首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 0 毫秒
1.
Mercury presents a potential risk to the environment and humans, especially in its methylated form. It is among the highest priority environmental pollutants. River Idrijca (Slovenia) is highly contaminated with mercury due to past mercury mining. The aim of this work was to investigate whether the periphyton community in rivers such as Idrijca is a suitable indicator of Hg pollution and of changes in mercury methylation and could serve as an early warning system of increased input of MeHg in the food chain. Periphyton is the only site of primary production in temperate torrential rivers such as Idrijca and is therefore an important link in the food chain. It is also a potential site of Hg accumulation and its introduction to higher trophic levels. Our aim was to assess the response of the periphyton to seasonal and spatial variations in mercury levels and to evaluate its potential as an early warning system of changes in mercury reactivity and mobilization The results indicate that periphyton in a torrential river is too complex and unpredictable to be used as a sole indicator of mercury concentrations and changes in the river. Nevertheless, it can complement environmental measurements due to its importance in the riverine food web.  相似文献   

2.
Stream water samples were collected over a range of hydrologic and seasonal conditions at three forested watersheds in the northeastern USA. Samples were analyzed for dissolved total mercury (THgd), DOC concentration and DOC composition, and UV254 absorbance across the three sites over different seasons and flow conditions. Pooling data from all sites, we found a strong positive correlation of THgd to DOC (r2 = 0.87), but progressively stronger correlations of THgd with the hydrophobic acid fraction (HPOA) of DOC (r2 = 0.91) and with UV254 absorbance (r2 = 0.92). The strength of the UV254 absorbance-THgd relationship suggests that optical properties associated with dissolved organic matter may be excellent proxies for THgd concentration in these streams. Ease of sample collection and analysis, the potential application of in-situ optical sensors, and the possibility for intensive monitoring over the hydrograph make this an effective, inexpensive approach to estimate THgd flux in drainage waters.  相似文献   

3.
Bioavailability of mercury (Hg) to Selenastrum capricornutum was assessed in bioassays containing field-collected freshwater of varying dissolved organic carbon (DOC) concentrations. Bioconcentration factor (BCF) was measured using stable isotopes of methylmercury (MeHg) and inorganic Hg(II). BCFs for MeHg in low-DOC lake water were significantly larger than those in mixtures of lake water and high-DOC river water. The BCF for MeHg in rainwater (lowest DOC) was the largest of any treatment. Rainwater and lake water also had larger BCFs for Hg(II) than river water. Moreover, in freshwater collected from several US and Canadian field sites, BCFs for Hg(II) and MeHg were low when DOC concentrations were >5mg L(-1). These results suggest high concentrations of DOC inhibit bioavailability, while low concentrations may provide optimal conditions for algal uptake of Hg. However, variability of BCFs at low DOC indicates that DOC composition or other ligands may determine site-specific bioavailability of Hg.  相似文献   

4.
Ecological effects, transport, and fate of mercury: a general review   总被引:42,自引:0,他引:42  
Boening DW 《Chemosphere》2000,40(12):26-1351
Mercury at low concentrations represents a major hazard to microorganisms. Inorganic mercury has been reported to produce harmful effects at 5 μg/l in a culture medium. Organomercury compounds can exert the same effect at concentrations 10 times lower than this. The organic forms of mercury are generally more toxic to aquatic organisms and birds than the inorganic forms. Aquatic plants are affected by mercury in water at concentrations of 1 mg/l for inorganic mercury and at much lower concentrations of organic mercury. Aquatic invertebrates widely vary in their susceptibility to mercury. In general, organisms in the larval stage are most sensitive. Methyl mercury in fish is caused by bacterial methylation of inorganic mercury, either in the environment or in bacteria associated with fish gills or gut. In aquatic matrices, mercury toxicity is affected by temperature, salinity, dissolved oxygen and water hardness. A wide variety of physiological, reproductive and biochemical abnormalities have been reported in fish exposed to sublethal concentrations of mercury. Birds fed inorganic mercury show a reduction in food intake and consequent poor growth. Other (more subtle) effects in avian receptors have been reported (i.e., increased enzyme production, decreased cardiovascular function, blood parameter changes, immune response, kidney function and structure, and behavioral changes). The form of retained mercury in birds is more variable and depends on species, target organ and geographical site. With few exceptions, terrestrial plants (woody plants in particular) are generally insensitive to the harmful effects of mercury compounds.  相似文献   

5.
It is widely recognized that wetlands, especially those rich in organic matter and receiving appreciable atmospheric mercury (Hg) inputs, are important sites of methylmercury (MeHg) production. Extensive wetlands in the southeastern United States have many ecosystem attributes ideal for promoting high MeHg production rates; however, relatively few mercury cycling studies have been conducted in these environments. We conducted a landscape scale study examining Hg cycling in coastal Louisiana (USA) including four field trips conducted between August 2003 and May 2005. Sites were chosen to represent different ecosystem types, including: a large shallow eutrophic estuarine lake (Lake Pontchartrain), three rivers draining into the lake, a cypress-tupelo dominated freshwater swamp, and six emergent marshes ranging from a freshwater marsh dominated by Panicum hemitomon to a Spartina alterniflora dominated salt marsh close to the Gulf of Mexico. We measured MeHg and total Hg (THg) concentrations, and ancillary chemical characteristics, in whole and filtered surface water, and filtered porewater. Overall, MeHg concentrations were greatest in surface water of freshwater wetlands and lowest in the profundal (non-vegetated) regions of the lake and river mainstems. Concentrations of THg and MeHg in filtered surface water were positively correlated with the highly reactive, aromatic (hydrophobic organic acid) fraction of dissolved organic carbon (DOC). These results suggest that DOC plays an important role in promoting the mobility, transport and bioavailability of inorganic Hg in these environments. Further, elevated porewater concentrations in marine and brackish wetlands suggest coastal wetlands along the Gulf Coast are key sites for MeHg production and may be a principal source of MeHg to foodwebs in the Gulf of Mexico. Examining the relationships among MeHg, THg, and DOC across these multiple landscape types is a first step in evaluating possible links between key zones for Hg(II)-methylation and the bioaccumulation of mercury in the biota inhabiting the Gulf of Mexico region.  相似文献   

6.
Background, aim and scope  Chlorine is an abundant element, commonly occurring in nature either as chloride ions or as chlorinated organic compounds (OCls). Chlorinated organic substances were long considered purely anthropogenic products; however, they are, in addition, a commonly occurring and important part of natural ecosystems. Formation of OCls may affect the degradation of soil organic matter (SOM) and thus the carbon cycle with implications for the ability of forest soils to sequester carbon, whilst the occurrence of potentially toxic OCls in groundwater aquifers is of concern with regard to water quality. It is thus important to understand the biogeochemical cycle of chlorine, both inorganic and organic, to get information about the relevant processes in the forest ecosystem and the effects on these from human activities, including forestry practices. A survey is given of processes in the soil of temperate and boreal forests, predominantly in Europe, including the participation of chlorine, and gaps in knowledge and the need for further work are discussed. Results  Chlorine is present as chloride ion and/or OCls in all compartments of temperate and boreal forest ecosystems. It contributes to the degradation of SOM, thus also affecting carbon sequestration in the forest soil. The most important source of chloride to coastal forest ecosystems is sea salt deposition, and volcanoes and coal burning can also be important sources. Locally, de-icing salt can be an important chloride input near major roads. In addition, anthropogenic sources of OCls are manifold. However, results also indicate the formation of chlorinated organics by microorganisms as an important source, together with natural abiotic formation. In fact, the soil pool of OCls seems to be a result of the balance between chlorination and degradation processes. Ecologically, organochlorines may function as antibiotics, signal substances and energy equivalents, in descending order of significance. Forest management practices can affect the chlorine cycle, although little is at present known about how. Discussion  The present data on the apparently considerable size of the pool of OCls indicate its importance for the functioning of the forest soil system and its stability, but factors controlling their formation, degradation and transport are not clearly understood. It would be useful to estimate the significance and rates of key processes to be able to judge the importance of OCls in SOM and litter degradation. Effects of forest management processes affecting SOM and chloride deposition are likely to affect OCls as well. Further standardisation and harmonisation of sampling and analytical procedures is necessary. Conclusions and perspectives  More work is necessary in order to understand and, if necessary, develop strategies for mitigating the environmental impact of OCls in temperate and boreal forest soils. This includes both intensified research, especially to understand the key processes of formation and degradation of chlorinated compounds, and monitoring of the substances in question in forest ecosystems. It is also important to understand the effect of various forest management techniques on OCls, as management can be used to produce desired effects.  相似文献   

7.
The effects of various factors including turbidity, pH, DOC, temperature, and solar radiation on the concentrations of total mercury (TM) and dissolved gaseous mercury (DGM) were investigated in an artificial reservoir in Korea. Episodic total mercury accumulation events occurred during the rainy season as turbidity increased, indicating that the TM concentration was not controlled by direct atmospheric deposition. The DGM concentration in surface water ranged from 3.6 to 160 pg/L, having a maximum in summer and minimum in winter. While in most previous studies DGM was controlled primarily by a photo-reduction process, DGM concentrations tracked the amount of solar radiation only in winter when the water temperature was fairly low in this study. During the other seasons microbial transformation seemed to play an important role in reducing Hg(II) to Hg(0). DGM increased as dissolved organic carbon (DOC) concentration increased (p-value < 0.01) while it increased with a decrease of pH (p-value < 0.01).  相似文献   

8.
The mercury distribution and speciation in the water column were investigated from November 2003 to September 2004. The distribution and concentrations of total mercury (THg) and particulate mercury (PHg) showed that algae had a large capacity to bind mercury in late spring (e.g. in May). It is shown that dissolved gaseous mercury (DGM) concentrations may also be affected by algae activities. The MeHg profile in the water column at a highly eutrophied site in Hongfeng Reservoir demonstrated that most of the MeHg was produced in the hypolimnion, whereas the MeHg profile pattern at another site with less eutrophication indicated that MeHg in water was largely ascribed to release from sediment. In September, the outflow of the reservoir was enriched with MeHg, which was 5.5 times higher than that in the inflows. The discharge of MeHg-concentrated water from the anoxic hypolimnion in the reservoir may pose a risk to downstream fauna.  相似文献   

9.
Much uncertainty still exists regarding the relative importance of organic acids in relation to acid deposition in controlling the acidity of soil and surface waters. This paper contributes to this debate by presenting analysis of seasonal variations in atmospheric deposition, soil solution and stream water chemistry for two UK headwater catchments with contrasting soils. Acid neutralising capacity (ANC), dissolved organic carbon (DOC) concentrations and the Na:Cl ratio of soil and stream waters displayed strong seasonal patterns with little seasonal variation observed in soil water pH. These patterns, plus the strong relationships between ANC, Cl and DOC, suggest that cation exchange and seasonal changes in the production of DOC and seasalt deposition are driving a shift in the proportion of acidity attributable to strong acid anions, from atmospheric deposition, during winter to predominantly organic acids in summer.  相似文献   

10.
We investigated seasonal variability of essential fatty acids (EFA) and methyl mercury (MeHg) concentrations in four size categories of planktonic organisms in two coastal lakes. MeHg concentrations increased significantly with increasing plankton size and were independent of plankton taxonomy. However, total EFA increased from seston to mesozooplankton, but decreased in the cladoceran-dominated macrozooplankton size-class. Analysis of EFA patterns revealed that linoleic, alpha-linolenic, arachidonic, and eicosapentaenoic acids increased with increasing zooplankton size, but docosahexaenoic acid (DHA) in the cladoceran-dominated macrozooplankton was generally lower than in seston. This consistent pattern demonstrates that cladocerans, although bioaccumulating MeHg, convey less DHA than similar-sized copepods to their consumers. It is thus evident that fish consuming cladocerans have restricted access to DHA, yet unrestricted dietary access to MeHg. Thus, the structure of planktonic food webs clearly affects the composition of EFA and regulates dietary supply of these essential nutrients, while MeHg bioaccumulates with increasing zooplankton size.  相似文献   

11.
Goal, Scope and Background Dissolved organic carbon (DOC) constitutes a parameter of organic pollution for waters and wastewaters, which is not so often studied, and it is not yet regulated by directives. The term ‘DOC’ is used for the fraction of organics that pass through a 0.45 μm pores’ size membrane. The type of wastewater plays an important role in the quality of DOC and it has been shown that DOC may contain aquatic humic substances, hydrophobic bases, hydrophobic neutrals, hydrophilic acids, hydrophilic bases and hydrophilic neutrals. The quality of the DOC is expected to affect its fate in a wastewater treatment plant (WWTP), since a considerable fraction of DOC is not biodegradable, and it may be released in the aquatic environment together with the treated effluent. In the present study, the occurrence of DOC during the wastewater treatment process is investigated and its removal rates during primary, secondary and overall treatment are being estimated. Furthermore, a correlation is being attempted between DOC and the concentrations of selected Persistent Organic Pollutants (POPs) and Heavy Metals (HMs) in the dissolved phase of wastewaters, to examine whether there are common sources for these pollution parameters in WWTPs. Also, DOC is being correlated with the partition coefficients of the above-mentioned pollutants in wastewater, in order to examine the effect of ‘solubility enhancement’ in WWTPs and to evaluate the result of this phenomenon in the efficiency of a WWTP to remove organic pollutants. Methods For the purposes of this study, 24-h composite wastewater samples were collected from the influent (raw wastewater, RW), the effluent of primary sedimentation tank (primary sedimentation effluent, PSE) and the effluent of secondary sedimentation tank (secondary sedimentation effluent, SSE). Samples were analyzed for the presence of 26 POPs (7 PCBs and 19 organochlorine pesticides), 8 HMs and DOC. Results and Discussion Mean concentrations of DOC in RW and PSE were at similar levels (∼ 70 mg l−1), suggesting that primary treatment has a minor effect on the DOC content of wastewater. DOC concentrations in SSE were significantly lower (∼ 19 mg l−1) as a result of the degradation of organic compounds in the biological reactor. Calculated removals of DOC were 0.8% in the primary treatment, 63% in the secondary treatment, and 69% in the overall treatment, exhibiting large differences from other organic pollution parameters, such as BOD and COD. The overall DOC removal was found to be independent from the DOC concentration in raw wastewater. Poor correlation was also observed between the DOC content and the concentrations of wastewater contaminants, such as persistent organic pollutants (POPs) and heavy metals (HMs), probably suggesting that their occurrence in WWTPs is due to different sources. A good negative linear relationship was revealed between DOC concentrations and the logarithms of the distribution coefficients (K d) of various POPs and HMs between the solid and the liquid phases of wastewater. This relationship suggests that DOC facilitates hydrophobic pollutants to remain in the dissolved phase thus causing lower removal percentages during the treatment process. Conclusion DOC was measured at three stages of a municipal WWTP that receives mainly domestic wastewater and urban runoff. DOC concentrations in untreated and primarily treated wastewater were almost equal, and only after the secondary sedimentation there was a decrease. Concentrations and removal rates of DOC were in the same levels as in other WWTPs that receive municipal wastewater. The origin of DOC was found to be different to the one of POPs and of HMs, as no correlation was observed between the concentrations of DOC and the concentrations of these pollutants. On the contrary, DOC was found to have significant negative correlation with the K d of all pollutants examined, suggesting that it plays an important role in the partitioning of those pollutants between the dissolved and the sorbed phase of wastewaters. This effect of DOC on partitioning can affect the ability of WWTPs to remove toxic pollutants, and that way it facilitates the discharge of those chemicals in the aquatic ecosystems together with the treated effluent. Recommendation By the results of this work it is shown that the presence of DOC in wastewaters can significantly affect the partition of hazardous pollutants between the dissolved and the sorbed phase. It is therefore of importance that this parameter is controlled more in wastewaters, since it can cause a decrease in the efficiency of WWTPs to remove quantitatively persistent pollutants.  相似文献   

12.
Application of green waste compost (GWC) to brownfield land is now common practice in soil restoration. However, previous studies have demonstrated both beneficial and detrimental effects on arsenic and metal mobility. In this paper, trace element behaviour was investigated following GWC application, either as surface mulch to, or mixed into soil from a previously described brownfield site in the U.K. Significant differences in arsenic mobility were observed between treatments. Mulching caused most disturbance, significantly increasing soil pore water As, together with Fe, P, Cr, Ni and dissolved organic carbon, the latter was a critical factor enhancing As mobilization. Arsenate was the main inorganic As species in soil pore water, increasing in concentration over time. An initial flush of potentially more toxic arsenite decreased 4 weeks after compost application. Biological processes appeared to play an important role in influencing As mobility. The results point to the necessity for careful management of As-contaminated soils.  相似文献   

13.
采用间接加热-N2吹扫法,对汞污染载金炭中汞的脱除进行试验研究.主要考察了吹扫方式、焙烧温度、N2流量和处理时间对汞脱除效果的影响.结果表明,采用床层内部吹扫方式有利于载金炭中汞的脱除;在550℃、N2 1.6 m3/h·kg、吹扫3 h条件下,能够将载金炭中汞含量由13.833 g/kg降低至0.002 g/kg,汞脱除率达到99.98%以上,而炭烧损率仅1.84%.另外,进行了2种二段法脱汞试验研究:高温蒸汞-N2吹扫法和空气吹扫-N2吹扫法.结果表明,与一段法相比,前者能够大大降低N2的消耗量;而后者没有明显优势,N2用量和能耗均未能明显降低.  相似文献   

14.
An open-bottom and a closed-bottom mesocosm were developed to investigate the release of mercury from sediments to the water column in a frozen freshwater lake. The mesoscosms were deployed in a hole in the ice and particulate mercury (HgP) and total dissolved mercury (TDHg) were measured in sediments and in water column vertical profiles. In addition, dissolved gaseous mercury (DGM) in water and mercury water/airflux were quantified. Concentrations of TDHg, DGM, and mercury flux were all higher in the open-bottom mesocosm than in the closed-bottom mesocosm. In this paper we focus on the molecular diffusion of mercury from the sediment in comparison with the TDHg accumulation in the water column. We conclude that the molecular diffusion and sediment resuspension play a minor role in mercury release from sediments suggesting that solute release during ebullition is an important transport process for mercury in the lake.  相似文献   

15.
讨论了近年来国内外电厂煤燃烧过程中汞的形态分布以及迁移转化规律研究的最新成果 ,并在此基础上评价了现有电站污染控制系统的脱汞性能 ,考虑到汞的排放控制 ,提出了对现有设备的可能优化措施。在分析中 ,注意到汞的易挥发性 ,认为汞排放控制应该充分考虑烟气中汞形态的迁移转化。由于氧化态汞在汞控制中有着重要作用 ,其研究将是控制电厂汞排放的关键。先进的汞排放控制技术的开发应以增强汞的氧化态为优先发展方向。  相似文献   

16.
Good quality data apt for an assessment of temporal trends of polychlorinated dibenzo-p-dioxins and furans (PCDDs/Fs) in soils are difficult to obtain since there is a general lack of information on their residues in soils. Variability of soil profiles, non-homogeneity of samples, and often also inconsistency of applied sampling procedures further complicate this problem. To assess spatial and temporal trends of contamination, three soil sampling campaigns have been performed over the period of 12 years at the mountain forest sites in the Czech Republic. Relation between the air, needle and soil contaminations was addressed in addition to time-related variability of soil. It has been confirmed that soil is a good matrix for evaluation of spatial distribution of persistent organic pollutants (POPs) but difficult for establishment of temporal trends. A slow rate of the soil-forming processes and their site-specificity was generally the major source of uncertainties.  相似文献   

17.
The transport of bacteriophage PRD1, a model virus, was studied in columns containing sediment mixtures of quartz sand with goethite-coated sand and using various solutions consisting of monovalent and divalent salts and humic acid (HA). Without HA and in the absence of sand, the inactivation rate of PRD1 was found to be as low as 0.014 day(-1) (at 5+/-3 degrees C), but in the presence of HA it was much lower (0.0009 day(-1)), indicating that HA helps PRD1 to survive. When the fraction of goethite in the sediment was increased, the removal of PRD1 also increased. However, in the presence of HA, C/C0 values of PRD1 increased by as much as 5 log units, thereby almost completely eliminating the effect of addition of goethite. The sticking efficiency was not linearly dependent on the amount of goethite added to the quartz sand; this is apparently due to surface charge heterogeneity of PRD1. Our results imply that, in the presence of dissolved organic matter (DOM), viruses can be transported for long distances thanks to two effects: attachment is poor because DOM has occupied favourable sites for attachment and inactivation of virus may have decreased. This conclusion justifies making conservative assumptions about the attachment of viruses when calculating protection zones for groundwater wells.  相似文献   

18.
A combined mass-balance and stable isotope approach was set up to identify and quantify dissolved organic carbon (DOC) sources in a DOC-rich (9 mg L−1) eutrophic reservoir located in Western France and used for drinking water supply (so-called Rophemel reservoir). The mass-balance approach consisted in measuring the flux of allochthonous DOC on a daily basis, and in comparing it with the effective (measured) DOC concentration of the reservoir. The isotopic approach consisted, for its part, in measuring the carbon isotope ratios (δ13C values) of both allochthonous and autochthonous DOC sources, and comparing these values with the δ13C values of the reservoir DOC. Results from both approaches were consistent pointing out for a DOC of 100% allochthonous origin. In particular, the δ13C values of the DOC recovered in the reservoir (−28.5 ± 0.2‰; n = 22) during the algal bloom season (May-September) showed no trace of an autochthonous contribution (δ13C in algae = −30.1 ± 0.3‰; n = 2) being indistinguishable from the δ13C values of allochthonous DOC from inflowing rivers (−28.6 ± 0.1‰; n = 8). These results demonstrate that eutrophication is not responsible for the high DOC concentrations observed in the Rophemel reservoir and that limiting eutrophication of this reservoir will not reduce the potential formation of disinfection by-products during water treatment. The methodology developed in this study based on a complementary isotopic and mass-balance approach provides a powerful tool, suitable to identify and quantify DOC sources in eutrophic, DOC-contaminated reservoirs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号