首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
An LNG pool fire is considered one of the main hazards of LNG, together with LNG vapor dispersion. Suppression methods are designed to reduce the hazard exclusion zones, distance to reach radiant heat of 5 kW/m2, when an LNG pool fire is considered. For LNG vapor dispersion, the hazard exclusion zone is the distance travelled by the LNG vapor to reach a concentration of 2.5% v/v (half of the LNG lower flammability limit).Warming the LNG vapor to reach positive buoyancy faster is one way to suppress LNG vapor dispersion and reduce evaporation rate (thus fire size and its associated radiant heat) and that is the main objective in LNG pool fire suppression. Based on previous research, the use of high expansion foam has been regarded as the primary method in suppressing LNG pool fires. However, in 1980, another method was introduced as an alternative pool fire suppression system, Foamglas®. The research concluded that 90% of the radiant heat was successfully reduced. Currently-called Foamglas® pool fire suppression (Foamglas® PFS) is a passive mitigation system and is deployed after the leak occurs. Foamglas® PFS is non-flammable, and has a density one-third of the density of LNG, thus floats when an LNG pool is formed.This paper describes the study and confirmation of Foamglas®PFS effectiveness in suppressing LNG pool fires. In addition, while Foamglas® PFS is not expected to suppress LNG vapor dispersion, further investigation was conducted to study the effect of Foamglas®PFS on LNG vapor dispersion. An LNG field experiment was conducted at Brayton Fire Field. The experimental development, procedures, results and findings are detailed in this paper.  相似文献   

2.
An underwater LNG release test was conducted to understand the phenomena that occur when LNG is released underwater and to determine the characteristic of the vapor emanating from the water surface. Another objective of the test was to determine if an LNG liquid pool formed on the water surface, spread and evaporated in a manner similar to that from an on-the-surface release of LNG.A pit of dimensions 10.06 m × 6.4 m and 1.22 m depth filled with water to 1.14 m depth was used. A vertically upward shooting LNG jet was released from a pipe of 2.54 cm diameter at a depth of 0.71 m below the water surface. LNG was released over 5.5-min duration, with a flow rate of 0.675 ± 0.223 L/s. The wind speed varied between 2 m/s and 4 m/s during the test.Data were collected as a function of time at a number of locations. These data included LNG flow rate, meteorological conditions, temperatures at a number of locations within the water column, and vapor temperatures and concentrations in air at different downwind locations and heights. Concentration measurements were made with instruments on poles located at 3.05 m, 6.1 m and 9.14 m from the downwind edge of the pit and at heights 0.46 m, 1.22 m, and 2.13 m. The phenomena occurring underwater were recorded with an underwater video camera. Water surface and in-air phenomena including the dispersion of the vapor emanating from the water surface were captured on three land-based video cameras.The lowest temperature recorded for the vapor emanating from the water surface was −1 °C indicating that the vapor emitted into air was buoyant. In general the maximum concentration observed at each instrument pole was progressively at higher and higher elevations as one traveled downwind, indicating that the vapor cloud was rising. These findings from the instrument recorded data were supported by the visual record showing the “white” cloud rising, more or less vertically, in air. No LNG pool was observed on the surface of water. Discussions are provided on the test findings and comparison with predictions from a previously published theoretical model.  相似文献   

3.
The evaluation of exclusion (hazard) zones around the LNG stations is essential for risk assessment in LNG industry. In this study, computational fluid dynamics (CFD) simulations have been conducted for the two potential hazards, LNG flammable vapor dispersion and LNG pool fire radiation, respectively, to evaluate the exclusion zones. The spatial and temporal distribution of hazard in complex spill scenario has been taken into account in the CFD model. Experimental data from Falcon and Montoir field tests have been used to validate the simulation results. With the valid CFD model, the mitigation of the vapor dispersion with spray water curtains and the pool fire with high expansion foam were investigated. The spray water curtains were studied as a shield to prevent LNG vapor dispersing, and two types of water spray curtain, flat and cone, were analyzed to show their performance for reduction and minimization of the hazard influencing distance and area. The high expansion foam firefighting process was studied with dynamic simulation of the foam action, and the characteristics of the foam action on the reduction of LNG vaporization rate, vapor cloud and flame size as well as the thermal radiation hazard were analyzed and discussed.  相似文献   

4.
The recent publication of evaluation protocols for vapor source term models and vapor dispersion models have influenced the modeling approaches that can be used for approval of new and expansion projects at LNG receiving terminals. In the past few years the scientific basis of integral vapor source term models has been questioned with growing concerns regarding their validity. In this paper, the shallow water equations (SWEs) were solved to study the characteristics of the evaporating LNG pool associated with a constant flow rate spill of LNG into a concrete sump. In the early stages of pool spreading, the leading edge thickness profile of the SWE model scales with the square root of the distance from the leading edge as the pool spreads. After the edge of the pool reaches the wall, the reflected wave forms a hydraulic jump that travels back towards the center of the pool at a speed that is considerably slower than the initial spreading of the pool. Once the hydraulic jump reaches the center, the pool assumes a nearly flat free surface for the rest of the spill. The pool spreading and the rate of evaporation from the SWEs were then compared to the solution provided by the integral model, PHAST. The two approaches were found to agree well with one another. The SWE model was also used to demonstrate the influence of an elevated spill source. With an elevated source, the LNG pool spreads faster, significantly increasing the initial rate of vaporization and peak vaporization rate. This increase in the initial rate of vaporization could lead to an increase in the vapor cloud hazard distance. The SWE model was also used to demonstrate the influence of an inclined sump floor in the shape of an inverted cone where the spilling LNG accumulates in the low vertex of the cone. Inclined sump floors can be used to significantly reduce the cumulative evaporation, making them attractive as a possible mitigation approach in cases where a containment sump is located close to a property boundary.  相似文献   

5.
One of the scenarios of concern in assessing the safety issues related to transportation of LNG in a marine environment (ship or underwater pipeline) is the release of LNG underwater. This scenario has not been given the same level of scientific attention in the literature compared to surface releases and assessment of consequences therefrom. This paper addresses questions like, (1) does an LNG spill underwater form a pool on the water surface and subsequently evaporate like an LNG spill “on the surface” producing cold, heavier than air vapors?, and (2) what is the range of expected temperatures of the vapor, generated by LNG release due to heat transfer within the water column, when it emanates from the water surface?Very limited data from two field tests of LNG underwater release are reviewed. Also presented are the results from tests conducted in other related industries (metal casting, nuclear fission and fusion, chemical processing, and alternative fuel vehicles) where a hot (or cold) liquid is injected into a bulk cold (or hot) liquid at different depths.A mathematical model is described which calculates the temperature of vapor emanating at the water surface, and the liquid fraction of released LNG that surfaces, if any, to form a pool on the water surface. The model includes such variables as the LNG release rate, diameter of the jet at release, depth of release and water body temperature. Results obtained from the model for postulated release conditions are presented. Comparison of predicted results with available LNG underwater release test data is also provided.  相似文献   

6.
7.
为研究LNG加气站槽车直接供液过程泄漏后果严重程度,采用HAZOP辨识槽车供液和储罐供液典型泄漏场景,基于PHAST分析不同泄漏场景下LNG液池半径、蒸汽云扩散距离及积聚时长、爆炸超压和池火热辐射影响范围,定量评价槽车供液可能造成的事故后果扩大程度。结果表明:槽车供液泄漏事故的LNG液池最大半径、蒸汽云最大扩散距离、爆炸超压最大影响半径和池火热辐射最大半径,分别为储罐供液的5.7,1.7,2.3,7.9倍;槽车在无人值守条件下泄漏形成的LNG液池最大半径和蒸汽云积聚时长,分别为有人值守下的1.85,56倍;日供液量较大加气站不宜采用槽车直接为汽车供液模式,而应采用先卸车入罐、再储罐供液的模式;应落实槽车卸车轮班值守制度,并与周边社区建立有效的应急联动方案。  相似文献   

8.
Natural gas is a kind of clean, efficient green energy source, which is used widely. Liquefied natural gas (LNG) is produced by cooling natural gas to −161 °C, at which it becomes the liquid. Once LNG was released, fire or explosion would happen when ignition source existed nearby. The high expansion foam (Hi-Ex foam) is believed to quickly blanket on the top of LNG spillage pool and warm the LNG vapor to lower the vapor cloud density at the ground level and raising vapor buoyancy. To identify the physical structure after it contacted with LN2 and to develop heat transfer model, the small-scale field test with liquid nitrogen (LN2) was designed. In experiment, three layers including frozen ice layer, frozen Hi-Ex layer and soft layer of Hi-Ex foam were observed at the steady state. By characterizing physical structure of the foam, formulas for calculating the surface of single foam bubble and counting foam film thickness were deduced. The micro heat transfer and evaporation model between cryogenic liquid and Hi-Ex foam was established. Indicating the physical structure of the frozen ice layer, there were a certain number of icicles below it. The heat transfer and evaporation mathematical model between the frozen ice layer and LNG was derived. Combining models above with the heat transfer between LNG, ground and cofferdam, the heat transfer and evaporation mathematical model of LNG covered by Hi-Ex foam was developed eventually. Finally, LN2 evaporation rate calculated by this model was compared with the measured evaporation rate. The calculated results are 1.2–2.1 times of experimental results, which were acceptable in engineering and proved the model was reliable.  相似文献   

9.
The use of LNG (liquefied natural gas) as fuel brings up issues regarding safety and acceptable risk. The potential hazards associated with an accidental LNG spill should be evaluated, and a useful tool in LNG safety assessment is computational fluid dynamics (CFD) simulation. In this paper, the ADREA-HF code has been applied to simulate LNG dispersion in open-obstructed environment based on Falcon Series Experiments. During these experiments LNG was released and dispersed over water surface. The spill area is confined with a billboard upwind of the water pond. FA1 trial was chosen to be simulated, because its release and weather conditions (high total spill volume and release rate, low wind speed) allow the gravitational force to influence the cold, dense vapor cloud and can be considered as a benchmark for LNG dispersion in fenced area. The source was modeled with two different approaches: as vapor pool and as two phase jet and the predicted methane concentration at sensors' location was compared with the experimental one. It is verified that the source model affect to a great extent the LNG dispersion and the best case was the one modeling the source as two phase jet. However, the numerical results in the case of two phase jet source underestimate the methane concentration for most of the sensors. Finally, the paper discusses the effect of neglecting the ?9.3° experimental wind direction, which leads to the symmetry assumption with respect to wind and therefore less computational costs. It was found that this effect is small in case of a jet source but large in the case of a pool source.  相似文献   

10.
Evaluating potential hazards caused by accidental LNG release from underwater pipelines or vessels is a significant consideration in marine transportation safety. The aim of this study was to capture the dynamic behavior of LNG jet released under water and to analyze its vapor dispersion characteristics and combustion characteristics on the water surface during different release scenarios. Controlled experiments were conducted where LNG was jet released from a cryogenic storage tank. The dynamic process of LNG being jet released from orifices of different sizes and shapes, as well as the rising plume structure, were captured by a high-speed camera. The leakage flow rate and pipeline pressure were recorded by a flow meter and pressure gauge, respectively. The concentration distribution that emanated from the water surface was measured utilizing methane sensors in different positions with various wind speeds. The flame combustion characteristics of LNG vapor clouds, which immediately ignited upon the enclosed water tank, were also recorded. Additionally, the mass burning rate of the flame on the water surface was evaluated, and a new correlation between the ratio of flame length and width was established. The results indicated a large dimensionless heat release rate (Q*) and a continuous release flow rate in a limited burning area. This study could provide greater understanding of the mechanisms of LNG release and combustion behavior under water.  相似文献   

11.
The use of computational fluid dynamics (CFD) models to simulate LNG vapor dispersion scenarios has been growing steadily over the last few years, with applications to LNG spills on land as well as on water. Before a CFD model may be used to predict the vapor dispersion hazard distances for a hypothetical LNG spill scenario, it is necessary for the model to be validated with respect to relevant experimental data. As part of a joint-industry project aimed at validating the CFD methodology, the LNG vapor source term, including the turbulence level associated with the evaporation process vapors was quantified for one of the Falcon tests.This paper presents the method that was used to quantify the turbulent intensity of evaporating LNG, by analyzing the video images of one of the Falcon tests, which involved LNG spills onto a water pond. The measured rate of LNG pool growth and spreading and the quantified turbulence intensity that were obtained from the image analysis were used as the LNG vapor source term in the CFD model to simulate the Falcon-1 LNG spill test. Several CFD simulations were performed, using a vaporization flux of 0.127 kg/m2 s, radial and outward spreading velocities of 1.53 and 0.55 m/s respectively, and a range of turbulence kinetic energy values between 2.9 and 28.8 m2/s2. The resulting growth and spread of the vapor cloud within the impounded area and outside of it were found to match the observed behavior and the experimental measured data.The results of the analysis presented in this paper demonstrate that a detailed and accurate definition of the LNG vapor source term is critical in order for any vapor cloud dispersion simulation to provide useful and reliable results.  相似文献   

12.
Effective safety measures to prevent and mitigate the consequences of an accidental release of flammable LNG are critical. Water spray curtain is currently recognized as an effective technique to control and mitigate various hazards in the industries. It has been used to absorb, dilute and disperse both toxic and flammable vapor cloud. It is also used as protection against heat radiation, in case of fighting vapor cloud fire. Water curtain has also been considered as one of the most economic and promising LNG vapor cloud control techniques. Water curtains are expected to enhance LNG vapor cloud dispersion mainly through mechanical effects, dilution, and thermal effects. The actual phenomena involved in LNG vapor and water curtain interaction were not clearly established from previous research. LNG spill experiments have been performed at the Brayton Fire Training Field at Texas A&M University (TAMU) to understand the effect of water curtain in controlling and dispersing LNG vapor cloud. This paper summarizes experimental methodology and presents data from two water curtain tests. The analysis of the test results are also presented to identify the effectiveness of these two types of water spray curtains in enhancing the LNG vapor cloud dispersion.  相似文献   

13.
The siting of facilities handling liquefied natural gas (LNG), whether for liquefaction, storage or regasification purposes, requires the hazards from potential releases to be evaluated. One of the consequences of an LNG release is the creation of a flammable vapor cloud, that may be pushed beyond the facility boundaries by the wind and thus present a hazard to the public. Therefore, numerical models are required to determine the footprint that may be covered by a flammable vapor cloud as a result of an LNG release. Several new models have been used in recent years for this type of simulations. This prompted the development of the “Model evaluation protocol for LNG vapor dispersion models” (MEP): a procedure aimed at evaluating quantitatively the ability of a model to accurately predict the dispersion of an LNG vapor cloud.This paper summarizes the MEP requirements and presents the results obtained from the application of the MEP to a computational fluid dynamics (CFD) model – FLACS. The entire set of 33 experiments included in the model validation database were simulated using FLACS. The simulation results are reported and compared with the experimental data. A set of statistical performance measures are calculated based on the FLACS simulation results and compared with the acceptability criteria established in the MEP. The results of the evaluation demonstrate that FLACS can be considered a suitable model to accurately simulate the dispersion of vapor from an LNG release.  相似文献   

14.
LNG接收站选址安全距离研究   总被引:1,自引:0,他引:1  
天然气作为一种清洁、优质能源在我国得到越来越广泛的应用,液化天然气(LNG)接收站的发展有助于解决我国能源紧张问题,促进能源供应多元化,但随之而来的安全问题也引起企业和社会的高度重视。对LNG接收站工艺做了简单介绍,分析其存在的危险有害因素,并对LNG接收站选址时的安全距离进行较深入的研究。参考了国内外主要规范,对规范要求的安全距离及采用挪威船级社Phast 6.6软件进行事故模拟确定的安全距离进行对比分析,事故模拟考虑了可燃气体扩散及火灾热辐射的影响范围。通过研究,对LNG接收站选址时与周边环境应保持的安全距离有更深入的认识。  相似文献   

15.
Concerns over public safety and security of a potential liquefied natural gas (LNG) spill have promoted the need for continued improvement of safety measures for LNG facilities. The mitigation techniques have been recognized as one of the areas that require further investigation to determine the public safety impact of an LNG spill. Forced mitigation of LNG vapors using a water curtain system has been proven to be effective in reducing the vapor concentration by enhancing the dispersion. Currently, no engineering criteria for designing an effective water curtain system are available, mainly due to a lack of understanding of the complex droplet–vapor interaction. This work applies computational fluid dynamics (CFD) modeling to evaluate various key design parameters involved in the LNG forced mitigation using an upwards-oriented full-cone water spray. An LNG forced dispersion model based on a Eulerian–Lagrangian approach was applied to solve the physical interactions of the droplet–vapor system by taking into account the various effects of the droplets (discrete phase) on the air–vapor mixture (continuous phase). The effects of different droplet sizes, droplet temperatures, air entrainment rates, and installation configurations of water spray applications on LNG vapor behavior are investigated. Finally, the potential of applying CFD modeling in providing guidance for setting up the design criteria for an effective forced mitigation system as an integrated safety element for LNG facilities is discussed.  相似文献   

16.
Liquified gas fuels are widely used around the world, and the growth of LNG and LPG consumption continues to increase. However, using these fuels can lead to accidents if they are released to the environment. Consequently, the challenge to control and predict such hazards has become an objective in emergency planning and risk analysis. In a previous article the “Dispersion Safety Factor” (DSF) was proposed, defined as the ratio between the distance at which the lower flammability limit concentration occurs and that corresponding to the visible contour of a vapor cloud. Its interest was demonstrated by applying it to the specific case of an LNG spill. With the appropriate modifications, this factor may be applied to the dispersion of other substances; in this communication it is applied to the atmospheric dispersion of propane, and two expressions are proposed to estimate it. Due to the similarity between the properties of both gases, these expressions could probably be applied as well to the dispersion of propylene.  相似文献   

17.
A methodology to perform consequence analysis associated with liquefied natural gas (LNG) for a deepwater port (DWP) facility has been presented. Analytical models used to describe the unconfined spill dynamics of LNG are discussed. How to determine the thermal hazard associated with a potential pool fire involving spilled LNG is also presented. Another hazard associated with potential releases of LNG is the dispersion of the LNG vapor. An approach using computational fluid dynamics tools (CFD) is presented. The CFD dispersion methodology is benchmarked against available test data. Using the proposed analysis approach provides estimates of hazard zones associated with newly proposed LNG deepwater ports and their potential impact to the public.  相似文献   

18.
A failure of a Liquefied Natural Gas (LNG) tanker can occur due to collision or rupture in loading/unloading lines resulting in spillage of LNG on water. Upon release, a spreading liquid can form a pool with rapid vaporization leading to the formation of a flammable vapor cloud. Safety analysis for the protection of public and property involves the determination of consequences of such accidental releases. To address this complex pool spreading and vaporization phenomenon of LNG, an investigation is performed based on the experimental tests that were conducted by the Mary Kay O'Connor Process Safety Center (MKOPSC) in 2007. The 2007 tests are a part of medium-scale experiments carried out at the Brayton Fire Training Field (BFTF), College Station. The dataset represents a semi-continuous spill on water, where LNG is released on a confined area of water for a specified duration of time. The pool spreading and vaporization behavior are validated using empirical models, which involved determination of pool spreading parameters and vaporization rates with respect to time. Knowledge of the pool diameter, pool height and spreading rate are found to be important in calculating the vaporization rates of the liquid pool. The paper also presents a method to determine the vaporization mass flux of LNG using water temperature data that is recorded in the experiment. The vaporization rates are observed to be high initially and tend to decrease once the pool stopped spreading. The results of the analysis indicated that a vaporization mass flux that is varying with time is required for accurate determination of the vaporization rate. Based on the data analysis, sources of uncertainties in the experimental data were identified to arise from ice formation and vapor blocking.  相似文献   

19.
Liquefied natural gas (LNG) is widely used to cost-effectively store and transport natural gas. However, a spill of LNG can create a vapor cloud, which can potentially cause fire and explosion. High expansion (HEX) foam is recommended by the NFPA 11 to mitigate the vapor hazard and control LNG pool fire. In this study, the parameters that affect HEX foam performance were examined using lab-scale testing of foam temperature profile and computational fluid dynamics (CFD) modeling of heat transfer in vapor channels. A heat transfer model using ANSYS Fluent® was developed to estimate the minimum HEX foam height that allows the vapors from LNG spillage to disperse rapidly. We also performed a sensitivity analysis on the effect of the vaporization rate, the diameter of the vapor channel, and the heat transfer coefficient on the required minimum height of the HEX foam. It can be observed that at least 1.2 m of HEX foam in height are needed to achieve risk mitigation in a typical situation. The simulation results can be used not only for understanding the heat transfer mechanisms when applying HEX foam but also for suggesting to the LNG facility operator how much HEX foam they need for effective risk mitigation under different conditions.  相似文献   

20.
In order to assess the potential risk of pipeline underwater leakage, a self-designed experimental setup is carried out to study the gas release rate and dispersion behavior in different release scenarios. A transparent organic glass tank with dimension of 1 m × 0.5 m × 0.5 m (height × width × length) was placed in a wind tunnel. The release pipeline made by stainless-steel with diameter of 25 mm were used to simulate for variation release depth. The different size and shape of leakage orifices in 1 mm, 3 mm, 5 mm in round and 3.5 × 2 mm, 7 × 1 mm in rectangle were designed for comparison. The medium of methane gas was released from the controllable cylinder. The variation parameters of flow rate and pressure were measured by a flow meter and pressure gauge respectively. A high speed camera was employed to recorded the phenomenology of dispersion characteristics and breakup process for a wide range of orifice size in the time-resolved images. The dynamic plume diameter on water surface was measured by a Vernier caliper placed above the water tank. The considered factors including orifice size, leakage pressure and water depth effect on gas flow rate and dispersion behavior was quantitative investigated. The fitting correlation between the gas flow rate and variation parameters can provide fundamental information for evaluation the hazard consequences of gas release in engineering application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号