首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogen produced by microorganisms is a topic of growing interest because of its potential for derivation from several agro-industrial by-products. In this study, we evaluated the hydrogen production of strains of genus Clostridium (Clostridium acetobutylicum and Clostridium butyricum) using glycerol as a carbon source. Fermentation studies were conducted using three initial concentrations of glycerol: 10, 30 and 50 g/L. The micro-organism growth kinetics and the amounts of solvents and gases were recorded over 48 h. The strain C. acetobutylicum exhibited the best results in terms of hydrogen production, the highest production yield (Y p/s) of 0.37 mol H2/mol glycerol and the highest level of productivity (0.75 mg H2/(L·h)). Based on these results, it is reasonable to conclude that glycerol could be effectively exploited as a carbon source for hydrogen production, which adds value to this primary by-product of standard biodiesel processes.  相似文献   

2.
Carbon dioxide emissions due to fossil fuel consumption are well recognized as a major contributor to climate change. In the debate on dealing with this threat, expectations are high that agriculture based economies of the developing world can help alleviate this problem. But, the contribution of agricultural operations to these emissions is fairly small. It is the clearing of native ecosystems for agricultural use in the tropics that is the largest non-fossil fuel source of CO2 input to the atmosphere. Our calculation show that the use of fossil energy and the concomitant emission of CO2 in the agricultural operational sector - i.e. the use of farm machinery, irrigation, fertilization and chemical pesticides - amounts to merely 3.9% of the commercial energy use in that part of the world. Of this, 70% is associated with the production and use of chemical fertilizers. In the absence of fertilizer use, the developing world would have converted even more land for cultivation, most of which is completely unsuitable for cultivation. Current expectations are that reforestation in these countries can sequester large quantities of carbon in order to mitigate excessive emissions elsewhere. But, any program that aims to set aside land for the purpose of sequestering carbon must do so without threatening food security in the region. The sole option to liberate the necessary land for carbon sequestration would be the intensification of agricultural production on some of the better lands by increased fertilizer inputs. As our calculations show, the sequestration of carbon far outweighs the emissions that are associated with the production of the extra fertilizer needed. Increasing the fertilizer use in the developing world (without China) by 20%, we calculated an overall net benefit in the carbon budget of between 80 and 206 Mt yr?1 dependent on the carbon sequestration rate assumed for the regrowing forest. In those regions, where current fertilizer use is low, the relative benefits are the highest as responding yield increases are highest and thus more land can be set aside without harming food security. In Sub-Saharan Africa a 20% fertilizer increase, which amounts to 0.14 Mt of extra fertilizer, can tie up somewhere between 8 and 19 Mt of CO2 per year (average: 96 t CO2 per 1 t fertilizer). In the Near East and North Africa with a 20%-increased fertilizer use of 0.4 Mt yr-1 between 10 and 24 Mt of CO2 could be sequestered on the land set aside (40 t CO2 per 1 t fertilizer). In South Asia this is 22–61 Mt CO2 yr?1 with an annual additional input of 2.15 Mt fertilizer (19 t CO2 per 1 t fertilizer). In fact, carbon credits may be the only way for some of the farmers in these regions to afford the costly inputs. Additionally, in regions with already relatively high fertilizer inputs such as in South Asia, an efficient use of the extra fertilizer must be warranted. Nevertheless, the net CO2 benefit through implementation of this measure in the developing world is insignificant compared to the worldwide CO2 output by human activity. Thus, reforestation is only one mitigating measure and not the solution to unconstrained fossil fuel CO2 emissions. Carbon emissions should, therefore, first of all be reduced by the avoidance of deforestation in the developing world and moreover by higher energy efficiency and the use of alternative energy sources.  相似文献   

3.
Abstract

In this paper, we construct a model in which the impact of pollution on health is exerted through both direct and indirect channels. The indirect channel is captured by a production function in which the principal health-improving factor, income growth, can be realized only in the cost of pollution increase. This model is then tested by the aggregated chronicle disease data in over 78 Chinese counties. Our results show, after attaining the threshold of 8 μg/m2, continuous increase in industrial SO2 emission density will lead the ratio of population suffering chronicle diseases, among which respiratory diseases occupy a significant proportion, to rise. However, owing to technological progress in pollution control activities, the needed SO2 emission to produce one unit of GDP diminishes with time. Therefore, the negative effect from pollution augmentation on public health seems to be recompensed more and more by the positive effect of economic growth.  相似文献   

4.
This paper examines the issue of ancillary benefits by linking sulfur dioxide (SO2) emission to CO2 emission using a panel of 29 Chinese provinces over the period 1995–2007. In the presence of non-stationarity and cointegrating properties of these two data series, this paper applies the panel cointegration techniques to examine both the long-run and short-run elasticities of SO2 with respect to CO2. The major findings are that: (1) there exhibits a stable long-run equilibrium relationship between the SO2 and CO2 emission with the long-run elasticity being 2.15; (2) there exists a short-run relationship between these two emissions with the short-run elasticity being 0.04. In addition, following an exogenous shock that causes a deviation from the long-run equilibrium, it would take approximately 15 years for SO2 emission to revert toward the long-run equilibrium path with an average annual convergence rate of 6.5%; (3) the derived ancillary benefits that is generated from one metric ton of CO2 emission reduction, are 11.77 Yuan (approximately US1.7) in the short run and 196.16 Yuan (US 1.7) in the short run and 196.16 Yuan (US 30) in the long run. These findings are not only crucial from the econometric modeling perspective, but also have important policy implications.  相似文献   

5.
In Iraq, the number of passenger cars, trucks and buses, local generators, and heavy construction equipment rose to a considerable extent since 2003, causing high environmental problems. Many types of pollutants were monitored and recorded for 24 h during March 2016. The study attempts to explore and establish a relationship between the volume of activity and the movement of motor vehicles of various compounds and contaminants resulting from their exhaust pipes, such as sulfur dioxide, particulate matters, oxides of nitrogen, VOCs, and unburned hydrocarbons. The study focused in and around Mohammad Al-Qasim highway adjacent to the University of Technology, Baghdad. The results showed the need for urgent treatments addressed by the environmental authorities in the city. The study results demonstrated that these contaminants are increased during periods of the beginning and end of working hours for government departments. Some types of sulfur compounds (H2S and SO2) concentrations were at serious health-threatening levels, which is a result of the high sulfur content in the Iraqi fuel. The concentrations of NOx and VOC were high, also, which could make the studied area vulnerable to the risk of smog formation. The Iraqi government should make greater efforts to protect the environment and human in this country from the transportation pollution risks.  相似文献   

6.
以火法炼铜全生命周期过程为研究对象,采用生命周期评价(LCA)方法,定量评价不同熔炼工艺生产铜过程的能源消耗和温室气体排放,并应用情景分析法,对2020年我国火法炼铜不同工艺技术结构下的能耗与碳排放强度进行比较,旨在为铜冶炼行业的结构调整与优化升级提供决策支持。结果表明,基于鼓风熔炼、闪速熔炼和熔池熔炼工艺的火法生产铜过程的能耗分别为147.80×103,96.68×103,104.20×103MJ;其碳排放强度分别为15.32×103,8.99×103,10.01×103kg CO2当量。设定的4种情景的能耗分别为111.60×103,103.37×103,101.19×103,99.69×103MJ;其碳排放强度分别为10.87×103,9.87×103,9.60×103,9.40×103kg CO2当量。由此可知,传统工艺鼓风炉熔炼较闪速熔炼及熔池熔炼的能耗更高,且导致了更多的温室气体排放。因此,大力发展闪速熔炼及熔池熔炼技术对降低铜生命周期的能耗及碳排放具有重要意义,彻底淘汰传统熔炼工艺,推广先进熔炼技术是减少火法铜生产环境影响的迫切任务。  相似文献   

7.
The results of more than 1 yr of air monitoring inside and outside of five homes in each of two communities are presented for SO2, NO2, mass respirable particles, SO4, Al, Br, Cl, Mn, Na, and V. Outdoor measurements across the home site in each city are consistent with proximity to outdoor sources. Looking across indoor residential sites in each city, the home appears to alter outdoor concentrations in several ways. Indoor level of SO2, SO4, Mn, and V are lower than those measured outdoors. These constituents are thought generally to result from outdoor sources. The other constituents studied are at times found in excess within homes. In some cases the source or sources of excess concentration of a particular constituent could be identified; often, however, the source of excess indoor concentration could not be identified.  相似文献   

8.
This paper presents an assessment of air quality of the city Eskişehir, located 230 km southwest to the capital of Turkey. Only five of the major air pollutants, most studied worldwide and available for the region, were considered for the assessment. Available sulphur dioxide (SO2), particulate matter (PM), nitrogen dioxide (NO2), ozone (O3), and non-methane volatile organic carbons (NMVOCs) data from local emission inventory studies provided relative source contributions of the selected pollutants to the region.The contributions of these typical pollution parameters, selected for characterizing such an urban atmosphere, were compared with the data established for other cities in the nation and world countries. Additionally, regional ambient SO2 and PM concentrations, determined by semi-automatic monitoring at two sites, were gathered from the National Ambient Air Monitoring Network (NAAMN). Regional data for ambient NO2 (as a precursor of ozone as VOCs) and ozone concentrations, through the application of the passive sampling method, were provided by the still ongoing local air quality monitoring studies conducted at six different sites, as representatives of either the traffic-dense-, or coal/natural gas burning residential-, or industrial/rural-localities of the city. Passively sampled ozone data at a single rural site were also verified with the data from a continuous automatic ozone monitoring system located at that site. Effects of variations in seasonal-activities, newly established railway system, and switching to natural gas usage on the temporal changes of air quality were all considered for the assessment. Based on the comparisons with the national [AQCR (Air Quality Control Regulation). Ministry of Environment (MOE), Ankara. Official Newspaper 19269; 1986.] and a number of international [WHO (World Health Organization). Guidelines for Air Quality. Geneva; 2000. Downloaded in January 2006, website: http://www.who.int/peh/; EU (European Union). Council Directive 1999/30/EC relating to limit values for sulfur dioxide, nitrogen dioxide and lead in ambient air. Of J Eur Communities L 163: 14–30; 29.6.1999; EU (European Union). Council Directive 2002/3/EC relating to ozone in ambient air. Of J Eur Communities. L 67: 14–30; 9.3.2002.; USEPA (U.S. Environmental Protection Agency). National Ambient Air Quality Standards (NAAQS). Downloaded in January 2006, website: http://www.epa.gov/ttn/naaqs/] ambient air standards, among all the pollutants studied, only the annual average SO2 concentration was found to exceed one specific limit value (EU limit for protection of the ecosystem). A part of the data (VOC/NOx ratio), for determining the effects of photochemical interactions, indicated that VOC-limited regime was prevailing throughout the city.  相似文献   

9.
Laboratory-scale experiments on anaerobic lagoon treatment of tapioca wastewater were conducted under ambient, tropical conditions. The objectives of this study were to investigate factors that affect hydrogen sulfide production and to propose means to control the formation of hydrogen sulfide in lagoon effluents. The concentrations of sulfides were found to increase with increasing organic loading from 2.76 to 5.77 kg COD/m3.d, decreasing hydraulic retention time; and increasing pH from 3 to 7. The maximum total sulfide concentration of 18.8 mg/L occurred at the organic loading of 5.77 kg COD/ m3.d and neutral pH. the maximum H2S concentration was calculated to be 13.3 mg/L which occurred in the laggoon operated at an organic loading of 5.77 kg COD/m3.d and a pH of 5. The control of odour problems due to the H2S formation should be possible by raising pH of the lagoon water to be more than 8 or operating the lagoon at low organic loadings.  相似文献   

10.
Alkali ash material (AAM) concrete is a unique material that is sustainable and cost-effective because it utilises waste fly ash, and has properties superior to other concrete products. The AAM concrete described here is produced from the addition of inexpensive chemicals to fly ash. AAM can be used to create a wide range of materials including high performance concrete (HPC-AAM) and lightweight (LW-AAM). The high performance AAM provides rapid strength gain along with high ultimate strengths of more than 110 MPa (16000 psi). LW-AAM can produce materials with densities ranging from 1200 to 2200 kg/m3 and compressive strengths from 2 (290 psi) to 65 MPa (9500 psi). Both HPC-AAM and LW-AAM have far better environmental resistance than Portland cement concrete, resisting attack from sulphuric acid (H2SO4), hydrochloric acid (HCl) and organic acids. AAMs resists freeze–thaw attack and high abrasion, possesses low chloride permeability and does not exhibit alkali silica reactivity.  相似文献   

11.
Long-term air quality data with high temporal and spatial resolutions are needed to understand some important processes affecting the air quality and corresponding environmental and health effects. The annual and diurnal variations of each criteria pollutant including PM2.5 and PM10 (particulate matter with aerodynamic diameter less than 2.5 μm and 10 μm, respectively), CO (carbon monoxide), NO2 (nitrogen dioxide), SO2 (sulfur dioxide) and O3 (ozone) in 31 provincial capital cities between April 2014 and March 2015 were investigated by cluster analysis to evaluate current air pollution situations in China, and the cities were classified as severely, moderately, and slightly polluted cities according to the variations. The concentrations of air pollutants in winter months were significantly higher than those in other months with the exception of O3, and the cities with the highest CO and SO2 concentrations were located in northern China. The annual variation of PM2.5 concentrations in northern cities was bimodal with comparable peaks in October 2014 and January 2015, while that in southern China was unobvious with slightly high PM2.5 concentrations in winter months. The concentrations of particulate matter and trace gases from primary emissions (SO2 and CO) and NO2 were low in the afternoon (~ 16:00), while diurnal variation of O3 concentrations was opposite to that of other pollutants with the highest values in the afternoon. The most polluted cities were mainly located in North China Plain, while slightly polluted cities mostly focus on southern China and the cities with high altitude such as Lasa. This study provides a basis for the formulation of future urban air pollution control measures in China.  相似文献   

12.
BackgroundEpidemiological studies have associated long-term exposure to ambient particulate matter with increased mortality from cardiovascular and respiratory disorders. Systemic inflammation is a plausible biological mechanism behind this association. However, it is unclear how the chemical composition of PM affects inflammatory responses.ObjectivesTo investigate the association between long-term exposure to elemental components of PM and the inflammatory blood markers high-sensitivity C-reactive protein (hsCRP) and fibrinogen as part of the European ESCAPE and TRANSPHORM multi-center projects.MethodsIn total, 21,558 hsCRP measurements and 17,428 fibrinogen measurements from cross-sections of five and four cohort studies were available, respectively. Residential long-term concentrations of particulate matter < 10 μm (PM10) and < 2.5 μm (PM2.5) in diameter and selected elemental components (copper, iron, potassium, nickel, sulfur, silicon, vanadium, zinc) were estimated based on land-use regression models. Associations between components and inflammatory markers were estimated using linear regression models for each cohort separately. Cohort-specific results were combined using random effects meta-analysis. As a sensitivity analysis the models were additionally adjusted for PM mass.ResultsA 5 ng/m3 increase in PM2.5 copper and a 500 ng/m3 increase in PM10 iron were associated with a 6.3% [0.7; 12.3%] and 3.6% [0.3; 7.1%] increase in hsCRP, respectively. These associations between components and fibrinogen were slightly weaker. A 10 ng/m3 increase in PM2.5 zinc was associated with a 1.2% [0.1; 2.4%] increase in fibrinogen; confidence intervals widened when additionally adjusting for PM2.5.ConclusionsLong-term exposure to transition metals within ambient particulate matter, originating from traffic and industry, may be related to chronic systemic inflammation providing a link to long-term health effects of particulate matter.  相似文献   

13.
This study aims to investigate incidence of allergic rhinitis, bronchitis and asthma, in children living near a petrochemical complex with SO2 pollution obtained by air monitoring stations. A total of 587 children aged 11 to 14 were recruited and classified into high and low exposure groups based on a radius of 10 km from the complex. To study the influence of health on children since the operation of complex in 1999 and observe the difference of these diseases' short-term and long-term impact, we obtained the incidence rates of allergic rhinitis (ICD-9: 477), bronchitis (490–491) and asthma (493) from the Taiwan Health Insurance Database for three periods: 1999–2002, 1999–2006, and 1999–2010. Since 2001, the mean and 99th percentile of SO2 concentrations in the high exposure area have been significantly higher than those in low exposure area. There were significant differences between the high and low exposure groups in the percentage of smoking, alcohol consumption, passive smoking exposure and incense burning habits. The incidence rates of three intervals were 26.9%, 35.7%, 41.7%; 8.3%, 8.8%, 10.2%; 18.5%, 25.0%, 26.9% for allergic rhinitis, bronchitis and asthma in high exposure group. Significant differences were found between groups for allergic rhinitis in all periods, bronchitis in the first two periods, and asthma in the first period using Student's t-test. After we adjusted age, gender, group, living near roads, incense burning and passive smoking exposure, the hazard ratios between exposure groups were 3.05, 2.74, and 1.93 for allergic rhinitis with significant difference in three periods, and 2.53, 1.92 and 1.72 for bronchitis with significant difference in first period and 1.60, 1.28 and 1.29 for asthma with significant difference in first period by Cox regression. The higher incidence of allergic rhinitis was related to boys and living near roads and the higher incidence of asthma was also related to younger children, boys, and passive smoking exposure.  相似文献   

14.
IntroductionEvidence has accumulated on the association between ambient air pollution and adverse birth outcomes. However, most of the previous studies were conducted in geographically distinct areas and suffer from lack of important potential covariates. We examined the effect of ambient air pollution on term low birth weight (LBW) using data from a nationwide population-based longitudinal survey in Japan that began in 2001.MethodsWe restricted participants to term singletons (n = 44,109). Air pollution concentrations during the 9 months before birth were obtained at the municipality level and were assigned to the participants who were born in the corresponding municipality. We conducted multilevel logistic regression analyses adjusting for individual and municipality-level variables.ResultsWe found that air pollution exposure during pregnancy was positively associated with the risk of term LBW. In the fully adjusted models, odds ratios following one interquartile range increase in each pollutant were 1.09 (95% confidence interval: 1.00, 1.19) for suspended particulate matter (SPM), 1.11 (0.99, 1.26) for nitrogen dioxide (NO2), and 1.71 (1.18, 2.46) for sulfur dioxide (SO2). Specifically, effect estimates for SPM and NO2 exposure at the first trimester were higher than those at other trimesters, while SO2 was associated with the risk at all trimesters. Nonsmoking mothers were more susceptible to SPM and NO2 exposure compared with smoking mothers.ConclusionsAmbient air pollution increases the risk of term LBW in a nationally representative sample in Japan.  相似文献   

15.
Few multi-city studies in Asian developing countries have examined the acute health effects of ambient nitrogen dioxide (NO2). In the China Air Pollution and Health Effects Study (CAPES), we investigated the short-term association between NO2 and mortality in 17 Chinese cities. We applied two-stage Bayesian hierarchical models to obtain city-specific and national average estimates for NO2. In each city, we used Poisson regression models incorporating natural spline smoothing functions to adjust for long-term and seasonal trend of mortality, as well as other time-varying covariates. We examined the associations by age, gender and education status. We combined the individual-city estimates of the concentration–response curves to get an overall NO2–mortality association in China. The averaged daily concentrations of NO2 in the 17 Chinese cities ranged from 26 μg/m3 to 67 μg/m3. In the combined analysis, a 10-μg/m3 increase in two-day moving averaged NO2 was associated with a 1.63% [95% posterior interval (PI), 1.09 to 2.17], 1.80% (95% PI, 1.00 to 2.59) and 2.52% (95% PI, 1.44 to 3.59) increase of total, cardiovascular, and respiratory mortality, respectively. These associations remained significant after adjustment for ambient particles or sulfur dioxide (SO2). Older people appeared to be more vulnerable to NO2 exposure. The combined concentration–response curves indicated a linear association. Conclusively, this largest epidemiologic study of NO2 in Asian developing countries to date suggests that short-term exposure to NO2 is associated with increased mortality risk.  相似文献   

16.
The study reported here focuses on the environmental pressure exerted by large-scale eucalyptus-based kraft pulp industry in Thailand. The objective of this study was to identify the most important sources of greenhouse gases, acidifying and eutrophying compounds and tropospheric ozone precursors, human toxicity compounds and solid waste associated with the kraft pulp industry. To this end, we performed an environmental systems analysis of the kraft pulp industry system in which we distinguished between two subsystems: the eucalyptus forestry subsystem and the kraft pulp production subsystem. The results indicate that the environmental pressure is caused by the kraft pulp production subsystem rather than by the eucalyptus forestry one. The chemical recovery unit was found to be the most important source of carbon dioxide (CO2) and sulfur dioxide (SO2) and responsible for more than one-half of the emissions of greenhouse gases and acidifying compounds from eucalyptus-based kraft pulp production in Thailand. Biomass combustion in the energy gene ration unit is an important source of nitrogen oxide (NO x ) and carbon monoxide (CO) which in turn are responsible for over 50% of the emissions of tropospheric ozone precursors. About 73% of the eutrophication is caused by biological aerobic wastewater treatment emitting phosphorus (P). With respect to the eucalyptus forestry, only fertilizer use in eucalyptus plantations is a relevant source of pollution through the emission of nitrous oxide (N2O) and phosphate (PO 4 3− ).  相似文献   

17.
Recent developments in wastewater treatment are resulting in the production of substantial amounts of chemically [Ca(OH)2 and Al2(SO4)3·H2O] treated sludges in need of further treatment before disposal. Although a seemingly suitable method, an unfavorable pH and low volatile solids content constitute serious problems for composting. Hence, an investigation was made of the feasibility of window composting Ca(OH)2 (lime) precipitated sludge (approximately 25% solids) when mixed with a bulking agent. Bulking agents tried were the paper fraction of municipal refuse and chipped tree and shrub trimmings. Both bulking agents were tried in their raw and in their composted states. Initial mixing was by way of a specially designed hammermill, and subsequent mixing was done manually. Compostability was measured by rate and extent of the temperature rise and fall and by destruction of volatile solids. According to the results, lime exerted no inhibitory influence on the composting process. However, the high ratio of biologically inert material to volatile solids resulted in a shortage of nutrients for the bacteria. Consequently, temperatures attained were neither sufficiently high nor of long enough duration to ensure the pathogen destruction required for public health safety.  相似文献   

18.
The World Health Organization (WHO) Air Quality Guidelines (AQG) were launched in 2006, but gaps remain in evidence on health impacts and relationships between short-term and annual AQG needed for health protection. We tested whether relationships between WHO short-term and annual AQG for particulates (PM10 and PM2.5) and nitrogen dioxide (NO2) are concordant worldwide and derived the annual limits for sulfur dioxide (SO2) and ozone (O3) based on the short-term AQG. We obtained air pollutant data over seven years (2004–2010) in seven cities from Asia-Pacific, North America and Europe. Based on probability distribution concept using maximum as the short-term limit and arithmetic mean as the annual limit, we developed a new method to derive limit value one from another in each paired limits for each pollutant with capability to account for allowable exceedances. We averaged the limit derived each year for each city, then used meta-analysis to pool the limit values in all cities. Pooled mean short-term limit for NO2 (140.5 μg/m3 [130.6–150.4]) was significantly lower than the WHO AQG of 200 μg/m3 while for PM10 (46.4 μg/m3 [95CI:42.1–50.7]) and PM2.5 (28.6 μg/m3 [24.5–32.6]) were not significantly different from the WHO AQG of 50 and 25 μg/m3 respectively. Pooled mean annual limits for SO2 and O3 were 4.6 μg/m3 [3.7–5.5] and 27.0 μg/m3 [21.7–32.2] respectively. Results were robust in various sensitivity analyses. The distribution relationships between the current WHO short-term and annual AQG are supported by empirical data from seven cities for PM10 and PM2.5, but not for NO2. The short-term AQG for NO2 should be lowered for concordance with the selected annual AQG for health protection.  相似文献   

19.
Comparative studies of the effects of various air pollutants on lung collagen biosynthesis have been performed. A hitherto unexpected synergism between the oxidant air pollutants ozone or nitrogen dioxide and a respirable-sized aerosol of ammonium sulfate was observed during controlled exposures of rats to these substances. In an assay system, measuring collagen biosynthesis by lung minces prepared from rats exposed for 1 week to either filtered air or to these pollutants gases, dose-response curves to either O3 or NO2 are altered in the presence of 5 mg/m3 of (NH4)2SO4 aerosol. These observations may have broad implications for the appropriate evaluation of laboratory data in the setting of ambient air quality standards and/or the setting of threshold limit values for maintenance of occupational health and safety.  相似文献   

20.
The indoor and outdoor air quality of two staff quarters of Hong Kong Polytechnic University at Tsim Sha Tsui East (TSTE) and Shatin (ST) were investigated. The air sampling was carried out in winter for about two months starting from January to February of 1996. Fifteen flats from each staff quarter were randomly selected for indoor/outdoor air pollutant measurements. The pollutants measured were NOx, NO, NO2, SO2, CO, and O3. The variations of pollutant concentrations between indoor and outdoor air were investigated on weekday mornings, weekday evenings, weekend mornings, and weekend evenings. All indoor/outdoor pollutant concentrations measured did not exceed the ASHRAE/NAAQS standard. The carbon monoxide concentrations indoors were systemically higher than those outdoors at the TSTE and the ST quarters, both on weekdays and Sunday, which indicates there are CO sources indoors. Except for CO, the indoor levels of other pollutants (NOx, NO, NO2, SO2, and O3) are lower than those outdoors. There was a significant correlation (P < 0.05) between indoor and outdoor concentrations for SO2 and O3 at both the TSTE and the ST quarters. Except for O3, the mean concentrations of all the pollutants in the TSTE quarters, both indoor and outdoor, were higher than that of the ST quarters in all sampling periods. All indoor and outdoor O3 levels were lower at the TSTE quarters than those at the ST quarters. The O3 ratios of TSTE/ST were 0.72 outdoor and 0.79 indoor. This can be explained by the NO titration reaction through NO conversion to NO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号