首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为研究环境风速对液化天然气(LNG)泄漏扩散过程的影响,采用Fluent建立LNG连续泄漏计算流体力学模型,开展不同风速下LNG泄漏扩散过程的数值模拟研究。结果表明,LNG泄漏扩散分为扩散初期、扩散中期、扩散后期3个阶段,扩散过程中LNG从低温重气逐渐转变成轻质气体。环境风速对气云的扩散主要体现在:低于5级风时,云团以两侧卷吸为主,气云表现为"叶状分叉"、中间低两端高,此时气云横风向扩散较快,甲烷扩散距离与冻伤距离随风速增大而增大;而高于5级风时,云团以顶部卷吸为主,气云表现为云团坍塌、中间高两端低,此时气云垂直风向扩散较快,甲烷扩散距离与冻伤距离随风速增大而减小。初步建立了LNG蒸气云爆炸风险范围与冻伤区域和泄漏时间、环境风速的函数关系,可为爆炸风险区域和低温冻伤区域的预测提供理论支撑。  相似文献   

2.
The research activities in the project Assessing the Influence of Real Releases on Explosions (AIRRE) included a unique series of large-scale explosion experiments with high-momentum jet releases directed into congested geometries with subsequent ignition. The primary objective for the AIRRE project was to gain improved understanding of the effect that realistic releases and turbulent flow conditions have on the consequences of accidental gas explosions in the petroleum industry. A secondary objective was to develop a methodology that can facilitate safe and optimal design of process facilities. This paper presents selected results from experiments involving ignition of a highly turbulent gas cloud, generated by a large-scale, pressurised release of natural gas. The paper gives an overview of the effect on maximum explosion overpressures of varying the ignition position relative to the release point of the jet and a congested region placed inside the flammable cloud, with either a high or a medium level of congestion. For two of the tests, involving a jet release and the medium congestion rig, the maximum overpressures significantly exceeded those obtained in a quiescent reference test. The paper presents detailed results for selected tests and discusses the effect of the initial flow field generated by realistic releases – including turbulence, net flow and concentration gradients – on relevant explosion phenomena.  相似文献   

3.
Devastating vapour cloud explosions can only develop under appropriate (boundary) conditions. The record of vapour cloud explosion incidents from the past demonstrates that these conditions are readily met by the congestion by process equipment at (petro-) chemical plant sites. Therefore, the possibility of an accidental release of a flammable and a subsequent vapour cloud explosion is a major hazardous scenario considered in any risk assessment with regard to the process industries.If an extended flammable vapour cloud at a chemical plant site extends over more than one process unit, which are separated by lanes of sufficient width, the vapour cloud explosion on ignition develops the same number of separate blasts. If, on the other hand, the separation between the units is insufficient, the vapour cloud explosion develops one big blast. The critical separation distance (SD) is the criterion that allows discriminating in this matter for blast modelling purposes.This paper summarises some major results of an experimental research programme with the objective to develop practical guidelines with regard to the critical SD. To this end, a series of small-scale explosion experiments have been performed with vapour clouds containing two separate configurations of obstacles. Blast overpressures at various stations around have been recorded while the SD between the two configurations of obstacles was varied.The experimental programme resulted in some clear indications for the extent of the critical SD between separate areas of congestion. On the basis of safety and conservatism, these indications have been rendered into a concrete guideline. Application of this guideline would allow a greater accuracy in the modelling of blast from vapour cloud explosions.  相似文献   

4.
A typical building consists of a number of rooms; often with windows of different size and failure pressure and obstructions in the form of furniture and décor, separated by partition walls with interconnecting doorways. Consequently, the maximum pressure developed in a gas explosion would be dependent upon the individual characteristics of the building. In this research, a large-scale experimental programme has been undertaken at the DNV GL Spadeadam Test Site to determine the effects of vent size and congestion on vented gas explosions. Thirty-eight stoichiometric natural gas/air explosions were carried out in a 182 m3 explosion chamber of L/D = 2 and KA = 1, 2, 4 and 9. Congestion was varied by placing a number of 180 mm diameter polyethylene pipes within the explosion chamber, providing a volume congestion between 0 and 5% and cross-sectional area blockages ranging between 0 and 40%. The series of tests produced peak explosion overpressures of between 70 mbar and 3.7 bar with corresponding maximum flame speeds in the range 35–395 m/s at a distance of 7 m from the ignition point. The experiments demonstrated that it is possible to generate overpressures greater than 200 mbar with volume blockages of as little as 0.57%, if there is not sufficient outflow through the inadvertent venting process. The size and failure pressure of potential vent openings, and the degree of congestion within a building, are key factors in whether or not a building will sustain structural damage following a gas explosion. Given that the average volume blockage in a room in a UK inhabited building is in the order of 17%, it is clear that without the use of large windows of low failure pressure, buildings will continue to be susceptible to significant structural damage during an accidental gas explosion.  相似文献   

5.
井喷失控点火时间与方位探讨   总被引:1,自引:0,他引:1  
利用计算流体力学方法(CFD)对井喷失控后天然气扩散过程进行研究,在有限元基础上建立模型,采用κ-ε紊流模型求解得出井喷失控后可燃性蒸气云随时间、风速变化的影响情况,求出稳态以后易爆区域的蒸气云形状。取5.0%和15%作为甲烷的爆炸上、下限,在不同区域进行点火求解爆燃结果,通过比较给出推荐的点火时间和点火方位。该研究成果可对井喷失控蒸气云爆燃危害性进行预测,有助于指导井喷失控进行点火放喷工作,避免爆燃事故的发生。  相似文献   

6.
Natural gas is a kind of clean, efficient green energy source, which is used widely. Liquefied natural gas (LNG) is produced by cooling natural gas to −161 °C, at which it becomes the liquid. Once LNG was released, fire or explosion would happen when ignition source existed nearby. The high expansion foam (Hi-Ex foam) is believed to quickly blanket on the top of LNG spillage pool and warm the LNG vapor to lower the vapor cloud density at the ground level and raising vapor buoyancy. To identify the physical structure after it contacted with LN2 and to develop heat transfer model, the small-scale field test with liquid nitrogen (LN2) was designed. In experiment, three layers including frozen ice layer, frozen Hi-Ex layer and soft layer of Hi-Ex foam were observed at the steady state. By characterizing physical structure of the foam, formulas for calculating the surface of single foam bubble and counting foam film thickness were deduced. The micro heat transfer and evaporation model between cryogenic liquid and Hi-Ex foam was established. Indicating the physical structure of the frozen ice layer, there were a certain number of icicles below it. The heat transfer and evaporation mathematical model between the frozen ice layer and LNG was derived. Combining models above with the heat transfer between LNG, ground and cofferdam, the heat transfer and evaporation mathematical model of LNG covered by Hi-Ex foam was developed eventually. Finally, LN2 evaporation rate calculated by this model was compared with the measured evaporation rate. The calculated results are 1.2–2.1 times of experimental results, which were acceptable in engineering and proved the model was reliable.  相似文献   

7.
Blast damage to storage tanks and steel clad buildings   总被引:1,自引:0,他引:1  
The 2005 Buncefield vapour cloud explosion showed the huge cost associated with blast damage to commercial property surrounding a major explosion incident. In most cases there was serious disruption to business activity; in many cases the buildings had to be demolished or abandoned for long periods until extensive repairs were carried out.Another key feature of this and other recent vapour cloud explosions has been the damage done to storage tanks. The blasts almost invariably cause immediate top and bund fires in any tanks surrounded by the vapour – even if they contain relatively high flashpoint materials such as diesel.The first part of this paper describes the patterns of damage observed in buildings in the industrial estates around Buncefield. Methods for assessing the degree of external and internal damage are presented.The second part of the paper deals with failure modes and ignition of various types of liquid storage tank during vapour cloud explosions. Again, the Buncefield data provides excellent examples that illustrate the importance of tank design, fill level, location relative to the cloud, etc.  相似文献   

8.
A stochastic approach for evaluating the risk of vapor cloud explosions is proposed in this work. The proposed methodology aims to incorporate the effect of uncertainty into the risk analysis to produce a better overall view for the risk. Some stochastic variables are used to estimate the probability of vapor cloud explosions: frequency of the release, the probability of not having an immediate ignition, the probability of delayed ignition and the probability of a vapor cloud explosion given a delayed ignition, as well as different possible meteorological conditions. These stochastic variables are represented with probability distribution curves. Different curves for the frequencies of releases from process equipment types (steel process pipes, flanges, manual valves, actuated valves, etc.), different equipment diameters and different leak sizes are also used in this analysis. Monte Carlo simulation is performed to obtain the risk as a probability distribution using the Analytic Solver Platform. Then the risk distribution curve obtained by Monte Carlo simulation is used to estimate the probability of satisfying the risk tolerance criterion.  相似文献   

9.
Paying attention to the ignition potentiality of static electricity, the relation between the discharge characteristics and the ignition of a dust cloud and the gas produced was studied, applying an electrical power supply of which the electrical circuit is adjustable. The effect of ignition characteristics on dust and gas explosions was investigated. The results of the study indicate that the probability of an explosion is influenced by the minimum ignition energy, spark duration time, feeding rate of ignition energy, circuit capacitance, ignition voltage, etc.  相似文献   

10.
On 29 October 2009, at 19:30 IST, a devastating vapour cloud explosion occurred in a large fuel storage area at the Indian Oil Corporation (IOC) Depot in Jaipur, India, generating significant blast pressure. As a consequence of this explosion, the entire installation was destroyed, buildings in the immediate vicinity were heavily damaged, and windowpane breakages were found up to 2 km from the terminal. The IOC estimated that the total loss from the fire and explosion was approximately INR 2800 million.Ironically, as a storage site, the Jaipur terminal was not highly congested, and thus was not considered to have adequate potential for a vapour cloud explosion (VCE). Nevertheless, the prima facie evidences indicate that this was a case of VCE. Therefore, the main objective of this study is to quantify the potential overpressures due to vapour cloud explosions (VCEs) using the Process Hazard Analysis DNV Norway based PHAST 6.51 Software. The results are validated by the extent of the damage that had occurred. The estimation of the VCE shows that a maximum 1.0 bar overpressure was generated in the surrounding area. The initial assessment of the accident data roughly estimates the release mode, time, and amount of vaporized fuel. A more accurate estimate has been obtained by modelling the dispersion of vapour clouds in the surrounding atmosphere, which reveals trends and relationships for the occurrence of vapour cloud explosions.  相似文献   

11.
Liquefied natural gas (LNG) is widely used to cost-effectively store and transport natural gas. However, a spill of LNG can create a vapor cloud, which can potentially cause fire and explosion. High expansion (HEX) foam is recommended by the NFPA 11 to mitigate the vapor hazard and control LNG pool fire. In this study, the parameters that affect HEX foam performance were examined using lab-scale testing of foam temperature profile and computational fluid dynamics (CFD) modeling of heat transfer in vapor channels. A heat transfer model using ANSYS Fluent® was developed to estimate the minimum HEX foam height that allows the vapors from LNG spillage to disperse rapidly. We also performed a sensitivity analysis on the effect of the vaporization rate, the diameter of the vapor channel, and the heat transfer coefficient on the required minimum height of the HEX foam. It can be observed that at least 1.2 m of HEX foam in height are needed to achieve risk mitigation in a typical situation. The simulation results can be used not only for understanding the heat transfer mechanisms when applying HEX foam but also for suggesting to the LNG facility operator how much HEX foam they need for effective risk mitigation under different conditions.  相似文献   

12.
Computational modeling is a useful tool in determining the consequences from vapor cloud explosions. Here an approach that uses a flame-speed based combustion model is evaluated. Various scenarios of explosions in full-scale off-shore modules are simulated and compared to available test data. The ignition location of the cloud and available venting paths are found to affect the overpressure field in and outside the module. For end ignition cases, the combustion of gas pushed out of the module is found to play a key role. Using the flame-speed based model with appropriate effective flame speeds is found to provide accurate simulations.  相似文献   

13.
A devastating crude oil vapor explosion accident, which killed 62 people and injured 136, occurred on November 22, 2013. It was one of the most disastrous vapor cloud explosion accidents that happened in Qingdao's storm drains in China. It was noted that blast overpressure and flying debris were the main causes of human deaths, personal injuries and structure damages. Two months after the accident, it was reported that there were three contentious issues in the investigation report. First issue was the discrepancy between the temperature of the crude oil vapor explosive limits which were measured by the investigation panel and the temperature reported by the local fire department. Second issue was the contradiction between the upper explosive limit and vapor pressure of the crude oil vapor. The last issue was the location of the ignition source which led to the explosion.In the present study some specific features of this accident and various causes led to the explosion, high casualties and severe damages were analyzed. Three contentious issues in the official investigation report were investigated and tested in detail. The first element tested was the explosive limits and limiting oxygen concentration of the crude oil vapor at different temperatures. Based on theoretical analysis and field investigations, the last two elements in the report were analyzed from multiple perspectives. Based on the TNO Multi-Energy model and PROBIT equations, damage probability of affected people at the leaking site was also estimated. The investigation concluded with a result that precautions need to be taken to prevent flammable gas explosions in the drainage systems. Key steps were explicitly discussed for improving the hazard identification and risk assessment of similar accidents in the future.  相似文献   

14.
Methane/coal dust/air explosions under strong ignition conditions have been studied in a 199 mm inner diameter and 30.8 m long horizontal tube. A fuel gas/air manifold assembly was used to introduce methane and air into the experimental tube, and an array of 44 equally spaced dust dispersion units was used to disperse coal dust particles into the tube. The methane/coal dust/air mixture was ignited by a 7 m long epoxypropane mist cloud explosion. A deflagration-to-detonation transition (DDT) was observed, and a self-sustained detonation wave characterized by the existence of a transverse wave was propagated in the methane/coal dust/air mixtures.The suppressing effects on methane/coal dust/air mixture explosions of three solid particle suppressing agents have been studied. Coal dust and the suppressing agent were injected into the experimental tube by the dust dispersion units. The length of the suppression was 14 m. The suppression agents examined in this study comprised ABC powder, SiO2 powder, and rock dust powder (CaCO3). Methane/coal dust/air explosions can be efficiently suppressed by the suppression agents characterized by the rapid decrease in overpressure and propagating velocity of the explosion waves.  相似文献   

15.
Elongated congestion patterns are common at chemical processing and petroleum refining facilities due to the arrangement of processing units. The accidental vapor cloud explosion (VCE) which occurred at the Buncefield, UK facility involved an elongated congested volume formed by the trees and undergrowth along the site boundary. Although elongated congested volumes are common, there have been few evaluations reported for the blast loads produced by elongated VCEs. Standard VCE blast load prediction techniques do not directly consider the impact of this congested volume geometry versus a more compact geometry.This paper discusses an evaluation performed to characterize the blast loads from elongated VCEs and to identify some significant differences in the resulting blast wave shape versus those predicted by well-known VCE blast load methodologies (e.g., BST and TNO MEM). The standard blast curves are based on an assumption that the portion of the flammable gas cloud participating in the VCE is hemispherical and located at grade level. The results of this evaluation showed that the blast wave shape for an elongated VCE in the near-field along the long-axis direction is similar to that for an acoustic wave generated in hemispherical VCEs with a low flame speed. Like an acoustic wave, an elongated VCE blast wave has a very quick transition from the positive phase peak pressure to the negative phase peak pressure, relative to the positive phase duration. The magnitude of the applied negative pressure on a building face depends strongly on the transition time between the positive and negative phase peak pressures, and this applied negative phase can be important to structural response under certain conditions. The main purpose of this evaluation was to extend previous work in order to investigate how an elongated VCE geometry impacts the resultant blast wave shape in the near-field. The influence of the normalized flame travel distance and the flame speed on the blast wave shape was examined. Deflagration and deflagration-to-detonation transition regimes were also identified for unconfined elongated VCEs as a function of the normalized flame travel distance and flame speed attained at a specified flame travel distance.  相似文献   

16.
Storage tank separation distance, which considerably affects forestalling and mitigating accident consequences, is principally determined by thermal radiation modeling and meeting industry safety requirements. However, little is known about the influence of separation distance on gas dispersion or gas explosion, which are the most destructive types of accidents in industrial settings. This study evaluated the effect of separation distance on gas dispersion and vapor cloud explosion in a storage tank farm. Experiments were conducted using Flame Acceleration Simulator, an advanced computational fluid dynamics software program. Codes governing the design of separation distances in China and the United States were compared. A series of geometrical models of storage tanks with various separation distances were established. Overall, increasing separation distance led to a substantial reduction in vapor cloud volume and size in most cases. Notably, a 1.0 storage diameter separation distance appeared to be optimal. In terms of vapor cloud explosion, a greater separation distance had a marked effect on mitigating overpressure in gas explosions. Therefore, separation distance merited consideration in the design of storage tanks to prevent gas dispersion and explosion.  相似文献   

17.
In recent decades, vapor cloud explosions (VCEs) have occurred frequently and resulted in numerous personnel injuries and large property losses. As a main concern in the petrochemical industry, it is of great importance to assess the consequence of VCEs. Currently, the TNT equivalency method (TNT EM), the TNO multi-energy method (TNO MEM), and the Baker-Strehlow-Tang (BST) method are widely used to estimate the blast load from VCEs. The TNO MEM and BST method determine the blast load from blast curves based on the class number and the flame speed, respectively. To quantitatively evaluate the flame speed for the BST method, the experimental data is adopted to validate the confinement specific correlation (CSC) for the determination of the class number in the TNO MEM. As a bridge, a quantitative evaluation correlation (QEC) between CSC correlation and the flame speed is established and the blast wave shapes corresponding to different flame speeds are proposed. CFD software FLACS was used to verify the quantitative correlation with the numerical models of three geometrical scales. It is found that the calculated flame speeds by the QEC are in good agreement with the simulated ones. A petrochemical plant is selected as a realistic scenario to analyze the TNT EM, TNO MEM, BST method and FLACS simulations in terms of the positive-phase side-on overpressure and impulse at different distances. Compared with the flame speed table, the predicted overpressure from BST curves determined by the proposed QEC is closer to that from FLACS and more conservative. Furthermore, the predicted results of different methods are compared with each other. It is found that the estimated positive-phase side-on overpressure and impulse by the TNO MEM are the largest, and the estimated impulse by the TNT EM is the smallest. Moreover, the estimated overpressure and impulse are larger in the higher reactivity gas.  相似文献   

18.
The majority of powders that are used in the processing industries are combustible (also referred to as flammable, explosible). An explosion will occur if the concentration of the combustible dust that is suspended in air is sufficient to propagate flame when ignited by a sufficiently energetic ignition source.A systematic approach to identifying dust cloud explosion safety against their consequences generally involves:-Identification of locations where combustible dust cloud atmospheres could be present-Understanding of the explosion characteristics of the dust(s)-Identification of potential ignition sources that could be present under normal and abnormal conditions-Proper process and facility design to eliminate and/or minimize the occurrence of dust explosions and protect people and facilities against their consequences-Adequate maintenance of facilities to prevent ignition sources and minimize dust releaseThis presentation will discuss the conditions that are required for dust cloud explosions to occur and presents a well-tried approach to identify, assess, and eliminate/control dust explosion hazards in facilities.  相似文献   

19.
Massive offshore and onshore storage of fuel have led the international community to raise questions about the hazards on the surrounding installations and people. Among the possible accidental scenarios when cryogenic gas as liquefied natural gas (LNG) is spilled on water at a very fast rate, the phenomenon of rapid phase transition (RPT) may occur: large amounts of energy are released during phase transition which can generate explosions. The related consequences should be added to the possible consequences of fire in terms of flash fire, fireball, pool fire, and vapour cloud explosion for confined and congested geometry surrounding the release point.In this paper, the analysis of RPT of LNG has been studied from the point of view of blast wave production, through ab initio acoustic analysis for monopole source. Maximum overpressures, as calculated at the source point and along the blast pathway are compared with results of large scale experiments. Safety distances are given for the sake of comparison with threshold distances reported in the open literature.  相似文献   

20.
选择具体的液化石油气储配站,分析了该站的危险特性、危险产生的途径及可能造成的后果。在没有任何防护措施的情况下,采用蒸气云爆炸和沸腾液体扩展蒸气云爆炸模型,对该站一个50m3储罐发生泄漏造成的火灾爆炸事故后果进行预测,得出火灾爆炸后的安全距离为大于211.0m。在储配站不能满足此安全距离的基础之上,从防止产生爆炸性气体环境、消除点火源和抑制事故扩大三方面来提出有效的安全措施,降低事故发生的概率及事故造成的损失。其中,站址选在全年最小频率风向的上风侧且周围空旷的地区,罐上设置液位计、压力表、温度计及可燃气体报警器可防止产生爆炸性气体环境;罐及管道设静电接地,法兰用铜线跨接,站内设警示标志可消除点火源;生产区与辅助区间设置隔离墙,罐区周围设置砖混围堤,罐上设安全阀可抑制火灾爆炸事故扩大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号