首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Natural gas is a kind of clean, efficient green energy source, which is used widely. Liquefied natural gas (LNG) is produced by cooling natural gas to −161 °C, at which it becomes the liquid. Once LNG was released, fire or explosion would happen when ignition source existed nearby. The high expansion foam (Hi-Ex foam) is believed to quickly blanket on the top of LNG spillage pool and warm the LNG vapor to lower the vapor cloud density at the ground level and raising vapor buoyancy. To identify the physical structure after it contacted with LN2 and to develop heat transfer model, the small-scale field test with liquid nitrogen (LN2) was designed. In experiment, three layers including frozen ice layer, frozen Hi-Ex layer and soft layer of Hi-Ex foam were observed at the steady state. By characterizing physical structure of the foam, formulas for calculating the surface of single foam bubble and counting foam film thickness were deduced. The micro heat transfer and evaporation model between cryogenic liquid and Hi-Ex foam was established. Indicating the physical structure of the frozen ice layer, there were a certain number of icicles below it. The heat transfer and evaporation mathematical model between the frozen ice layer and LNG was derived. Combining models above with the heat transfer between LNG, ground and cofferdam, the heat transfer and evaporation mathematical model of LNG covered by Hi-Ex foam was developed eventually. Finally, LN2 evaporation rate calculated by this model was compared with the measured evaporation rate. The calculated results are 1.2–2.1 times of experimental results, which were acceptable in engineering and proved the model was reliable.  相似文献   

2.
Evaluating potential hazards caused by accidental LNG release from underwater pipelines or vessels is a significant consideration in marine transportation safety. The aim of this study was to capture the dynamic behavior of LNG jet released under water and to analyze its vapor dispersion characteristics and combustion characteristics on the water surface during different release scenarios. Controlled experiments were conducted where LNG was jet released from a cryogenic storage tank. The dynamic process of LNG being jet released from orifices of different sizes and shapes, as well as the rising plume structure, were captured by a high-speed camera. The leakage flow rate and pipeline pressure were recorded by a flow meter and pressure gauge, respectively. The concentration distribution that emanated from the water surface was measured utilizing methane sensors in different positions with various wind speeds. The flame combustion characteristics of LNG vapor clouds, which immediately ignited upon the enclosed water tank, were also recorded. Additionally, the mass burning rate of the flame on the water surface was evaluated, and a new correlation between the ratio of flame length and width was established. The results indicated a large dimensionless heat release rate (Q*) and a continuous release flow rate in a limited burning area. This study could provide greater understanding of the mechanisms of LNG release and combustion behavior under water.  相似文献   

3.
A high speed flow visualization experiment was conducted to characterize the boiling induced turbulence when a cryogenic liquid is released on water. The advective transport of turbulent structures traversing through the liquid was captured and reconstructed using image processing software to obtain information on velocity components. The numerical results obtained from image processing were used to determine turbulence parameters like turbulent intensity, turbulent kinetic energy and eddy dissipation rate. An interesting aspect of the study was the formation of wavy structures called ‘thermals’ which were characteristic of turbulent convection. The thermals were found to act as a catalyst in increasing heat transfer and turbulence between water and cryogenic pool. The turbulent intensity was influenced by the turbulent velocity and had direct effects on the vaporization flux. Among the turbulence parameters, increase in turbulent kinetic energy resulted in faster vaporization of cryogenic liquid through enhanced mixing, whereas variations in the eddy dissipation rate had weak dependence on vaporization. Additionally, the initial height of cryogenic liquid was also found to strongly affect the vaporization mass flux.  相似文献   

4.
泡沫灭火剂在扑灭液体火灾中起到重要作用,关于低温液体蒸气云扩散控制的研究也逐渐得到应用。通过小尺寸模拟试验验证高倍泡沫加速泄漏LNG扩散的有效性,设计并进行了低温液体自然蒸发和高倍泡沫覆盖低温液体两个对照试验,测量了竖直方向上10个高度处的温度及装置整体质量,从而获取了低温液体蒸气到达泡沫层顶端时温度及蒸发速率的变化情况。结果表明,与未添加泡沫的情况对比,高倍泡沫的覆盖使泄漏低温液体在1 800 s内的蒸发量减少了6.4%,如果时间更长则减少的比例更多,且蒸发出的低温液体穿过泡沫层后蒸气温度可达0℃左右,而未添加泡沫时同等高度处蒸气温度为-75℃左右。0℃时,LNG蒸气密度已明显小于空气密度,此温度下LNG蒸气会迅速向上扩散,而不至在地表积聚,由此证明高倍泡沫能够加速泄漏低温液体蒸气向上扩散,减小了低温液体蒸气在地面积聚并引发火灾爆炸事故的可能性,从而证实了高倍泡沫加速泄漏LNG扩散的有效性。  相似文献   

5.
One of the LNG accident scenarios is the collision of an LNG carrier on an iceberg during marine transportation. A collision can result in damages to the vessel and lead to the leakage of the contents on ice or an ice-water mixture. When cryogenic liquid comes in contact with ice, it undergoes rapid vaporization due to the difference in temperature between the ice and cryogenic liquid. This process is different from the heat transfer between water and cryogenic liquid as ice is a solid and thus heat transfer to the pool occurs primarily through conduction. In this paper, the heat transfer phenomenon between ice and cryogenic liquid was studied through a small-scale experiment and the resulting vaporization mass fluxes were reported. The experiment involved six spills with varying amount of liquid nitrogen on different ice temperature to determine its effect on vaporization mass flux. The vaporization mass fluxes were determined by direct measurement of the mass loss during the experiment. The results indicated that the vaporization mass flux was a function of release rate and ice temperature. When the release rate and ice temperature was high, the vaporization mass flux follows a decreasing trend. With further reduction in release rate and ice temperature, the vaporization mass flux was found to be independent with time. The one dimensional conduction model was validated against experimental results. The predicted temperatures and heat flux were found to be in good agreement with the experimental data.  相似文献   

6.
One of the scenarios of concern in assessing the safety issues related to transportation of LNG in a marine environment (ship or underwater pipeline) is the release of LNG underwater. This scenario has not been given the same level of scientific attention in the literature compared to surface releases and assessment of consequences therefrom. This paper addresses questions like, (1) does an LNG spill underwater form a pool on the water surface and subsequently evaporate like an LNG spill “on the surface” producing cold, heavier than air vapors?, and (2) what is the range of expected temperatures of the vapor, generated by LNG release due to heat transfer within the water column, when it emanates from the water surface?Very limited data from two field tests of LNG underwater release are reviewed. Also presented are the results from tests conducted in other related industries (metal casting, nuclear fission and fusion, chemical processing, and alternative fuel vehicles) where a hot (or cold) liquid is injected into a bulk cold (or hot) liquid at different depths.A mathematical model is described which calculates the temperature of vapor emanating at the water surface, and the liquid fraction of released LNG that surfaces, if any, to form a pool on the water surface. The model includes such variables as the LNG release rate, diameter of the jet at release, depth of release and water body temperature. Results obtained from the model for postulated release conditions are presented. Comparison of predicted results with available LNG underwater release test data is also provided.  相似文献   

7.
The use of computational fluid dynamics (CFD) models to simulate LNG vapor dispersion scenarios has been growing steadily over the last few years, with applications to LNG spills on land as well as on water. Before a CFD model may be used to predict the vapor dispersion hazard distances for a hypothetical LNG spill scenario, it is necessary for the model to be validated with respect to relevant experimental data. As part of a joint-industry project aimed at validating the CFD methodology, the LNG vapor source term, including the turbulence level associated with the evaporation process vapors was quantified for one of the Falcon tests.This paper presents the method that was used to quantify the turbulent intensity of evaporating LNG, by analyzing the video images of one of the Falcon tests, which involved LNG spills onto a water pond. The measured rate of LNG pool growth and spreading and the quantified turbulence intensity that were obtained from the image analysis were used as the LNG vapor source term in the CFD model to simulate the Falcon-1 LNG spill test. Several CFD simulations were performed, using a vaporization flux of 0.127 kg/m2 s, radial and outward spreading velocities of 1.53 and 0.55 m/s respectively, and a range of turbulence kinetic energy values between 2.9 and 28.8 m2/s2. The resulting growth and spread of the vapor cloud within the impounded area and outside of it were found to match the observed behavior and the experimental measured data.The results of the analysis presented in this paper demonstrate that a detailed and accurate definition of the LNG vapor source term is critical in order for any vapor cloud dispersion simulation to provide useful and reliable results.  相似文献   

8.
The need for sustainable energy sources, as well as the current energetic crisis involving the majority of markets, has promoted the use of cryogenic liquefaction for the transportation and storage of natural gas (i.e., LNG). To guarantee the development of a robust and safe infrastructure, a complete understanding of the main phenomena occurring at low temperatures is paramount. In this sense, the largest grey areas are the characterization of the combustion at low-initial temperature and the interactions between water and cryogenic liquid. For these reasons, this work presents an experimental campaign on the possible mitigation strategies for the mitigation of consequences related to the accidental release of LNG. Particular emphasis was posed on the direct and indirect effects of water on cryogenic pool fire. The former resulted in a significant increase in the dimensions of fire (∼+50%) and burning rate (∼300%) with respect to the case with no direct contact between water and LNG, whereas the latter generated an abrupt decrease in the measured temperatures (<100 °C). The use of an emergency flare to empty an LNG tank was tested, as well. The spatial distribution of temperature was monitored along with the time to guarantee the safe operability of this equipment in the case of LNG combustion. The explanations for the observed phenomena and trends were provided, allowing for the development of safe procedures for the emergency response related to cryogenic fuels.  相似文献   

9.
An underwater LNG release test was conducted to understand the phenomena that occur when LNG is released underwater and to determine the characteristic of the vapor emanating from the water surface. Another objective of the test was to determine if an LNG liquid pool formed on the water surface, spread and evaporated in a manner similar to that from an on-the-surface release of LNG.A pit of dimensions 10.06 m × 6.4 m and 1.22 m depth filled with water to 1.14 m depth was used. A vertically upward shooting LNG jet was released from a pipe of 2.54 cm diameter at a depth of 0.71 m below the water surface. LNG was released over 5.5-min duration, with a flow rate of 0.675 ± 0.223 L/s. The wind speed varied between 2 m/s and 4 m/s during the test.Data were collected as a function of time at a number of locations. These data included LNG flow rate, meteorological conditions, temperatures at a number of locations within the water column, and vapor temperatures and concentrations in air at different downwind locations and heights. Concentration measurements were made with instruments on poles located at 3.05 m, 6.1 m and 9.14 m from the downwind edge of the pit and at heights 0.46 m, 1.22 m, and 2.13 m. The phenomena occurring underwater were recorded with an underwater video camera. Water surface and in-air phenomena including the dispersion of the vapor emanating from the water surface were captured on three land-based video cameras.The lowest temperature recorded for the vapor emanating from the water surface was −1 °C indicating that the vapor emitted into air was buoyant. In general the maximum concentration observed at each instrument pole was progressively at higher and higher elevations as one traveled downwind, indicating that the vapor cloud was rising. These findings from the instrument recorded data were supported by the visual record showing the “white” cloud rising, more or less vertically, in air. No LNG pool was observed on the surface of water. Discussions are provided on the test findings and comparison with predictions from a previously published theoretical model.  相似文献   

10.
Liquefied Natural Gas (LNG) storage facilities generally include channels to convey potential spills of the liquid to an impoundment. There is increasing concern that dispersion of vapors generated by flow of LNG in a channel may lead to higher than limit vapor concentrations for safety at site boundary from channels that may be close to the dike walls. This issue is of recent concern to regulatory agencies, because the calculation of vapor hazard distance(s) from LNG flow in a channel is not required under existing LNG facility siting standards or regulations.An important parameter that directly affects the calculated LNG vapor dispersion distance is the source strength (i.e., the rate of vaporization of LNG flow from the wetted channel surfaces, as a function of spatial position and time). In this paper a model is presented which considers the variation of the depth of the flowing LNG with spatial location and time, and calculates the spatial and temporal dependence of the mass rate of vapor generation. Self similar profiles for the spatial variation of the thermal boundary layer in the liquid wetted wall and liquid depth variation are assumed. The variation with time of the location of the liquid spread front and the evaporation rate are calculated for the case of a constant LNG spill rate into a rectangular channel. The effects of two different channel slopes are evaluated. Details of the results and their impact on dispersion distances are discussed.  相似文献   

11.
The vaporisation of a liquid nitrogen pool spilled on concrete ground was investigated in small scale field experiments. The pool vaporisation rate and the heat transfer from the concrete ground were measured using a balance and a set of embedded heat flux sensors and thermocouples. The ability to predict the concrete's thermal properties based on these measurements was investigated. This work showed that a simple, one-dimensional theoretical model, assuming heat conduction through a semi-infinite ground with ideal contact between the cryogenic liquid and the ground, commonly used to describe the heat transfer from a ground to the LNG, can be used to match the observed vaporisation rate. Though estimated parameters, thermal conductivity and thermal diffusivity, do not necessary represent real values. Although the observed vaporization rate follows a linear trend, and thus can be well represented by the model, the overall model prediction seems to be overestimated. The temperature profile inside the concrete is slightly over-predicted at the beginning and under-predicted at later stage of the spill. This might be an effect of the dependence of the concrete's thermal properties on the temperature or may indicate an incorrect modelling and a varying temperature of the ground surface.  相似文献   

12.
The prediction of the potential hazards associated to accidental liquefied natural gas (LNG) spills has motivated a number of different studies including experimental and numerical approaches. Most of these studies focus on dispersion predictions, however there is limited information regarding source term of it: liquid spill and vaporization. There is a need of further improvements on the understanding of these phenomena and the quantification of the most important parameters that can affect them.The vaporization of cryogenic liquids is governed by the heat transfer phenomena including conduction, convection and thermal radiation mechanisms. The present work investigates the contribution of each of these heat transfer modes to the vaporization rate of cryogenic liquid nitrogen (LN2) contained in a Dewar flask using well controlled and instrumented laboratory scale experiments. LN2 vaporization rate was measured with individually controllable contributions from convective (generated by an electric fan) and thermal radiative (generated by light bulb) heat transfer in the presence of a baseline conductive heat transfer rate.In both cases of convection and radiation analysis the experimental study showed that they can play a significant role in the vaporization rate of LN2. It was observed that the radiative heat absorbed by the LN2 during the vaporization experiment represents only 50%–65% of the incident radiation that would reach the LN2 pool surface if no vapour was present. Convective heat transfer generated by the fan was shown to have had the most significant contribution to the total heat transfer. As expected, this contribution was significantly higher than the one from bulb radiation. The experimental data also showed that the liquid level in the Dewar play a key role in the resulting amount of convective heat transfer. This could be attributed to the fact that lower liquid level the side walls of the Dewar were high enough to hold a layer of vapour and limit air motion directly above the liquid surface, thus limiting the heat transfer by convection.  相似文献   

13.
The authors have recently undertaken a major review of LNG consequence modeling, compiling a wide range of historical information with more recent experiments and modeling approaches in a book entitled “LNG Risk-Based Safety: Modeling and Consequence Analysis”. All the main consequence routes were reviewed – discharge, evaporation, pool and jet fire, vapor cloud explosions, rollover, and Rapid Phase Transitions (RPT’s). In the book, experimental data bases are assembled for tests on pool spread and evaporation, burn rates, dispersion, fire and radiation and effects on personnel and structures. The current paper presents selected highlights of interest: lessons learned from historical development and experience, comparison of predictions by various models, varying mechanisms for LNG spread of water, a modeling protocol to enable acceptance of newer models, and unresolved technical issues such as cascading failures, fire engulfment of a carrier, the circumstances for a possible LNG BLEVE, and accelerated evaporation by LNG penetration into water.  相似文献   

14.
The use of LNG (liquefied natural gas) as fuel brings up issues regarding safety and acceptable risk. The potential hazards associated with an accidental LNG spill should be evaluated, and a useful tool in LNG safety assessment is computational fluid dynamics (CFD) simulation. In this paper, the ADREA-HF code has been applied to simulate LNG dispersion in open-obstructed environment based on Falcon Series Experiments. During these experiments LNG was released and dispersed over water surface. The spill area is confined with a billboard upwind of the water pond. FA1 trial was chosen to be simulated, because its release and weather conditions (high total spill volume and release rate, low wind speed) allow the gravitational force to influence the cold, dense vapor cloud and can be considered as a benchmark for LNG dispersion in fenced area. The source was modeled with two different approaches: as vapor pool and as two phase jet and the predicted methane concentration at sensors' location was compared with the experimental one. It is verified that the source model affect to a great extent the LNG dispersion and the best case was the one modeling the source as two phase jet. However, the numerical results in the case of two phase jet source underestimate the methane concentration for most of the sensors. Finally, the paper discusses the effect of neglecting the ?9.3° experimental wind direction, which leads to the symmetry assumption with respect to wind and therefore less computational costs. It was found that this effect is small in case of a jet source but large in the case of a pool source.  相似文献   

15.
The recent publication of evaluation protocols for vapor source term models and vapor dispersion models have influenced the modeling approaches that can be used for approval of new and expansion projects at LNG receiving terminals. In the past few years the scientific basis of integral vapor source term models has been questioned with growing concerns regarding their validity. In this paper, the shallow water equations (SWEs) were solved to study the characteristics of the evaporating LNG pool associated with a constant flow rate spill of LNG into a concrete sump. In the early stages of pool spreading, the leading edge thickness profile of the SWE model scales with the square root of the distance from the leading edge as the pool spreads. After the edge of the pool reaches the wall, the reflected wave forms a hydraulic jump that travels back towards the center of the pool at a speed that is considerably slower than the initial spreading of the pool. Once the hydraulic jump reaches the center, the pool assumes a nearly flat free surface for the rest of the spill. The pool spreading and the rate of evaporation from the SWEs were then compared to the solution provided by the integral model, PHAST. The two approaches were found to agree well with one another. The SWE model was also used to demonstrate the influence of an elevated spill source. With an elevated source, the LNG pool spreads faster, significantly increasing the initial rate of vaporization and peak vaporization rate. This increase in the initial rate of vaporization could lead to an increase in the vapor cloud hazard distance. The SWE model was also used to demonstrate the influence of an inclined sump floor in the shape of an inverted cone where the spilling LNG accumulates in the low vertex of the cone. Inclined sump floors can be used to significantly reduce the cumulative evaporation, making them attractive as a possible mitigation approach in cases where a containment sump is located close to a property boundary.  相似文献   

16.
The investigation of cryogenic liquid pool spreading is an essential procedure to assess the hazard of cryogenic liquid usage. There is a wide range of models used to describe the spreading of a cryogenic liquid pool. Many of these models require the evaporation velocity, which has to be determined experimentally because the heat transfer process between the liquid pool and the surroundings is too complicated to be modeled. In this experimental study, to measure the evaporation velocity when the pool is spreading, liquid nitrogen was continuously released onto unconfined concrete ground. Almost all of the reported results are based on a non-spreading pool in which cryogenic liquid is instantaneously poured onto bounded ground for a very short period of time. For the precise measurement of pool spreading and evaporation weight with time, a cone-type funnel was designed to achieve a nearly constant liquid nitrogen release rate during discharge. Specifically, three nozzles with nominal flow rates of 3.4 × 10−2 kg/s, 5.6 × 10−2 kg/s and 9.0 × 10−2 kg/s were used to investigate the effect of the release rate on the evaporation velocity. It is noted that information about the release rate is not necessary to measure the evaporation velocity in case of the non-spreading pool. A simultaneous measurement of the pool location using thermocouples and of the pool mass using a digital balance was carried out to measure the evaporation velocity and the pool radius. A greater release flow rate was found to result in a greater average evaporation velocity, and the evaporation velocity decreased with the spreading time and the pool radius.  相似文献   

17.
为了评价在开阔水面上的液化天然气(LNG)火灾和蒸气云爆炸灾害后果,分析了LNG水面扩展动态过程;对比分析了Fay模型、FERC模型和计算流体力学软件FLACS的计算结果,探讨了LNG液池面积随时间的动态变化过程,分析了泄漏量、泄漏速率等参数对LNG液池扩展半径的影响;根据液池扩展模型的计算结果,确定了LNG液池的最大面积,并以此分析了LNG流淌火灾的辐射危害。研究结果表明:对于相同的泄漏条件,3种方法模拟的泄漏LNG水面扩展动态过程相似,一般情况下,FLACS模型,FERC模型和Fay模型所计算的最大液池半径依次增大;由于FERC模型与FLACS软件的模拟结果接近且偏于保守,故此在一般的工程应用时,采用FERC模型即可方便快捷地获得较为准确的结果。  相似文献   

18.
The objective of this work is to investigate the horizontal stretching effect of ground on high-pressure vapor jet of LNG tank leakage near the ground. A numerical model for leakage jet was developed and several series of leakage scenarios were theoretically analyzed for different heights of the tank orifice, inner pressures and outer temperatures. The results show that the near ground plays an important role in the horizontal transportation of LNG leakage vapor. The corresponding danger distance is surprisingly lengthened because of the horizontal stretching of leakage vapor cloud by the ground nearby, especially for those cases with a lower orifice on tank. It is illustrated that there is an obvious change for the central axis track, gas concentration and velocity of the jet in the far-field during the jet is touching the ground. In addition, the dimensionless analyses on the dependence of gas concentration, velocity and gas concentration on the transportation distance indicated that there were two stages of deflection behaviors of the jet. Finally, the enlarged danger distance by the horizontal stretching for the LNG tank leakage with a low orifice indicated the more dangerous scene of those leakage close on ground. The data and revelation here about the danger area prediction can be an important guide for the emergency management during the LNG tank leakage accidents.  相似文献   

19.
Many release problems involve two-phase releases of hazardous materials of superheated liquids with high energy into the atmosphere. Such accidents are accompanied by violent phase transition and form catastrophic flashing jets. In this work, experimental and theoretical analyses were conducted to investigate dynamic characteristics of flashing jet morphology and their dependence on pressure-decay dynamics under different storage pressures, superheats, and nozzle diameters. Flashing jet morphology and angle throughout two-phase releases were captured by a high-speed camera, and the corresponding source pressure in the superheated liquid tank was measured simultaneously. Results show that three typical phases, expansion, stabilization, and decay, are characterized throughout two-phase release based on the evolution of flashing jet morphology. The jet initially expands gradually due to the enhancement of phase transition intensity, and then keeps stable when the intensity reaches its maximum, and terminally decays rapidly due to the depletion of superheated liquid. Phase transition intensity at the nozzle exit is mainly controlled by the pressure-decay dynamics. Bubbles nucleation inception sites gradually move upstream of the nozzle during the pressure decay process increasing the phase transition intensity. The increase of storage pressure, superheat and nozzle diameter promotes the mechanical and thermodynamic effects on the jet breakup. The significant increase of mechanical and thermodynamic effects effectively accelerates droplets evaporation and further affects flashing jet morphology.  相似文献   

20.
主要利用FLACS软件,对水陆两处不同的界面下,LNG在同等气象条件下的扩散情况做了相关研究,利用FLACS软件前置处理器CASD对建立简单模型,拟定计算方案进行模拟仿真,对模拟结果进行整理分析后,得到水陆两个不同扩散层面液化天然气气液两相扩散结果与最大扩散距离。处理数据得到LNG气液两相扩散距离,对比结果可知LNG在水面蒸发速率大于地面蒸发速率且扩散距离远远大于地面扩散距离,可燃区域覆盖面更为宽广,说明水面扩散速率大于地面扩散速率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号