-scale facility under oxy-fuel combustion conditions. Oxidant staging succeeded in reducing NO formation with effectiveness comparable to that typically observed in conventional air combustion. With regard to sulphur, a considerable increase in the SO2 concentration was measured, as expected. However, the H2S concentration in the combustion atmosphere in the near-flame zone increased as well. Further results were obtained in a pilot-scale test facility, whereby acid dew points were measured and deposition probes were exposed to the combustion environment. Slagging, fouling and corrosion issues have so far been addressed via short-term exposure and require further investigation.Modelling of PC combustion processes by computational fluid dynamics (CFD) has become state-of-the-art for conventional air combustion. Nevertheless, the application of these models for oxy-fuel combustion conditions needs adaptation since the combustion chemistry and radiative heat transfer is altered due to the different combustion gas atmosphere.CFB technology can be considered mature for conventional air combustion. In addition to its inherent advantages like good environmental performance and fuel flexibility, it offers the possibility of additional heat exchanger arrangements in the solid recirculation system, i.e. the ability to control combustion temperatures despite relatively low flue gas recycle ratios even when combusting in the presence of high oxygen concentrations.  相似文献   

5.
A plenty of studies on the utilization of biomass alcohol fuels have been conducted, but combustion efficiency and stability of this fuels still need to be improved. Based on biomass alcohol fuels (bio-methanol and bio-ethanol), this paper studied auto-adaptive air distribution characteristics and optimum structure parameters of an ejector burner by numerical simulation method. Also, an experiment was conducted to verify the numerical results. The results show that the mole air entrainment ratio (MAER) keeps almost constant when the ejector fuel nozzle exit locates at the segment between the ejector throat and the suction chamber entrance, but a bigger ratio α would lead to a higher MAER till the α is bigger than 8.5 for bio-methanol and 11.5 for bio-ethanol. The bio-ethanol fuel is more beneficial for air carrying role because of its big molecular weight. Operation pressure (Pw) has a little impact on MAER of the two fuels, but the rise of back pressure (Pb) would lead to rapid decrease of MAER for the two fuels. For the optimum structure burners, the MAER can be maintained at the value of theoretical complete combustion. Its changing rate is less than 2.3% for bio-methanol and 2.5% for bio-ethanol when the burner load changes from 30% to 120%, which is highly consistent with the experimental results. The optimum burner can distribute air supply automatically with the changing of burner load.  相似文献   

6.
Oxyfuel combustion in a pulverised fuel coal-fired power station produces a raw CO2 product containing contaminants such as water vapour plus oxygen, nitrogen and argon derived from the excess oxygen for combustion, impurities in the oxygen used, and any air leakage into the system. There are also acid gases present, such as SO3, SO2, HCl and NOx produced as byproducts of combustion. At GHGT8 (White and Allam, 2006) we presented reactions that gave a path-way for SO2 to be removed as H2SO4 and NO and NO2 to be removed as HNO3. In this paper we present initial results from the OxyCoal-UK project in which these reactions are being studied experimentally to provide the important reaction kinetic information that is so far missing from the literature. This experimental work is being carried out at Imperial College London with synthetic flue gas and then using actual flue gas via a sidestream at Doosan Babcock's 160 kW coal-fired oxyfuel rig. The results produced support the theory that SOx and NOx components can be removed during compression of raw oxyfuel-derived CO2 and therefore, for emissions control and CO2 product purity, traditional FGD and deNOx systems should not be required in an oxyfuel-fired coal power plant.  相似文献   

7.
Nowadays the lab scale feasibility of the chemical looping combustion technology has been proved. This article deals with many of the design requirements that need to be fulfilled to make this technology applicable at industrial scale. A design for a 150 kWth chemical looping combustion reactor system is proposed. In the base case it is supposed to work with gaseous fuels and inexpensive oxygen carriers derived from industrial by-products or natural minerals. More specifically the fuel will be methane and a manganese ore will be the basis for the oxygen carrier. It is a double loop circulating fluidized bed where both the air reactor and the fuel reactor are capable to work in the fast fluidization regime in order to increase the gas solids contact along the reactor body. High operational flexibility is aimed, in this way it will be possible to run with different fuels and oxygen carriers as well as different operating conditions such as variation in air excess. Compactness is a major goal in order to reduce the required solid material and possibly to enclose the reactor body into a pressurized vessel to investigate the chemical looping combustion under pressurized conditions. The mass and heat balance are described, as well as the hydrodynamic investigations performed. Most design solutions presented are taken from industrial standards as one main objective is to meet commercial requirements.  相似文献   

8.
Chemical-looping with oxygen uncoupling (CLOU) is a novel method to burn solid fuels in gas-phase oxygen without the need for an energy intensive air separation unit. The carbon dioxide from the combustion is inherently separated from the rest of the flue gases. CLOU is based on chemical-looping combustion (CLC) and involves three steps in two reactors, one air reactor where a metal oxide captures oxygen from the combustion air (step 1), and a fuel reactor where the metal oxide releases oxygen in the gas-phase (step 2) and where this gas-phase oxygen reacts with a fuel (step 3). In other proposed schemes for using chemical-looping combustion of solid fuels there is a need for an intermediate gasification step of the char with steam or carbon dioxide to form reactive gaseous compounds which then react with the oxygen carrier particles. The gasification of char with H2O and CO2 is inherently slow, resulting in slow overall rates of reaction. This slow gasification is avoided in the proposed process, since there is no intermediate gasification step needed and the char reacts directly with gas-phase oxygen. The process demands an oxygen carrier which has the ability to react with the oxygen in the combustion air in the air reactor but which decomposes to a reduced metal oxide and gas-phase oxygen in the fuel reactor. Three metal oxide systems with suitable thermodynamic properties have been identified, and a thermal analysis has shown that Mn2O3/Mn3O4 and CuO/Cu2O have suitable thermodynamic properties, although Co3O4/CoO may also be a possibility. However, the latter system has the disadvantage of an overall endothermic reaction in the fuel reactor. Results from batch laboratory fluidized bed tests with CuO and a gaseous and solid fuel are presented. The reaction rate of petroleum coke is approximately a factor 50 higher using CLOU in comparison to the reaction rate of the same fuel with an iron-based oxygen carrier in normal CLC.  相似文献   

9.
Summary The balance of evidence suggests a perceptible human influence on global ecosystems. Human activities are affecting the global ecosystem, some directly and some indirectly. If researchers could clarify the extent to which specific human activities affect global ecosystems, they would be in a much better position to suggest strategies for mitigating against the worst disturbances. Sophisticated statistical analysis can help in interpreting the influence of specific human activities on global ecosystems more carefully. This study aims at identifying significant or influential human activities (i.e. factors) on CO2 emissions using statistical analyses. The study was conducted for two cases: (i) developed countries and (ii) developing countries. In developed countries, this study identified three influential human activities for CO2 emissions: (i) combustion of fossil fuels, (ii) population pressure on natural and terrestrial ecosystems, and (iii) land use change. In developing countries, the significant human activities causing an upsurge of CO2 emissions are: (i) combustion of fossil fuels, (ii) terrestrial ecosystem strength and (iii) land use change. Among these factors, combustion of fossil fuels is the most influential human activity for CO2 emissions both in developed and developing countries. Regression analysis based on the factor scores indicated that combustion of fossil fuels has significant positive influence on CO2 emissions in both developed and developing countries. Terrestrial ecosystem strength has a significant negative influence on CO2 emissions. Land use change and CO2 emissions are positively related, although regression analysis showed that the influence of land use change on CO2 emissions was still insignificant. It is anticipated, from the findings of this study, that CO2 emissions can be reduced by reducing fossil-fuel consumption and switching to alternative energy sources, preserving exiting forests, planting trees on abandoned and degraded forest lands, or by planting trees by social/agroforestry on agricultural lands.  相似文献   

10.
One of the techniques used to dispose of 4,000 tons per day (TPD) of non‐recyclable waste from Tehran is to burn it as an alternative fuel in cement kilns. This practice reduces emissions from landfills, prevents the loss of waste energy, and conserves fossil fuel resources. The aim of our study was to conduct a life cycle assessment (LCA) of clinker production in cement kilns using a combination of natural gas, mazut, a form of heavy, low‐quality fuel oil, and refuse‐derived fuel (RDF) from Tehran. We used SimaPro 7.1 software to perform an LCA of 1 kilogram (kg) of clinker produced using the following fuel combinations: the first scenario involved natural gas consumption alone, the second scenario involved a combination of natural gas and mazut, with the mazut providing 5% to 30% of the heating value needed to produce cement clinker in the kiln, and the third scenario involved a combination of natural gas and RDF (providing 5% to 30% of the heating needed in the kiln). The impact categories in the LCA of global warming, eutrophication, and acidification were assessed by the Center of Environmental Science of Leiden University (Centrum voor Milieukunde Leiden—CML) CML 2000 method. The results indicated that the third scenario, involving natural gas and RDF, reduced acidification by 2.14–11.5% and global warming by 0–1.3% relative to the first scenario involving the use of only natural gas. In addition, we observed a 0.65–3.81% reduction in acidification and a 0.9–3.8% reduction in global warming under the third scenario compared with the second scenario (co‐firing of natural gas and mazut). The amount of nitrogen oxides (NOX) emitted from the combustion of the Tehran RDF was greater than that was emitted when burning mazut. Therefore, reduction of nitrogen from the RDF composition is necessary. This study indicates that the use of Tehran RDF (with reduced nitrogen) in Tehran cement kilns does not increase cement kiln NOX, sulfur dioxide (SO2), and carbon dioxide (CO2) emissions; however, we need to conduct additional investigation into the chemical composition of the Tehran waste before using solid waste in place of fossil fuels.  相似文献   

11.
Chemical-Looping Combustion (CLC) is an emerging technology for CO2 capture because separation of this gas from the other flue gas components is inherent to the process and thus no energy is expended for the separation. Natural or refinery gas can be used as gaseous fuels and they may contain different amounts of sulphur compounds, such as H2S and COS. This paper presents the combustion results obtained with a Cu-based oxygen carrier using mixtures of CH4 and H2S as fuel. The influence of H2S concentration on the gas product distribution and combustion efficiency, sulphur splitting between the fuel reactor (FR) and the air reactor (AR), oxygen carrier deactivation and material agglomeration was investigated in a continuous CLC plant (500 Wth). The oxygen carrier to fuel ratio, ?, was the main operating parameter affecting the CLC system. Complete fuel combustion were reached at 1073 K working at ? values ≥1.5. The presence of H2S did not produce a decrease in the combustion efficiency even when working with a fuel containing 1300 vppm H2S. At these conditions, the great majority of the sulphur fed into the system was released in the gas outlet of the FR as SO2, affecting to the quality of the CO2 produced. Formation of copper sulphide, Cu2S, and the subsequent reactivity loss was only detected working at low values of ?  1.5, although this fact did not produce any agglomeration problem in the fluidized beds. In addition, the oxygen carrier was fully regenerated in a H2S-free environment. It can be concluded that Cu-based oxygen carriers are adequate materials to be used in a CLC process using fuels containing H2S although quality of the CO2 produced is affected.  相似文献   

12.
Two cogeneration units were each fitted with a prechamber (IDI) diesel engine in order to test the feasibility of using waste oils from the food industry as a fuel source, and additionally to test emissions generated by the combustion of these fuels. Esterified waste oils and animal fats as well as mustard oil were tested and compared to the more or less "common" fuels: diesel, rapeseed oil and rapeseed methyl ester. The results show that, in principle, each of these fuels is suitable for use in a prechamber diesel engine. Engine performance can be maintained at a constant level. Without catalytic conversion, the nitrogen oxides emissions were comparable. A significant reduction in NO(x) was achieved through the injection of urea. Combining a urea injection with the SCR catalytic converter reduced NO(x) emissions between 53% and 67%. The carbon monoxide emissions from waste oils are not significantly different from those of "common" fuels and can be reduced the same way as of hydrocarbon emissions, through utilization of a catalytic converter. The rate of carbon monoxide reduction by catalytic conversion was 84-86%. A lower hydrocarbon concentration was associated with fuels of agricultural origin. With the catalytic converter a reduction of 29-42% achieved. Each prechamber diesel engine exhibited its own characteristic exhaust, which was independent of fuel type. The selective catalytic reduction of the exhaust emissions can be realized without restriction using fuels of agricultural origin.  相似文献   

13.
Chemical looping combustion (CLC) is a process in which oxygen required for combustion of a fuel is supplied by the metal oxide. Metal oxide plays the role of an oxygen carrier by providing oxygen for combustion when being reduced and is then re-oxidized by air in a separate reactor. Combustion is thus without any direct contact between air and fuel: as a consequence flue gas does not contain nitrogen of air which simplifies flue gas treatment prior to sequestration. In the present study, biogas combustion was analyzed in a chemical looping combustion fluidized bed reactor. NiAl0.44O1.67 and Cu0.95Fe1.05AlO4 metal oxide particles were used as oxygen carriers. The experiments have shown the feasibility of biogas combustion in chemical looping combustion: CH4 of the biogas was completely converted to CO2 and H2O with a small fraction of CO and H2. The outlet flue gas distribution profile was not affected by ageing during the cycles of reduction and oxidation, indicating the chemical stability of the oxygen carriers. There was limited formation of carbon on the oxygen carriers during reduction.  相似文献   

14.
In this paper, we have proposed a thermal cycle with the integration of chemical-looping combustion and solar thermal energy with the temperature of about 500-600°C. Chemical-looping combustion may be carried out in two successive reactions between a reduction of hydrocarbon fuel with metal oxides and a reduced metal with oxygen in the air. This loop of chemical reactions is substituted for conventional combustion of fuel. Methane as a fuel and nickel oxides as an oxygen carrier were employed in this cycle. Collected high-temperature solar thermal energy is provided for the endothermic reduction reaction. The feature of the proposed cycle is investigated through Energy-Utilization Diagram methodology. As a result, at the turbine inlet temperature of 1200°C, the exergy efficiency of the proposed cycle would be expected to be about 4 percentage points higher than that of a conventional gas turbine combined cycle. Compared to the previous study of chemical-looping combustion energy systems, the proposed cycle with the integration of green energy and traditional hydrocarbon fuels will offer the possibility of both greenhouse gas mitigation, with green energy, and a new approach to the efficient use of solar energy.  相似文献   

15.
Research on biofuel production pathways from algae continues because among other potential advantages they avoid key consequential effects of terrestrial oil crops, such as competition for cropland. However, the economics, energetic balance, and climate change emissions from algal biofuels pathways do not always show great potential, due in part to high fertilizer demand. Nutrient recycling from algal biomass residue is likely to be essential for reducing the environmental impacts and cost associated with algae-derived fuels. After a review of available technologies, anaerobic digestion (AD) and hydrothermal liquefaction (HTL) were selected and compared on their nutrient recycling and energy recovery potential for lipid-extracted algal biomass using the microalgae strain Scenedesmus dimorphus. For 1 kg (dry weight) of algae cultivated in an open raceway pond, 40.7 g N and 3.8 g P can be recycled through AD, while 26.0 g N and 6.8 g P can be recycled through HTL. In terms of energy production, 2.49 MJ heat and 2.61 MJ electricity are generated from AD biogas combustion to meet production system demands, while 3.30 MJ heat and 0.95 MJ electricity from HTL products are generated and used within the production system.Assuming recycled nutrient products from AD or HTL technologies displace demand for synthetic fertilizers, and energy products displace natural gas and electricity, the life cycle greenhouse gas reduction achieved by adding AD to the simulated algal oil production system is between 622 and 808 g carbon dioxide equivalent (CO2e)/kg biomass depending on substitution assumptions, while the life cycle GHG reduction achieved by HTL is between 513 and 535 g CO2e/kg biomass depending on substitution assumptions. Based on the effectiveness of nutrient recycling and energy recovery, as well as technology maturity, AD appears to perform better than HTL as a nutrient and energy recycling technology in algae oil production systems.  相似文献   

16.
The paper concerns the comparative analysis of combustion characteristics of different alternative fuels such as Fischer-Tropsch Synthetic Paraffinic Kerosene (FT-SPK), cryogenic methane, bioethanol, biomethanol, biobutanol, dimethyl ether, biodiesel and conventional aviation kerosene Jet-A as well as analysis of emissions of NOx, CO, CO2, H2O, HNOy (y = 2,3) and organics for gas turbine engine operating on these fuels. The analysis has shown that the usage of all considered alternative fuels results in the increase of H2O emission, compared to kerosene-fueled combustor, and, as consequence, in the growth of water vapor supersaturation that can increase the rate of the H2O vapor condensation and enhance the formation of contrails and cirrus clouds in the atmosphere. The usage of all considered alternative fuels except FT-SPK, cryogenic methane and dimethyl can increase the CO2 emission compared to using of kerosene. Emission of N-containing species can be reduced upon the usage of considered alternative fuels, except dimethyl ether, for which one can expect the increase in the emissions of HNO2 and HNO3 approximately by 10%. The emission of CO decreases for all fuels except biodiesel. The major decrease can be achieved upon the replacement of kerosene to bioethanol.  相似文献   

17.
A new combustion technology has been developed in the last decade that permits the burning of low quality coal, lignite and other fuels, while maintaining stack emissions within reasonable limits. Low quality fuels can be burned directly in fluidized beds, taking advantage of low furnace temperatures and chemical activity within the bed to limit SO2 and NOx emissions, thereby eliminating the need for stack gas scrubbing equipment. The excellent heat transfer characteristics of the fluidized beds also result in a reduction of total heat transfer surface requirements, thus reducing the size and cost of steam generators. Tests on beds operating at pressures of one to ten atmospheres, at temperatures as high as 900°C, and with gas velocities in the vicinity of 1.30 to 4 m/s, have proven the concept. Early history of this technology is traced, and the progress that has been made in the development of fluidized bed combustion boilers, as well as work currently underway in the United States and overseas are reviewed. Details of selected fluidized bed boiler installations are presented, test results are discussed and the potential application of fluidized bed boilers in industrial plants using peat, anthracite refuse, lignite and lignite refuse is examined. Dans la demière décennie, une nouvelle technique de combustion a vu le jour, permettant de brûler du charbon de qualité inférieure, de la lignite et d'autres combustibles tout en maintenant les émanations de cheminée dans des normes raisonnables. Des combustibles de qualité inférieure peuvent être brûlés directement dans des lits liquéfiés tout en profitant des basses températures de fourneaux et des réactions chimiques dans le lit afín de limiter les émissions de bioxide de soufre (SO2) et d'oxide nitreux (NOx), rendant ainsi inutile tout matériel de nettoyage des émanations de cheminée. Les excellentes possibilités en matiêre de transmission de chaleur que présentent les lits liquéfiés permettent également de réduire la surface totale nécessaire au transfert de chaleur, diminuant ainsi la dimension et le coût des générateurs à vapeur. Des essais concluants ont été effectués dans des lits fonctionnant à des pressions de une à dix atmosphères, à des temperatures aussi élevées que 900°C et avec des vitesses d'émanations avoisinant 1.33 á 4 m/s. L'article fait l'historique de cette technique et considère les progrès réalisés dans la construction des chaudières utilisant le procédé de combustion des chaudières des lits liquéfiés ainsi que les travaux actuellement en cours aux Etats-Unis. L'article fournit des details sur les installations utilisant des chaudières pour lits liquéfiés, analyse les résultats des essais et examine les possibilités d'emploi de ces chaudières dans l'industrie alimentée par la tourbe, les déchets d'anthracite, la lignite et ses résidus. En la última década seha desarrollado una nueva tecnología de combustión que permite quemar carbones de bajo grado, lignitos y otros combustibles, manteniendo al mismo tiempo las emisiones de las chimeneas en niveles razonables. Carbones de bajo grado pueden ser quemados directamente en lechos fluizados aprovechando la ventaja de la baja temperature de la cámara de combustión y de la reacciones químicas en el lecho para limitar las emisiones de SO2 y NOx, limitando en consecuencia ia necesidad de equipo de limpieza de los gases de chimenea. Las excelentes caracter ísticas de transferencia de calor de los lechos fluizados reducen también las necesidades de superficie de transferencia de calor, lo que resulta en la disminución de costo y tamaño del sistema de generación de vapor. Este concepto queda demostrado por pruebas realized as a presiones de uno a diez atmósferas y temperatures de hasta 900°C, y velocidades de gas en la vecindad de 1.33 a 4 m/s. En este artículo se presenta el desarrollo temprano de esta tecnología, el progreso alcanzado en el desarrollo de calderos utilizando dicha tecnología y los trabajos que se están llevando a cabo en los Estados Unidos en este campo. Se discuten también detalles de instalación de calderos usando la tecnología de lechos fluidizados, las pruebas realizadas así como el potencial de su aplicación en plantas industriales que usan turba, deshechos de antracita, lignito y deshechos de lignito.  相似文献   

18.
Compared to conventional diesel fuels, biodiesels normally have lower smoke and particulate matter, while higher nitrogen oxides (NOX) emissions. In our study, an attempt was made to reduce the NOX emissions of biodiesels by increasing the cetane numbers (CNs). Three kinds of biodiesels with extremely high CNs (70.1, 76.9, 80.9, respectively) were developed. Their main physical and chemical properties were tested. With a two-cylinder direct injection diesel engine, their emission performances were experimentally investigated. The results indicate that, CN, freezing point, as well as viscosity of biodiesels are linearly increased with the increase of carbon number. The NOX emission for biodiesels with high CNs is lower than that of conventional diesel fuels. High CN promotes smoke formation as well while lower smoke emissions are still obtained for biodiesels when certain oxygen contents are present. That is, the smoke/NOX tradeoff is broken. Besides, as fuel CN is elevated, NOX for biodiesels decreases but smoke and carbon monoxide emissions are increased.  相似文献   

19.
Oxy-fuel combustion is considered as one of the most promising technologies for carbon capture and storage (CCS). In this study, a commercial computational fluid dynamics (CFD) code has been employed for the simulation of an air-fired coal combustion and an oxy-fired coal combustion with recycled flue gas in a 1 MWth combustion test facility. Reynolds–averaged Navier–Stokes (RANS) solutions have been obtained for both cases. Results indicate that the CFD code with existing physical sub-models can provide a reasonable prediction for the air-fired combustion. However, the prediction for the oxy-fired case has not been as satisfactory as expected. In order to assess the impact of the turbulence treatment in CFD on the predictions, large eddy simulation (LES) has been performed for oxy-fired case and compared with the results from the RANS simulation and the available experimental data. Although the results suggest that LES can provide a more realistic prediction of the shape and the physical properties of the flame, there has not been significant improvement in the prediction of the temperature. In addition, the complexity of the problem requires more detailed experimental data for the validation of the LES. In order to improve the validity of numerical simulations for design purposes, further modelling improvements for oxy-coal combustion that are necessary for more accurate predictions are addressed. Based on this study, it is envisaged that the complexity in the oxy-coal combustion process requires more detailed analyses of the available physical sub-models.  相似文献   

20.
Chemical-Looping Combustion (CLC) is an emerging technology for CO2 capture because separation of this gas from the other flue gas components is inherent to the process and thus no energy is expended for the separation. Natural or refinery gas can be used as gaseous fuels and they may contain different amounts of light hydrocarbons. This paper presents the combustion results obtained with a Cu-based oxygen carrier using mixtures of CH4 and light hydrocarbons (LHC) (C2H6 and C3H8) as fuel. The effect on combustion efficiency of the fuel reactor temperature, solid circulation flow rate and gas composition was studied in a continuous CLC plant (500 Wth). Full combustions were reached at 1073 and 1153 K working at oxygen to fuel ratios, ? higher than 1.5 and 1.2 respectively. Unburnt hydrocarbons were never detected at any experimental conditions at the fuel reactor outlet. Carbon formation can be avoided working at 1153 K or at ? values higher than 1.5 at 1073 K. After 30 h of continuous operation, the oxygen carrier exhibited an adequate behavior regarding attrition and agglomeration. It can be concluded that no special measures should be taken in a CLC process with Cu-based OC with respect to the presence of LHC in the fuel gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号