首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Riparian wetland is the major transition zone of matter, energy and information transfer between aquatic and terrestrial ecosystems and has important functions of water purification and non-point pollution control. Using the field experiment method and an isotope tracing technique, the agricultural non-point nitrogen pollution control function of di erent vegetation types in riparian wetland was studied in the Kouma Section of the Yellow River. The results showed that the retention of agricultural non-point nitrogen pollution by riparian wetland soil occurs mainly in top 0–10 cm layer. The amount of nitrogen retained by surface soils associated with three types of vegetation are 0.045 mg/g for Phragmites communis Trin Linn, 0.036 mg/g for Scirpus triqueter Linn, and 0.032 mg/g for Typha angustifolia Linn, which account for 59.21%, 56.25%, and 56.14% of the total nitrogen interception, respectively. Exogenous nitrogen in 0–10 cm soil layer changes more quickly than in other layers. One month after adding K15NO3 to the tested vegetation, nitrogen content was 77.78% for P. communis Trin, 68.75% for T. angustifolia, and 8.33% for S. triqueter in the surface soil. After three months, nitrogen content was 93.33% for P. communis Trin, 72.22% for S. triqueter, and 37.50% for T. Angustifolia. There are large di erences among vegetation communities respecting to purification of agricultural non-point nitrogen pollution. The nitrogen uptake amount decreases in the sequence: new shoots of P. communis Trin (9.731 mg/g) > old P. communis Trin (4.939 mg/g) > S. triqueter (0.620 mg/g) > T. angustifolia (0.186 mg/g). Observations indicated that the presence of riparian wetlands as bu ers on and adjacent to stream banks could be recommended to control agricultural non-point pollution.  相似文献   

2.
农业面源污染防治措施进展研究   总被引:2,自引:0,他引:2  
随着城市生活污水和工业废水等点源污染 得到控制,农业面源污染的危害日益凸显.将对目前的农业面源污染防治技术以及未来的发展进行阐述,将从源头减量、传输过程的阻断与拦截、养分的回收利用以及水体的生态修复面源污染物传输四个环节分别论述.源头控制主要采用减少化肥的施用量和水土流失等实现,传输过程的阻断与拦截以及养分的回收利用主要通过将径流引入人工或自然湿地等实现,水体的生态修复主要通过生态浮床技术等暂时强化技术与植物修复技术等长效修复技术相结合的方式实现.  相似文献   

3.
四川省农村面源主要分为农田面源、畜禽养殖粪便污染面源和农村生活污染面源,研究根据排放因子法计算了两种主要考核污染物化学需氧量和氨氮的排放量.根据四川省农村面源污染状况特征提出了面源治理对策措施,其中农田面源治理措施包括:推广测土配方施肥、农田面源生态拦截技术等;畜禽养殖污染治理措施包括:加强小型畜禽养殖污染治理,推广农牧结合、干清粪、发酵床处理工艺等;农村生活污染治理措施包括:推进农村生活污水收集及小型污水处理设施等.  相似文献   

4.
排污权交易应用于农业面源污染控制研究   总被引:2,自引:0,他引:2  
当前农业面源污染已经成为我国水环境污染的主要根源,文中通过对农业非点源污染现状的调查和对治理污染的手段和措施的分析,结合排污权交易的优势和特点,探讨排污权交易体系引入农业非点源污染控制系统的可行性,相比较于大型工业点源,农业面源污染减排成本较低的状况为排污权交易提供了有利条件。在分析面源污染具有涉及个体多、发生不确定性强、减排结果监测困难等特征的基础上,提出了工业点源与农业面源排污权交易的总体框架。同时针对农业面源排污权交易中可能存在的一些问题进行了初步探讨,提出解决思路,期待着为今后相关研究抛砖引玉。  相似文献   

5.
农业面源污染滨岸缓冲带控制技术BMPs体系研究   总被引:1,自引:0,他引:1  
在综合分析国内外农业面源污染有关控制技术及其BMPs体系的基础上,结合上海市地方特点及区域农业面源污染特征,建立了农业面源污染滨岸缓冲带控制技术BMPs体系,主要包括:缓冲带布局,细化设计,施工建设,养护与管理,以及与之配合实施的前置工程性BMPs措施,并提供了一种基于水环境功能目标的不同坡度、不同草皮缓冲带的最佳宽度...  相似文献   

6.
生态工程综合治理系统对农业小流域氮磷污染的治理效应   总被引:5,自引:4,他引:1  
以典型农业小流域——开慧河流域源区为研究对象,基于研究区农业面源污染的主要排放特征,建立以生态湿地为主的小流域面源污染生态工程综合治理系统,重点探讨其对水体氮磷污染物的去除效果.结果表明,畜禽养殖业是开慧河流域源区水体氮磷污染物的主要来源,需要重点防控.组合生态湿地处理工程对农村分散式生活与养殖混合废水总氮(TN)、总磷(TP)的平均去除率为87. 1%和90. 9%;多级人工湿地拦截工程对农田排水与分散式养殖混合废水TN、TP的平均去除率为85. 7%和84. 9%;景观型生态湿地净化工程对末端汇水区水体中TN、TP的去除率在27. 1%~67. 4%和13. 3%~81. 5%之间.整个生态工程综合治理系统对流域TN和TP污染物的总拦截量分别为5 292 kg·a~(-1)和1 054 kg·a~(-1),占研究区农业面源TN、TP总污染负荷的35. 3%和43. 6%.因此,构建的生态工程综合治理系统对流域农业面源氮磷污染具有较好的治理效应,适合在我国南方小流域水环境治理中推广应用.  相似文献   

7.
中国农业面源污染物排放量计算及中长期预测   总被引:17,自引:1,他引:16  
利用第一次全国污染源普查数据,计算了我国内地31个省市自治区农业面源污染排放量,在此基础上,预测了2010—2030年农业面源污染情况.结果表明,2007年,我国农业面源污染的污染物总排放量为1057×104t,其中,COD排放量为825.9×104t,总氮为187.2×104t,总磷为21.6×104t,氨氮为22.4×104t.如果不加大对面源污染的治理力度,2020年前我国农业面源污染有加剧的趋势.在高排放情景下,2030年农业面源污染中COD排放量可能上升到1466.5×104t,面源污染需引起高度重视.目前,东部沿海地区是我国农业面源污染的主要排放区,但未来我国农业面源污染排放的空间分布可能趋于均衡.  相似文献   

8.
流域农业面源污染生态工程调控措施   总被引:1,自引:0,他引:1  
农业面源污染是导致目前流域水环境质量恶化的重要原因。文章从流域水环境状况、农业面源污染现状出发,结合面源污染的特点和研究发展历程,重点探讨了流域农业面源污染生态工程调控的可行性。  相似文献   

9.
农业化肥的使用量持续增加,化肥过量使用导致的面源污染日益严重.科学的选择适当的肥料,可以有效地控制肥料使用量,从而控制农业化肥面源污染.控失型肥料是一种优质高效的新型环保型肥料,具有长效、增产、环保和节本省时等优点.农业生产过程中广泛应用控失型肥料可以有效降低农业化肥面源污染,实现农业生态、经济和社会效益有机统一.分析了控失型肥料推广应用中存在的问题,并提出保证其在农业生产中广泛推广的对策.  相似文献   

10.
我国广大小流域迫切需要开展农业面源污染控制,但却面临着水质、水文、气象、土地等监测资料不足的信息约束条件。为了应对此问题,本文以具有冻融变化特征的东北地区为例,开发了一套信息约束条件下的流域农业面源污染控制优化系统。首先,提出了农业面源污染负荷的计算方法。其次,分析了流域水质的影响因素。接着,建立了面源污染输入与流域出水口水质之间的响应关系,经验证该系统输出数据与实际污染状况相吻合,能够很好地模拟流域污染状况。最后通过各种削减策略的运用,模拟出农业面源污染削减率和削减后的总氮浓度。通过采用本研究制定的控制优化方案,改变种植类型和面积以及改善施肥配施比,将污染源数据进行量化作为输入数据,经系统输出得到模拟污染输出数据,可得到较好的污染削减效果。研究结果为信息约束条件下治理流域农业面源污染提供了决策支持。  相似文献   

11.
查干湖汇水区面源污染风险识别及管控   总被引:2,自引:0,他引:2       下载免费PDF全文
面源污染是我国流域面临的主要水环境问题,为了识别面源污染高风险区和潜在风险路径,实现流域水环境保护,以查干湖水质目标为约束条件,构建4类关键“源”景观.选取高程、坡度、土地利用类型、污染强度、距居民点距离、距公路距离、距铁路距离、距水体距离等8个评价因子构建阻力面,对查干湖汇水区面源污染风险区和风险路径进行识别,提出管控分区和治理措施.结果表明:①查干湖汇水区关键“源”景观有4类,分别为面源污染单位面积高负荷区、坡度>3°区域、污染传输通道和临湖区域,面积共126.33 km2.②查干湖汇水区面源污染高风险区即面源污染重点管控区,占汇水区总面积的27.10%,主要位于乾安灌区有字泡区域、查干湖及周边泡沼沿岸.区内现有耕地不再增加,同时对坡度较大的区域退耕还湿、退耕还草,并设置污染降解设施.③查干湖汇水区面源污染较高风险区即面源污染一般管控区,占汇水区总面积的20.23%.该区鼓励开展有机农业,发展生态旅游.④查干湖北岸和东南岸、库里泡周边设置一定宽度的植被缓冲带,汇水区设置生态降解渠道333.41 km,生态湿地节点9个.研究显示,污染排放强度是查干湖汇水区面源污染风险的主要威胁因素,需要重点加强查干湖汇水区乾安灌区有字泡、湖区北岸及东南岸的面源污染管控.   相似文献   

12.
杨建辉 《自然资源学报》2017,32(9):1517-1527
论文选取华东6省1市2001—2014年的数据,分析了农业面源污染控制背景下的农业化学与农业经济增长的Tapio脱钩关系,并通过LMDI分解将农业化学投入增长的影响因素归结为规模效应、耕地效应和效率效应,最后对2014年华东6省1市农业化学效率状况进行K-means聚类。结果表明:农业面源污染控制背景下,农业化学与农业经济增长呈现出从扩张性负脱钩到相对脱钩,再到绝对脱钩的转变;农业化学投入物量的增加主要来自于耕地效应的作用,效率效应可以减缓农业化学投入物量的增长,规模效应的作用不明显;从空间格局的聚类结果上看,上海、江苏、浙江、福建、江西和山东的农业经济增长对农业化学品生产资料依赖程度较低,安徽省的依赖程度较高。总之,农业经济可以在农业化学化控制背景下得到持续增长,农业面源污染要得到进一步的控制,需要在采用多种农业增效手段、提高农业化学投入利用效率和采取差异化的区域农业化学投入减量控制政策着手。  相似文献   

13.
农业非点源污染是导致流域水质恶化的重要原因之一.依据农业污染源主要污染物空间排放特征和排放强度分析,划分农业非点源污染空间管理分区,并研究设计分区污染物总量控制方案,是提高农业非点源污染控制成效的重要途径之一.以湖北省四湖流域为研究案例区,系统开展了流域尺度的农业非点源污染空间排放特征识别与总量控制研究.结果表明,四湖流域水环境COD、总氮、总磷、氨氮负荷主要来自于农业非点源污染,4类非点源污染物分别占到流域污染物排放总量的67.6%、 82.2%、 84.7%和50.9%.对四湖流域非点源污染物空间排放特征分析结果表明,水产和畜禽养殖业发达的洪湖、监利、潜江、沙洋地区是流域非点源污染物的主要贡献源区.根据污染物在流域空间上的排放特征和源强评价结果,将四湖流域划分为3个农业非点源污染管理分区,即长湖上游水产和畜禽养殖污染重点控制区、四湖干渠农村非点源污染综合控制区和洪湖水产养殖污染重点控制区,针对不同管理分区分别提出了污染控制措施.基于水质改善和水体纳污能力综合考虑,设计了针对3个非点源污染管理分区的总量控制方案,分阶段实现监测断面全指标达标和满足水体纳污能力要求.主要污染物中,COD主要削减区域为四湖干渠区和洪湖区,分别占到流域COD削减量的43%和42%;氨氮主要削减区域为四湖干渠区,占到氨氮总削减量的66%;总氮主要削减区域为四湖干渠区和洪湖区,分别占到流域总氮削减量的42%和31%;总磷主要削减区域为四湖干渠区,占到流域总磷削减量的53%.  相似文献   

14.
不同降雨-径流过程中农业非点源污染研究   总被引:8,自引:2,他引:6  
以大宁河流域为研究区域,应用SWAT模型进行了流域农业非点源污染负荷的模拟计算。利用巫溪水文站2000~2004年的实测日径流和泥沙数据进行模型的调参计算,验证结果表明模型适用于大宁河流域。利用验证后的模型分析了不同降雨-径流条件下非点源污染的产输出特性。结果表明:降雨量对径流污染负荷有较大的影响,年内丰水段,非点源污染物浓度峰值和径流峰值同步出现;年内平水段,泥沙浓度、有机氮浓度和径流峰值同步出现,硝酸盐浓度峰值滞后于径流峰值出现时间;年内枯水段,非点源污染物浓度滞后于径流峰值度出现时间;降雨—径流与污染物浓度之间存在着密切的线性相关关系。  相似文献   

15.
农业面源污染是影响水环境质量的重要污染源,对水环境的污染贡献率逐年提高,逐渐成为制约农业可持续发展和实现农村现代化的环境瓶颈。文章在广泛调研国内外相关领域研究成果的基础上,综述了农业面源污染防治相关领域的研究进展,主要包括:农业面源污染物流失特性研究、土地利用方式影响研究、农业面源污染控制和治理技术研究、面源污染模型研究、现代电子信息技术的应用以及最佳管理措施(BMPs)的研究与实践等。最后,对农业面源污染控制领域未来重点研究方向进行了展望,并提出了相关建议。  相似文献   

16.
滨岸缓冲带在水源地农业面源污染防治上的应用   总被引:3,自引:0,他引:3  
饮用水水源地污染已成为全球共同遭遇的重大环境问题之一,为保证人们的饮用水安全,有必要对进入水源地内的农业面源污染进行防治。滨岸缓冲带能够有效的防治农业面源污染已经得到广泛的认可,并在水源地保护上有一定的应用前景。文章综述了缓冲带的定义、结构、功能以及农业面源污染防治方面的应用等基础上,提出了我国滨岸缓冲带在饮用水源地保护中的应用前景。  相似文献   

17.
在综合分析农业面源污染风险源汇因子的基础上,筛选出影响海河流域农业面源污染的8个主要因子(年降水量、溶解态面源污染物入河系数、吸附态面源污染物入河系数、年植被覆盖度、坡度、土壤可侵蚀性因子、农田氮表观平衡量和农田磷表观平衡量),建立了农业面源污染潜在风险识别指标体系,采用多因子综合分析法对海河流域农业面源污染潜在风险等级进行评价,并与DPeRS模型风险识别结果进行偏差分析.结果表明,海河流域有61.91%的区域存在农业面源污染潜在风险,集中分布在流域的中部和南部地区,高风险区主要分布在北京市东南部、天津市中部、流域山东段东北部和河南段南部等区域;与DPeRS模型识别结果对比验证,显示同一风险等级面积相差不超过12%,且高风险级别面积相差仅为0.12%,97.17%以上的区域均为偏差小或无偏差,表明该识别方法具有与DPeRS模型法同等水平的农业面源污染潜在风险识别精准度,可实现区域农业面源污染潜在风险的快速、高效识别.  相似文献   

18.
高效高精度模拟面源污染输移过程,掌握面源污染的输移规律,是研究面源污染最直接有效的途径之一,也是管理和控制面源污染的有效手段。基于此,提出了一种全面耦合二维水文水动力及污染物输移过程的数值模型,采用二阶Godunov格式的有限体积法进行求解,利用GPU加速技术提高计算效率。结果表明:在理想条件下,数值解与解析解间的平均相对误差为2.5%。对不同面积和精度的城市地表面源污染和农业面源污染输移过程的模拟结果显示,二者的输移规律符合实际的物理过程,模拟总时长为7200 s,城市地表面源污染模拟结果只需186 s;农业面源污染模拟结果只需1169 s,计算效率有显著提升。综上所述,GAST模型对不同下垫面面源污染可实现高精度模拟,且模拟效率有显著提升,为今后面源污染的治理和防控提供参考。  相似文献   

19.
基于GIS的汉江中下游农业面源氮磷负荷研究   总被引:40,自引:6,他引:40       下载免费PDF全文
根据汉江中下游农业面源污染治理决策的需求,在大量实地观测资料区域地理与农业环境数据基础上,开发并建立了汉江中下游农业面源动态监测信息系统。以此为技术支持,运用数学模型及其与GIS相结合的技术,研究了汉江中下游农业面源污染的负荷及分布规律。  相似文献   

20.
农业面源对水环境污染及防治对策   总被引:17,自引:6,他引:11  
农业面源污染已成为我国水环境的主要贡献源之一。就农业面源的产生、分布、特征、形成进行了分析,并通过三峡库区农业面源污染对河流水环境影响为例,论证农业面源对水环境污染的形成机理,指出污染发展趋势,主要污染负荷,已发生和潜在的污染问题,并提出治理面源的对策与建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号