首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Muckian L  Grant R  Doyle E  Clipson N 《Chemosphere》2007,68(8):1535-1541
Bacterial community structure was examined in polycyclic aromatic hydrocarbon (PAH) contaminated soil taken from a timber treatment facility in southern Ireland. Profiles of soil bacterial communities were generated using a molecular fingerprinting technique, terminal restriction fragment length polymorphism (TRFLP), and results were interpreted using sophisticated multivariate statistical analysis. Findings suggested that there was a correlation between PAH structure and bacterial community composition. Initial characterisation of soil from the timber treatment facility indicated that PAH contamination was unevenly distributed across the site. Bacterial community composition was correlated with the type of PAH present, with microbial community structure associated with soil contaminated with two-ringed PAHs only being distinctly different to communities in soils contaminated with multi-component PAH mixtures. Typically the number of bacterial ribotypes detected in samples did not appear to be adversely affected by the level of contamination.  相似文献   

2.
多环芳烃污染土壤生物修复的强化方法   总被引:3,自引:0,他引:3  
生物降解是去除环境中多环芳烃(PAHs)的重要途径,通过采取一些强化措施,如使用表面活性剂,添加营养物质和提供共代谢底物等,可显著提高PAHs降解速度和程度,为生物修复技术的成功应用提供前提。在分析中,对近年来国内外在PAHs污染土壤生物修复强化方面的研究进展进行了综述。  相似文献   

3.
Polycyclic aromatic hydrocarbons (PAHs) are a group of toxic, persistent, bioaccumulating organic compounds containing two or more fused aromatic rings. They are listed by the U.S. Environmental Protection Agency as priority pollutants because of their carcinogenicity and toxicity. Employing ozonation as a remediation technique, this work investigated the treatability of a sediment sample from a freshwater boat slip subjected to coal tar contamination over a long period. The contaminated sediment sample contained high levels of PAHs in the forms of naphthalene, phenanthrene, pyrene, and benzo[a]pyrene, among other byproducts present in the humic and solid phases of the sediment. The objectives of this work were to examine (1) the degradation of PAHs in the contaminated sediment as treated by ozonation in the slurry form, (2) the effects of ozonation upon the soil matrix and the biodegradability of the resultant PAH intermediates, and (3) the feasibility of a combined technique using O3 as a pretreatment followed by biological degradation. The sediment was made into 3% w/w soil slurries and ozonated in a 1.7-L semi-batch, well-stirred reactor equipped with pH control and a cold trap for the gaseous effluent. Samples were collected after different ozonation durations and tested for biochemical oxygen demand (BOD), chemical oxygen demand (COD), UV absorbance, and toxicity, along with quantitative and qualitative determinations of the parent and daughter intermediates using gas chromatography/flame ionization detection (GC/FID), GC/mass spectrometry (MS), and ion chromatography (IC) techniques. The GC/MS technique identified 16 compounds associated with the humic and solid phases of the sediment. Intermediates identified at different ozonation times suggested that the degradation of PAHs was initiated by an O3 attack resulting in ring cleavage, followed by the intermediates' oxidation reactions with O3 and the concomitant OH radical toward their mineralization. Results suggested that ozonation for 2 hr removed 50-100% of various PAHs in the solid and liquid phases (as well as the aqueous and gaseous media resulting from the treatment process) of the sediment sample and that organic and inorganic constituents of the sediment were also altered by ozonation. Measurements and comparisons of BOD, COD, UV absorbance, and toxicity of the samples further suggested that ozonation improved the bioavailability and biodegradability of the contaminants, despite the increased toxicity of the treatment effluent. An integrated chemical-biological system appeared to be feasible for treating recalcitrant compounds.  相似文献   

4.
Quercus ilex L. leaves were collected four times in one year at six urban sites and one remote area in order to determine trace element and PAH accumulation through concomitant analyses of unwashed and water-washed leaves. Both unwashed and washed leaves showed the highest amounts of trace elements and PAHs in the urban area. Unwashed leaves showed greater differences between urban and remote areas and among the urban sites than washed leaves for trace element and PAH concentrations. Water-washing resulted in a significant (P<0.001) decrease in leaf concentrations of Cr, Cu, Fe, Pb, V and Zn. By contrast, Cd and total PAH concentrations showed no differences between unwashed and washed leaves.  相似文献   

5.
表面活性剂增效电动技术修复多环芳烃污染土壤   总被引:1,自引:0,他引:1  
计敏惠  邹华  杜玮  高珂  刘畅 《环境工程学报》2016,10(7):3871-3876
研究了电动修复过程中修复时间和表面活性剂Triton X-100、鼠李糖脂对多环芳烃芘污染土壤的修复效果的影响。结果表明,在电动修复过程中,随着修复时间的增加,芘的去除率相应提高。通过向电解液中添加表面活性剂Triton X-100,芘的去除率从11.64%提高到了23.42%,当在电解液中添加浓度为40倍CMC的鼠李糖脂后去除率升高至36.29%,阳极附近土壤甚至达到了92.49%,这表明Triton X-100和鼠李糖脂均能促进土壤中芘的溶解和迁移,鼠李糖脂的促进作用高于Triton X-100。  相似文献   

6.
针对修复焦化厂高浓度多环芳烃污染土壤高成本的现实,采用以非食用性植物油、生物柴油、表面活性剂及其乳化合成的微乳液为淋洗剂,比较不同淋洗剂的淋洗效果。结果表明乳化合成的微乳液对焦化厂土壤中多环芳烃的总去除率高于单独使用表面活性剂为淋洗剂对土壤中多环芳烃的总去除率,说明生物柴油及植物油与表面活性剂乳化形成的微乳液对原污染土壤中的多环芳烃具有显著的增溶作用。1%TW-80和2.5%TW-80对土壤中多环芳烃总去除率分别为11%和14%;以2.5%TW-80为原料乳化合成的微乳液的淋洗去除率较以1%TW-80为原料乳化合成的微乳液高,总去除率分别为15%~30%和11%~18%;以生物柴油为原料乳化合成的微乳液的淋洗去除率较以植物油为原料乳化合成的微乳液高,分别为17%~30%和15%~23%,且对多环芳烃的去除率与其辛醇水分配系数(logKow)呈线性相关关系。  相似文献   

7.
化学氧化法治理焦化厂PAHs污染土壤   总被引:1,自引:0,他引:1  
针对焦化类工业场地多环芳烃(PAHs)污染土壤治理问题,选取北京某焦化厂PAHs污染土壤,对其进行化学氧化修复治理的室内模拟研究,实验采用高锰酸钾、Fenton试剂、双氧水和过硫酸钠4种氧化剂,测试了氧化剂的土壤氧化剂需求量(SOD),分析了4种氧化剂对15种PAHs的氧化效果以及反应过程中土壤总PAHs浓度和土壤有机质含量(SOM)随反应时间的变化。结果表明,北京某焦化厂PAHs污染土壤过硫酸钠SOD低于高锰酸钾SOD;Fenton试剂和双氧水对PAHs的总去除率分别为59.53%和62.72%,且对三环PAHs的去除率较好,高锰酸钾对PAHs的总去除率为59.24%,对蒽和苯并(a)芘的去除效果较好,活化过硫酸钠对PAHs的总去除率为68.87%;土壤有机质可通过对PAHs的吸附影响氧化剂的处理效果。  相似文献   

8.
A significant amount of contamination enters water bodies via stormwater runoff and, to reduce the amount of pollution, retention ponds are installed at many locations. While effective for treating suspended solids, retention ponds do not effectively remove dissolved constituents, such as polycyclic aromatic hydrocarbons (PAH). Previous laboratory studies demonstrates that aspen wood cuttings can be utilized to enhance the removal of dissolved contaminants. The objective of this pilot-scale field test was to determine if wood filters could effectively remove dissolved PAH from the runoff under field conditions. Four wood filter tests were conducted, lasting from 1 to 9 weeks, to determine the degree of PAH attenuation from the aqueous phase as a function of wood mass, residence times, and seasonable changes. The prototype wood filters removed on average between 18.5% and 35.6% (up to 66.5%) of the dissolved PAH contaminants. The PAH removal effectiveness of the wood was not affected by changes in water temperature or pH. The filter effectiveness increased with filter size and was highest in continuously submerged parts of the filter system. Also, heavier molecular weight PAH compounds (e.g. chrysene) were more effectively removed than lighter molecular weight compounds. Disassociation of weakly particle-bound PAH from the filter was identified as the most likely cause for a temporary drop of the wood filter's PAH load during intense storms. Simple filter design changes are likely to double the filter effectiveness and alleviate the disassociation problem.  相似文献   

9.
BACKGROUND AND OBJECTIVE: Indigenous soil microorganisms are used for the biodegradation of petroleum hydrocarbons in oily waste residues from the petroleum refining industry. The objective of this investigation was to determine the potential of indigenous strains of fungi in soil contaminated with petroleum hydrocarbons to biodegrade polycyclic aromatic hydrocarbons (PAH). MATERIALS AND METHODS: Twenty one fungal strains were isolated from a soil used for land-farming of oily waste residues from the petrochemical refining industry in Singapore and identified to genus level using laboratory culture and morphological techniques. Isolates were incubated in the presence of 30 mg/L of phenanthrene over a period of 28 days at 30 degrees C. The most effective strain was further evaluated to determine its ability to oxidise a wider range of PAH compounds of various molecular weight i.e acenaphthene, fluorene, fluoranthene, chrysene, benzo(a)pyrene and dibenz(ah)anthracene RESULTS AND DISCUSSION: After 28 days of incubation, 18 of the 21 fungal cultures were capable of oxidising over 50% of the phenanthrene present in culture medium, relative to abiotic controls. Fungal isolate, Penicillium sp. 06, was able to oxidise 89% of the phenanthrene present. This isolate could also oxidise more than 75% of the acenaphthene, fluorene and fluoranthene after 30 days of incubation. However, the oxidation of high molecular weight PAH i.e. chrysene, benzo(a)pyrene and dibenz(ah)anthracene by the Penicillium sp. 06 isolate was limited, where the extent of oxidation was inversely proportional to PAH molecular weight. CONCLUSIONS: Fungal isolate, Penicillium sp. 06, was effective at oxidising a range of PAH in petroleum contaminated soils, but higher molecular weight PAH were more recalcitrant. RECOMMENDATIONS AND OUTLOOK: There is potential for the re-application of this fungal strain to soil for bioremediation purposes.  相似文献   

10.
Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture   总被引:39,自引:0,他引:39  
Yuan SY  Wei SH  Chang BV 《Chemosphere》2000,41(9):1463-1468
We investigated the potential biodegradation of polycyclic aromatic hydrocarbons (PAHs) by an aerobic mixed culture utilizing phenanthrene as its carbon source. Following a 3-5 h post-treatment lag phase, complete degradation of 5 mg/l phenanthrene occurred within 28 h (optimal conditions determined as 30 degrees C and pH 7.0). Phenanthrene degradation was enhanced by the individual addition of yeast extract, acetate, glucose or pyruvate. Results show that the higher the phenanthrene concentration, the slower the degradation rate. While the mixed culture was also capable of efficiently degrading pyrene and acenaphthene, it failed to degrade anthracene and fluorene. In samples containing a mixture of the five PAHs, treatment with the aerobic culture increased degradation rates for fluorene and anthracene and decreased degradation rates for acenaphthene, phenanthrene and pyrene. Finally, it was observed that when nonionic surfactants were present at levels above critical micelle concentrations (CMCs), phenanthrene degradation was completely inhibited by the addition of Brij 30 and Brij 35, and delayed by the addition of Triton X100 and Triton N101.  相似文献   

11.
Absorption of polycyclic aromatic hydrocarbons to cellulose   总被引:1,自引:0,他引:1  
Jonker MT 《Chemosphere》2008,70(5):778-782
Polycyclic aromatic hydrocarbons (PAHs) are widespread toxic chemicals. The environmental fate of these chemicals is in part controlled by sorption to (organic matter in) sediments and soils. One of the most abundant organic matter compounds on earth is cellulose. Remarkably, sorption of PAHs to cellulose has hardly been studied; only two reports on the binding of some low-molecular-weight PAHs exist in the literature. In this study, sorption of PAHs to cellulose was investigated in more detail, by measuring isotherms for a series of 13 PAHs, covering a wide hydrophobicity range. The results indicated that sorption of PAHs to cellulose is a linear partition process for all PAHs investigated (phenanthrene-indeno[1,2,3-cd]pyrene). The affinity of PAHs for cellulose appeared to be about 400 times lower than for octanol and even up to 300000 times lower than for black carbon or coal. Linked to the estimated yearly production of cellulose and black carbon, these results suggest that cellulose is probably not a major environmental sorption domain for PAHs.  相似文献   

12.
固相萃取与气相色谱-质谱联用测定水中痕量多环芳烃   总被引:3,自引:0,他引:3  
采用固相萃取与气相色谱-质谱联用测定水中痕量多环芳烃(PAHs)。通过正交试验,得到最佳固相萃取条件为:上样流速为5mL/min、采用二氯甲烷洗脱、洗脱剂用量为3mL、洗脱流速为2mL/min。测定结果显示,固相萃取与气相色谱—质谱联用技术对萘、菲、荧蒽3种PAHs的检出限为0.03~0.07μg/L,加标回收率为70%~100%,相对标准偏差为3.90%~9.58%。该方法精密度高、准确度好,能满足实际水样中痕量PAHs的测定要求。  相似文献   

13.
Sediments from a remote lake of northeastern Tibetan Plateau were analyzed for polycyclic aromatic hydrocarbons (PAHs) and trace metals. USEPA priority PAHs, ranged from 11 in 1860 to 279 ng g−1 in 2002, while, the deposition fluxes were in the range of 0.2-11.4 ng cm−2 yr−1. Similarly, from 1860 to 2002, an increased trend of Hg flux was observed (0.5-3.2 ng cm−2 yr−1). Remarkable increase of PAHs and Hg concentration began from 1970, nearly the same period of the “Reform and Open” Policy had been embarked (1978) in China. Good correlations were found between concentrations of Pb, Zn, Cd, As, Hg, and PAHs, which suggested the sources of these chemicals in the sediment is analogous, likely from anthroprogenic sources. Based on isomer ratios, PAHs in core were dominantly from the incomplete combustion of coal. Owing to the proximity to dust source area (Qaidam Basin) and the close association between PAHs, Hg, Pb, and particle matters, atmospheric dust-transport and deposition might be the main pathways that pollutants enter into Qinghai Lake.  相似文献   

14.
To improve phytoremediation processes, multiple techniques that comprise different aspects of contaminant removal from soils have been combined. Using creosote as a test contaminant, a multi-process phytoremediation system composed of physical (volatilization), photochemical (photooxidation) and microbial remediation, and phytoremediation (plant-assisted remediation) processes was developed. The techniques applied to realize these processes were land-farming (aeration and light exposure), introduction of contaminant degrading bacteria, plant growth promoting rhizobacteria (PGPR), and plant growth of contaminant-tolerant tall fescue (Festuca arundinacea). Over a 4-month period, the average efficiency of removal of 16 priority PAHs by the multi-process remediation system was twice that of land-farming, 50% more than bioremediation alone, and 45% more than phytoremediation by itself. Importantly, the multi-process system was capable of removing most of the highly hydrophobic, soil-bound PAHs from soil. The key elements for successful phytoremediation were the use of plant species that have the ability to proliferate in the presence of high levels of contaminants and strains of PGPR that increase plant tolerance to contaminants and accelerate plant growth in heavily contaminated soils. The synergistic use of these approaches resulted in rapid and massive biomass accumulation of plant tissue in contaminated soil, putatively providing more active metabolic processes, leading to more rapid and more complete removal of PAHs.  相似文献   

15.
The sites contaminated with recalcitrant organic compounds, such as polycyclic aromatic hydrocarbons (PAHs) with multiple benzene rings, are colossal and ubiquitous environmental problems. They are relatively nonbiodegradable and mutagenic, and 16 of them are listed in the U.S. Environment Protection Agency priority pollutants. Thus, the efficient and emerging remediation technologies for removal of PAHs in contaminated sites have to be uncovered urgently. In this decade, the zero-valent iron (ZVI) particles have been used successfully in the laboratory, pilot, and field, such as degradation of chlorinated hydrocarbons and remediation of the other pollutants. Nevertheless, as far as we know, little research has investigated for soil remediation; this study used nanoscale ZVI particles to remove pyrene in the soil. The experimental variables were determined, including reaction time, iron particle size, and dosage. From the results, both the micro- and nanoscales of ZVI were capable of removing the target compound in soil, but the higher removal efficiencies were by nanoscale ZVI because of the massive specific surface area. The optimal operating conditions to attain the best removal efficiency of pyrene were obtained while adding nanoscale ZVI 0.1 g/g soil within 60 min and 150 rpm of mixing. Thus, nanoscale ZVI has proved to be a promising remedy for PAH-contaminated soil in this study, as well as an optimistically predictable application for additional pilot and field studies.  相似文献   

16.
Polycyclic aromatic hydrocarbons (PAHs) present in size- and density-fractionated road dust were measured to identify the important fractions in urban runoff and to analyse their sources. Road dust was collected from a residential area (Shakujii) and a heavy traffic area (Hongo Street). The sampling of road dust from the residential area was conducted twice in different seasons (autumn and winter). The collected road dust was separated into three or four size-fractions and further fractionated into light (<1.7 g/cm3) and heavy (>1.7 g/cm3) fractions by using cesium chloride solution. Light particles constituted only 4.0+/-1.4%, 0.69+/-0.03% and 3.4+/-1.0% of the road dust by weight for Shakujii (November), Shakujii (February) and Hongo Street, respectively but contained 28+/-10%, 33+/-3% and 44+/-8% of the total PAHs, respectively. The PAH contents in the light fractions were 1-2 orders of magnitude higher than those in the heavy fractions. In the light fractions, the 12PAH contents in February were significantly higher than the 12PAH contents in November (P<0.01), whereas in the heavy fractions, no significant difference was found (P>0.05). Cluster analysis revealed that there was a significant difference in the PAH profiles between locations rather than between size-fractions, density-fractions and sampling times. Multiple regression analysis indicated that asphalt/pavement was the major source of Shakujii road dust, and that tyre and diesel vehicle exhaust were the major sources of finer and coarser fractions collected from Hongo Street road dust, respectively.  相似文献   

17.
《Chemosphere》1986,15(5):589-594
Gaseous o-terphenyl, 1-phenylnaphthalene, and 9-phenylanthracene were submitted to gamma rays. The yields of cyclization products, polycyclic aromatic hydrocarbons, show that at least one twentieth of the intermediates formed undergo intramolecular reaction.  相似文献   

18.
Uptake of polycyclic aromatic hydrocarbons by maize plants   总被引:5,自引:0,他引:5  
Roots and above-ground parts (tops) of maize plants, comprising cuticles, leaves and stems, have been exposed separately to polycyclic aromatic hydrocarbons (PAHs) by means of air-tight bicameral exposure devices. Maize roots and tops of plants directly accumulate PAHs from aqueous solutions and from air in proportion to exposure levels. Root and leaf concentration factors (log RCF and log LCF) are log-linear functions of log-based octanol-water partition coefficient (log Kow) and log-based octanol-air partition coefficient (log Koa). The PAHs' concentrations among cuticles, leaves and stems display good correlations with each other. PAH concentrations in each part of the plant tested correlated positively with atmospheric PAHs' concentrations. Comparisons between PAHs' concentrations of root epidermis and root tissue showed similar correlations. Bulk concentrations of contaminants in various plant tissues differed greatly, but these differences disappeared after normalization to lipid contents suggesting lipid-based partitioning of PAHs among maize tissues.  相似文献   

19.
This paper reports the distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in wash-off in urban stormwater in Gold Coast, Australia. Runoff samples collected from residential, industrial and commercial sites were separated into a dissolved fraction (<0.45 μm), and three particulate fractions (0.45-75 μm, 75-150 μm and >150 μm). Patterns in the distribution of PAHs in the fractions were investigated using Principal Component Analysis. Regardless of the land use and particle size fraction characteristics, the presence of organic carbon plays a dominant role in the distribution of PAHs. The PAHs concentrations were also found to decrease with rainfall duration. Generally, the 1- and 2-year average recurrence interval rainfall events were associated with the majority of the PAHs and the wash-off was a source limiting process. In the context of stormwater quality mitigation, targeting the initial part of the rainfall event is the most effective treatment strategy. The implications of the study results for urban stormwater quality management are also discussed.  相似文献   

20.
为了更好地控制含油污泥的环境污染,通过实验分析了五种不同来源的含油污泥中多环芳烃(PAHs)的含量、来源以及总毒性当量浓度(TEQ),测定了不同有机溶剂浸提液的急性生物毒性,并对油泥污染水样的PAHs和急性生物毒性进行了分析。研究发现,不同含油污泥中PAHs含量为496.10~4 233.25 μg·g-1,PAHs总毒性当量(TEQ)为8.41~231.56 μg·g-1,炼化厂含油污泥中的PAHs主要来源于石油及其精炼产品的热转化,其他含油污泥中的PAHs主要来源于原油本身。正己烷是3种受试有机溶剂中最适合测量含油污泥急性生物毒性的溶剂。被污染水样中PAHs含量为9.68~385.16 ng·mL-1,除被清罐油泥污染的水样外,其他油泥污染水样中苯并(a)芘(BaP)未超标,但所有测试水样都具有较高的急性生物毒性,相对发光抑制率最高达到87.46%,大大超过了毒性参照物100 mg·L-1的Zn2+的抑制率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号