首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An inter-laboratory comparison exercise was organized among European laboratories, under the aegis of EU COST Action 636: “Xenobiotics in Urban Water Cycle”. The objective was to evaluate the performance of testing laboratories determining “Endocrine Disrupting Compounds” (EDC) in various aqueous matrices. As the main task three steroid estrogens: 17α-ethinylestradiol, 17β-estradiol and estrone were determined in four spiked aqueous matrices: tap water, river water and wastewater treatment plant influent and effluent using GC-MS and LC-MS/MS. Results were compared and discussed according to the analytical techniques applied, the accuracy and reproducibility of the analytical methods and the nature of the sample matrices. Overall, the results obtained in this inter-laboratory exercise reveal a high level of competence among the participating laboratories for the detection of steroid estrogens in water samples indicating that GC-MS as well as LC-MS/MS can equally be employed for the analysis of natural and synthetic hormones.  相似文献   

2.
This review focused on seven psychoactive drugs being six benzodiazepines (alprazolam, bromazepam, clonazepam, diazepam, lorazepam, and oxazepam) and one antidepressant (citalopram) widely consumed by modern society and detected in different aqueous matrices (drinking water, surface water, groundwater, seawater, estuary water, influent and effluent of wastewater treatment plants). The review included 219 selected scientific papers from which 1642 data/entries were obtained, each entry corresponding to one target compound in one aqueous matrix. Concentrations of all investigated drugs in all aqueous matrices varied from 0.14 to 840,000 ng L?1. Citalopram presented the highest concentrations in the aqueous matrices. Based on the Wilcoxon-Mann-Whitney test, differences between wastewater influents and effluents were not significant for most wastewater categories, suggesting that conventional wastewater treatment systems as such do not remove or remove partially these compounds. High-income countries showed much lower concentrations in surface water than the group formed by upper-middle-, lower-middle-, and low-income countries. Regarding analytical methods, solid-phase extraction (SPE) was by far the most used extraction method (83%) and performance liquid chromatography (HPLC) (73%) coupled to mass spectrometry (99%) the most common analytical method. Changes in behavior and in survival rates were the most common effects reported on bioindicators (aquatic species) due to the presence of these drugs in water. Concentrations of psychoactive drugs found in surface waters were most of the time within the range that caused measurable toxic effects in ecotoxicity assays.  相似文献   

3.

Background, aim, and scope

According to the high incidence of cancer worldwide, the amount of cytostatic drugs administered to patients has increased. These compounds are excreted to wastewaters, and therefore become potential water contaminants. At this stage, very little is known on the presence and elimination of cytostatic compounds in wastewater treatment plants (WWTP). The aim of this study was to develop a liquid chromatography?Chigh-resolution mass spectrometry (LC?COrbitrap?CMS) method for the determination of cyclophosphamide and epirubicin in wastewaters. These compounds represent two outmost used cytostatic agents.

Materials and methods

Extraction and analytical conditions were optimized for cyclophosphamide and epirubicin in wastewater. Both solid-phase extraction using Oasis 200?mg hydrophilic?Clipophilic balanced (HLB) cartridges and direct injection analysis were evaluated. Mass spectral characterization and fragmentation conditions were optimized at 50,000 resolving power (full width at half maximum, m/z 200) to obtain maximum sensitivity and identification performance. Quality parameters (recoveries, limits of detection, and repetitivity) of the methods developed were determined, and best performance was obtained with direct water analysis of the centrifuged wastewater. Finally, this method was applied to determine the presence of cyclophosphamide and epirubicin in wastewaters from a hospital effluent, an urban effluent, and influents and effluents from three WWTP.

Results and discussion

Cyclophosphamide and epirubicin were recovered after 50?mL preconcentration on solid-phase extraction 200?mg Oasis HLB cartridges (87% and 37%, respectively), and no breakthrough was observed by extracting 500?mL of water. Limits of detection were of 0.35 and 2.77?ng/L for cyclophosphamide and epirubicin, respectively. On the other hand, direct injection of water spiked at 1???g/L provided recoveries of 107% for cyclophosphamide and 44% for epirubicin and limits of detection from 3.1 to 85?ng?L?1, respectively. The analysis of wastewaters using direct injection analysis revealed the presence of cyclophosphamide and epirubicin in WWTP influents and hospital and urban effluents at levels ranging from 5.73 to 24.8???g?L?1.

Conclusions

The results obtained in this study demonstrate the capability of LC?COrbitrap?CMS for accurate trace analysis of these very polar contaminants. This method permitted to identify cyclophosphamide and epirubicin in wastewaters and influents of WWTP, but no traces were detected in WWTP effluents. The methodology herein developed is sensitive and robust and applicable for screening of a large number of samples since no preconcentration is needed.  相似文献   

4.

Background, aim, and scope  

Anti-tumour agents and their metabolites are largely excreted into effluent, along with other pharmaceuticals. In the past, investigations have focused on the input and analysis of pharmaceuticals in surface and ground water. The two oxazaphosphorine compounds, cyclophosphamide and ifosfamide are important cytostatic drugs used in the chemotherapy of cancer and in the treatment of autoimmune diseases. Their mechanism of action, involving metabolic activation and unspecific alkylation of nucleophilic compounds, accounts for genotoxic and carcinogenic effects described in the literature and is reason for environmental concern. The anti-tumour agents cyclophosphamide (CP) and ifosfamide (IF) were not biodegraded in biodegradation tests. They were not eliminated in municipal sewage treatment plants. Degradation by photochemically formed HO radicals may be of some relevance only in shallow, clear, and nitrate-rich water bodies but could be further exploited for elimination of these compounds by advanced oxidation processes, i.e. in a treatment of hospital waste water. Therefore, CP and IF are assumed to persist in the aquatic environment and to enter drinking water via surface water. The risk to humans from input of CP and IF into surface water is not known.  相似文献   

5.
Wastewater treatments can eliminate or remove a substantial amount of pharmaceutical active compounds (PhACs), but there may still be significant concentrations of them in effluents discharged into surface water bodies. Beirolas wastewater treatment plant (WWTP) is located in the Lisbon area and makes its effluent discharges into Tagus estuary (Portugal). The main objective of this study is to quantify a group of 32 PhACs in the different treatments used in this WWTP. Twelve sampling campaigns of wastewater belonging to the different treatments were made in 2013–2014 in order to study their removal efficiency. The wastewaters were analysed by solid phase extraction (SPE) and ultra-performance liquid chromatography coupled with tandem mass detection (UPLC–MS/MS). The anti-diabetics were the most frequently found in wastewater influent (WWI) and wastewater effluent (WWE) (208 and 1.7 μg/L, respectively), followed by analgesics/antipyretics (135 μg/L and < LOQ, respectively), psychostimulants (113 and 0.49 μg/L, respectively), non-steroidal anti-inflammatory drugs (33 and 2.6 μg/L, respectively), antibiotics (5.2 and 1.8 μg/L, respectively), antilipidemics (1.6 and 0.24 μg/L, respectively), anticonvulsants (1.5 and 0.63 μg/L, respectively) and beta blockers (1.3 and 0.51 μg/L, respectively). A snapshot of the ability of each treatment step to remove these target PhACs is provided, and it was found that global efficiency is strongly dependent on the efficiency of secondary treatment. Seasonal occurrence and removal efficiency was also monitored, and they did not show a significant seasonal trend.  相似文献   

6.
A method combining ultrasound-assisted emulsification–microextraction (USAEME) with gas chromatography–mass spectrometry (GC–MS) was developed for simultaneous determination of four acidic pharmaceuticals, ibuprofen, naproxen, ketoprofen, and diclofenac, as well as four phenols, 4-octylphenol, 4-n-nonylphenol, bisphenol A, and triclosan in municipal wastewaters. Conditions of extraction and simultaneous derivatization were optimized with respect to such aspects as type and volume of extraction solvent, volume of derivatization reagent, kind and amount of buffering salt, location of the test tube in the ultrasonic bath, and extraction time. The average correlation coefficient of the calibration curves was 0.9946. The LOD/(LOQ) values in influent and effluent wastewater were in the range of 0.002–0.121/(0.005–0.403) μg L?1 and 0.002–0.828/(0.006–2.758) μg L?1, respectively. Quantitative recoveries (≥94 %) and satisfactory precision (average RSD 8.2 %) were obtained. The optimized USAEME/GC–MS method was applied for determination of the considered pharmaceuticals and phenols in influents and treated effluents from nine Polish municipal wastewater treatment plants. The average concentration of acidic pharmaceuticals in influent and effluent wastewater were in the range of 0.06–551.96 μg L?1 and 0.01–22.61 μg L?1, respectively, while for phenols were in the range of 0.03–102.54 μg L?1 and 0.02–10.84 μg L?1, respectively. The removal efficiencies of the target compounds during purification process were between 84 and 99 %.  相似文献   

7.
The objective of the Control of Hazardous Substances in the Baltic Sea (COHIBA) project is to support the implementation of the HELCOM Baltic Sea Action Plan regarding hazardous substances by developing joint actions to achieve the goal of “a Baltic Sea with life undisturbed by hazardous substances”. One aim in the project was to identify the most important sources of 11 hazardous substances of special concern in the Baltic Sea. Among them are perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). In this study, four perfluorinated alkyl acids (PFAAs) were studied: PFOA, PFOS, perfluorohexanoic acid (PFHxA) and perfluorodecanoic acid (PFDA). The occurrence of PFAAs in municipal and industrial wastewater treatment plant effluents (MWWTP1-3, IWWTP1), target industry effluent, storm water, landfill leachate and sludge was studied. Effluents were analysed six times and storm water, leachate and sludge were analysed twice, once in the warm season and once in the cold, during a 1-year sampling campaign. PFOS prevailed in two municipal effluents (MWWTP1 and 3) and industrial effluent (IWWTP1; 7.8–14, 8.0–640 and 320–1,300 ng/l, respectively). However, in one municipal effluent (MWWTP2) PFOA was, in a majority of sampling occasions, the predominant PFAA (9–15 ng/l) followed by PFOS (3.8–20 ng/l). The highest PFAA loads of the municipal effluents were found in the MWWTP3 receiving the biggest portion of industrial wastewater. In storm water the highest concentration was found for PFHxA (17 ng/l). The highest concentration of PFOS and PFOA were 9.9 and 5.1 ng/l, respectively. PFOS, PFOA and PFHxA were detected in every effluent, storm water and landfill leachate sample, whereas PFDA was detected in most of the samples (77 %). In the target industry, PFOS concentrations varied between 1,400 and 18,000 μg/l. In addition, on one sampling occasion PFOA and PFHxA were found (0.027 and 0.009 μg/l, respectively). For effluents, PFAA mass flows into the Baltic Sea were calculated. For municipal wastewater treatment plants average mass flows per day varied for PFOS between 1,073 and 38,880 mg/day, for PFOA 960 and 2,700 mg/day, for PFHxA 408 and 1,269 mg/day and for PFDA 84 and 270 mg/day. In IWWTP mass flows for PFOS, PFOA, PFHxA and PFDA were 495 mg/d, 28 mg/d, 23 mg/d and 0.6 mg/g, respectively.  相似文献   

8.
Occurrence and behavior of fluoroquinolone antibacterial agents (FQs) were investigated in hospital wastewaters in Hanoi, Vietnam. Hospital wastewater in Hanoi is usually not treated and this untreated wastewater is directly discharged into one of the wastewater channels of the city and eventually reaches the ambient aquatic environment. The concentrations of the FQs, ciprofloxacin (CIP) and norfloxacin (NOR) in six hospital wastewaters ranged from 1.1 to 44 and from 0.9 to 17 micrgl(-1), respectively. Total FQ loads to the city sewage system varied from 0.3 to 14 g d(-1). Additionally, the mass flows of CIP and NOR were investigated in the aqueous compartment in a small wastewater treatment facility of one hospital. The results showed that the FQ removal from the wastewater stream was between 80 and 85%, probably due to sorption on sewage sludge. Simultaneously, the numbers of Escherichia coli (E. coli) were measured and their resistance against CIP and NOR was evaluated by determining the minimum inhibitory concentration. Biological treatment lead to a 100-fold reduction in the number of E. coli but still more than a thousand E. coli colonies per 100ml of wastewater effluent reached the receiving water. The highest resistance was found in E. coli strains of raw wastewater and the lowest in isolates of treated wastewater effluent. Thus, wastewater treatment is an efficient barrier to decrease the residual FQ levels and the number of resistant bacteria entering ambient waters. Due to the lack of municipal wastewater treatment plants, the onsite treatment of hospital wastewater before discharging into municipal sewers should be considered as a viable option and consequently implemented.  相似文献   

9.
Mycobacteria naturally aggregate in water, a characteristic that may serve to protect them against disinfection in wastewater. Secondary effluent was spiked with Mycobacterium terrae (M. terrae), sequentially filtered through 100-, 41-, and 20-microm nylon filters to partition aggregate sizes, confirmed using particle-size analysis and microscopy. Each sample was exposed to doses of UV light (10 to 60 mJ/cm2 at 254 nm) and free chlorine (27 to 150 mg-min/L at 4 degrees C). Inactivation of M. terrae in wastewater was initially rapid, with 2.5 log reduction at 14 mJ/cm2 and 56 mg-min/L for UV and free chlorine, respectively. However, in effluent and 100-microm filtered wastewater, spiked M. terrae was present to the highest doses evaluated. Interestingly, M. terrae passed through 41- and 20-microm filters were inactivated rapidly, with no survivors after moderate disinfection doses. Inactivation of Mycobacteria in wastewater may be compromised by aggregates larger than 41 microns.  相似文献   

10.
Effluents from four healthcare facilities were characterized for the concentration of 16 common active pharmaceutical ingredients. The sampled facilities included a hospital, nursing care, assisted living, and independent living facility located within a single municipal wastewater system in Texas. Eleven of the 16 monitored pharmaceuticals were detected in at least 1 healthcare facility effluent and 2 measured antibiotics (sulfamethoxazole and trimethoprim) were detected in all 4 facility effluents. Active pharmaceutical ingredient concentrations ranged from non-detectable levels for several corticosteroids in all facility effluents to 180 microg/L sulfamethoxazole in the nursing care wastewater effluent. The mass of active pharmaceutical ingredients discharged to the municipality's wastewater conveyance system was determined by combining individual facility concentration data and daily wastewater flow. The estimated daily mass loading of all 16 pharmaceuticals ranged from 0.16 g/day to 23 g/day in the assisted living facility and nursing wastewater effluents, respectively. The combined active pharmaceutical ingredient mass loading for all four facilities was 42.6 g/day. These findings provide source characterization data for 16 common pharmaceuticals in healthcare facility wastewater and provide a basis for risk assessment of pharmaceuticals present in healthcare facility wastewaters.  相似文献   

11.
Antidepressants are gaining public attention because of increasing reports of their occurrence in environment and their potential impact on ecosystems and human health. Continuous input of pharmaceuticals into rivers, through psychiatric hospital or wastewater treatment plant (WWTPs) effluent, may cause adverse effects on the aquatic ecosystems of the receiving water bodies. This work investigates the occurrence and sources of 8 antidepressants in main stream and tributaries of Huangpu River in Shanghai. The detected concentrations of the selected antidepressants ranged from low nanogram per liter to 42.9 ng L?1 (fluoxetine) in main stream and ranged from low nanogram per liter to 33.7 ng L?1 (fluoxetine) in tributaries. To study the effect of hospital or wastewater treatment plants (WWTPs) on environment, the upstream and downstream samples were analyzed. Generally, antidepressants had greater concentrations in downstream than that in upstream of the WWTPs or hospitals. It is suggesting that WWTPs and hospitals may introduce pollution into water environment. A preliminary risk assessment was conducted: none of the eight target compounds yielded risk quotient (RQ) values more than 0.1, thus indicating that no adverse effect is expected in water environment. These results will provide background data for future antidepressants pollution control and management in Shanghai, China.  相似文献   

12.
In the present study, feasibility of recovering the coagulant from water treatment plant sludge with sulphuric acid and reusing it in post-treatment of upflow anaerobic sludge blanket (UASB) reactor effluent treating municipal wastewater were studied. The optimum conditions for coagulant recovery from water treatment plant sludge were investigated using response surface methodology (RSM). Sludge obtained from plants that use polyaluminium chloride (PACl) and alum coagulant was utilised for the study. Effect of three variables, pH, solid content and mixing time was studied using a Box–Behnken statistical experimental design. RSM model was developed based on the experimental aluminium recovery, and the response plots were developed. Results of the study showed significant effects of all the three variables and their interactions in the recovery process. The optimum aluminium recovery of 73.26 and 62.73 % from PACl sludge and alum sludge, respectively, was obtained at pH of 2.0, solid content of 0.5 % and mixing time of 30 min. The recovered coagulant solution had elevated concentrations of certain metals and chemical oxygen demand (COD) which raised concern about its reuse potential in water treatment. Hence, the coagulant recovered from PACl sludge was reused as coagulant for post-treatment of UASB reactor effluent treating municipal wastewater. The recovered coagulant gave 71 % COD, 80 % turbidity, 89 % phosphate, 77 % suspended solids and 99.5 % total coliform removal at 25 mg Al/L. Fresh PACl also gave similar performance but at higher dose of 40 mg Al/L. The results suggest that coagulant can be recovered from water treatment plant sludge and can be used to treat UASB reactor effluent treating municipal wastewater which can reduce the consumption of fresh coagulant in wastewater treatment.  相似文献   

13.
This study was undertaken to validate the “quick, easy, cheap, effective, rugged and safe” (QuEChERS) method using Golden Delicious and Starking Delicious apple matrices spiked at 0.1 maximum residue limit (MRL), 1.0 MRL and 10 MRL levels of the four pesticides (chlorpyrifos, dimethoate, indoxacarb and imidacloprid). For the extraction and cleanup, original QuEChERS method was followed, then the samples were subjected to liquid chromatography-triple quadrupole mass spectrometry (LC-MS/MS) for chromatographic analyses. According to t test, matrix effect was not significant for chlorpyrifos in both sample matrices, but it was significant for dimethoate, indoxacarb and imidacloprid in both sample matrices. Thus, matrix-matched calibration (MC) was used to compensate matrix effect and quantifications were carried out by using MC. The overall recovery of the method was 90.15% with a relative standard deviation of 13.27% (n = 330). Estimated method detection limit of analytes blew the MRLs. Some other parameters of the method validation, such as recovery, precision, accuracy and linearity were found to be within the required ranges.  相似文献   

14.
Identification and removal of polycyclic aromatic hydrocarbons (PAHs) were investigated at two coke plants located in Shaoguan, Guangdong Province of China. Samples of raw coking wastewaters and wastewaters from subunits of a coke production plant were analyzed using gas chromatography–mass spectrometry (GC/MS) to provide a detailed chemical characterization of PAHs. The identification and characterization of PAH isomers was based on a positive match of mass spectral data of sample peaks with those for PAH isomers in mass spectra databases with electron impact ionization mass spectra and retention times of internal reference compounds. In total, 270 PAH compounds including numerous nitrogen, oxygen, and sulfur heteroatomic derivatives were positively identified for the first time. Quantitative analysis of target PAHs revealed that total PAH concentrations in coking wastewaters were in the range of 98.5?±?8.9 to 216?±?20.2 μg/L, with 3-4-ring PAHs as dominant compounds. Calculation of daily PAH output from four plant subunits indicated that PAHs in the coking wastewater came mainly from ammonia stripping wastewater. Coking wastewater treatment processes played an important role in removing PAHs in coking wastewater, successfully removing 92 % of the target compounds. However, 69 weakly polar compounds, including PAH isomers, were still discharged in the final effluent, producing 8.8?±?2.7 to 31.9?±?6.8 g/day of PAHs with potential toxicity to environmental waters. The study of coking wastewater herein proposed can be used to better predict improvement of coke production facilities and treatment conditions according to the identification and removal of PAHs in the coke plant as well as to assess risks associated with continuous discharge of these contaminants to receiving waters.  相似文献   

15.
Background, aim, and scope

Pharmaceutically active substances are a class of emerging contaminants, which has led to increasing concern about potential environmental risks. After excretion, substantial amounts of unchanged pharmaceuticals and their metabolites are discharged into domestic wastewaters. The absence of data on the environmental exposure in Eastern Europe is significant, since use patterns and volumes differ from country to country. In Romania, the majority of wastewater, from highly populated cities and industrial complex zones, is still discharged into surface waters without proper treatment or after inefficient treatment. In respect to this, it is important to determine the environmental occurrence and behavior of pharmaceuticals and personal care products (PPCPs) in wastewaters and surface waters. The objective of the present study was to investigate the occurrence of selected PPCPs during the transport in the Somes River by mass flow analysis before and after upgrading a municipal wastewater treatment plant (WWTP) in Cluj-Napoca, which serves 350,000 inhabitants and is the largest plant discharging into the Somes River. The concentrations of PPCPs at Cluj-Napoca can be correlated with the high population and a high number of hospitals located in the catchment area leading to higher mass flows. The results of this study are expected to provide information, with respect to the Romanian conditions, for environmental scientists, WWTP operators, and legal authorities. The data should support the improvement of existing WWTPs and implementation of new ones where necessary and, therefore, minimize the input of contaminants into ambient waters.

Materials and methods

The PPCPs were selected on the basis of consumption at the regional scale, reported aquatic toxicity, and the suitability of the gas chromatography/mass spectrometry (GC/MS) method for the determination of the compounds at trace levels. The studied PPCPs, caffeine (stimulant), carbamazepine (antiepileptic), pentoxifylline (anticoagulant), cyclophosphamide (cytostatic), ibuprofen (analgesic), and galaxolide (musk fragrance), were determined in samples of the Somes River. The analytes were enriched by solid-phase extraction and subsequently determined by GC/MS. Caffeine, pentoxifylline, and galaxolide were determined underivatized, whereas the acidic pharmaceuticals carbamazepine, cyclophosphamide, and ibuprofen were determined after derivatization with N-methyl-N-(trimethylsilyl)-trifluoroacetamide.

Results and discussion

The concentrations in the Somes River varied from below 10 ng/L up to 10 μg/L. A substantial decrease of the exposure in the Somes River could be observed due to the upgrade of the municipal WWTP in Cluj-Napoca. The loads in the river stretch between Cluj-Napoca and Dej (Somes Mic) varied strongly: caffeine (400–2,000 g/day), carbamazepine (78–213 g/day), galaxolide (140–684 g/day), ibuprofen (84–108 g/day). After the upgrade of the WWTP Cluj-Napoca, the concentrations in the Somes of caffeine, pentoxifylline, cyclophosphamide, galaxolide, and tonalide were significantly reduced (over 75%). One might be cautious comparing both studies because the relative efficiency of the WWTP’s removal of PPCP was not evaluated. However, the significantly lower concentrations of most compounds after the upgrade of the WWTP Cluj-Napoca allow one to infer that the technical measures at the source substantially reduced inputs of contaminants to the receiving river. Dej loads of the poorly biodegradable substance carbamazepine increased by a factor of 2–3 as a result of wastewater discharges into the river. The disproportionate increase in caffeine loads by a factor of 4 below Cluj-Napoca indicates inputs of untreated wastewater from the Somes Mare due to the discharge of untreated wastewater derived from Bistrita, Nasaud, and Beclean (115,000 inhabitants).

Conclusions

The relative contribution of treated and untreated wastewater in surface water might be assessed by measuring chemical markers. Recalcitrant pharmaceuticals like carbamazepine are suitable as chemical markers for estimating the relative contribution of wastewater in surface water. The easily degradable caffeine might be a good indicator for raw sewage and hardly treated wastewaters.

Recommendations and perspectives

Municipal WWTPs have the potential of a significant contribution in reducing the load of contaminants to ambient waters. The efficiency of the wastewater treatment in Cluj-Napoca improved considerably after the upgrade of the WWTP. Therefore, it is crucial that several WWTPs must be implemented or improved in the Somes Valley Watershed in order to reduce the discharge of contaminants in the Somes River from these point sources.

  相似文献   

16.
The application of immunofluorescent labeling using quantum dots for detection of inactivated Cryptosporidium parvum oocysts in spiked water samples (reservoir water, treated wastewater effluent, permeate of a membrane bioreactor, and tap water) provided more consistent results compared with the organic fluorophores label. The varying degree of particles present in the different water samples (with turbidity ranging from 0.2 to 6.1 NTU) in nonconcentrated water samples had insignificant interference on the labeled counts (2-sample t-tests, p > 0.236) using the quantum dot label, while the quantum dot label provided an advantage of approximately 50% lower interference in concentrated water samples compared with the organic fluorophores label.  相似文献   

17.
In this study, surface water samples from the Wenyu River and the North Canal, effluent from major wastewater treatment plants (WWTPs) in Beijing, and wastewater from open sewers that discharge directly into the river system were collected and analyzed for 16 priority USEPA polycyclic aromatic hydrocarbons (PAHs). Concentrations of these 16 PAHs ranged from 193 to 1790 ng/L in river surface waters, 245 to 404 ng/L in WWTP effluents, and 431 to 2860 ng/L in the wastewater from the small sewers. The WWTP effluent was the main contributor of dissolved PAHs to the river, while wastewater from the small sewers contributed both dissolved and suspended particulate matter-associated PAH to the river as indicated by the high dissolved organic carbon and suspended particulate matter contents in the wastewater. Although the flow from each open sewer was small, a PAH discharge as high as 44 kg/year could occur into the river from these types of sewers. This amount was equivalent to about 22 % of the PAH loads discharged into the North Canal downstream from Beijing, whereas the remainder was mainly released by the major WWTPs in Beijing.  相似文献   

18.
The scarcity of freshwater resources is a serious problem in arid regions, such as Tunisia, and marginal quality water is gradually being used in agriculture. This study aims to study the impact of treated urban wastewater for reuse in agriculture on the health of soil and food crops. The key findings are that the effluents of Sfax wastewater treatment plant (WWTP) did not meet the relevant guidelines, therefore emitting a range of organic (e.g., up to 90 mg L?1 COD and 30 mg L?1 BOD5) and inorganic pollutants (e.g., up to 0.5 mg L?1 Cu and 0.1 mg L?1 Cd) in the receiving aquatic environments. Greenhouse experiments examining the effects of wastewater reuse on food plants such as tomato, lettuce, and radish showed that the treated effluent adversely affected plant growth, photosynthesis, and antioxidant enzyme contents. However, the pollution burden and biological effects on plants were substantially reduced by using a 50 % dilution of treated sewage effluent, suggesting the potential of reusing treated effluent in agriculture so long as appropriate monitoring and control is in place.  相似文献   

19.
The purpose of the study was the experimental evaluation of ultrafiltration as a potential innovative technology for the removal of organic matter of around 15,000 mg chemical oxygen demand (COD) per liter in the polymer industry wastewater. Particle size distribution (PSD) analysis served as the major experimental instrument along with conventional chemical settling. Biodegradation characteristics of the remaining COD after ultrafiltration were determined by model interpretation of the corresponding oxygen uptake rate (OUR) profile. The study first involved a detailed characterization of the polymer wastewater including PSD analysis of the COD content. Chemical treatability was investigated using lime alone and with ferric chloride as coagulants followed with a PSD assessment of the chemically settled effluent. Modeling of the OUR profile generated by the ultrafiltration effluent defined related biodegradation kinetics and provided information on the overall COD removal potential. PSD analysis indicated that more than 70 % of the total COD accumulated in the 220- to 450-nm size range. It indicated that ultrafiltration was potentially capable of removing more than 90 % of the COD with an effluent lower than 1,500 mg COD/L. Chemical settling with 750 mg/L of FeCl3 dosing at a pH of 7.0 provided a similar performance. The ultrafiltration effluent included mainly hydrolysable COD and proved to be biodegradable, with the process kinetics compatible with domestic sewage. PSD evaluation proved to be a valuable scientific instrument for underlining the merit of ultrafiltration as the appropriate innovative technology for polymer wastewater, removing the major portion of the COD in a way that is suitable for recovery and reuse and producing a totally biodegradable effluent.  相似文献   

20.
To understand the transport and fate of antibiotic resistance genes in wastewater treatment plants, 12 resistance genes (ten tetracycline resistance genes, two sulfonamides genes) and class 1 integron gene (intI1) were studied in five wastewater treatment plants with different treatment processes and different sewage sources. Among these resistance genes, sulfonamides genes (sul1 and sul2) were of the most prevalent genes with detection frequency of 100 %. The effluent water contained fewer types of resistance genes than the influent in most selected plants. The abundance of five quantified resistance genes (tetG, tetW, tetX, sul1, and intI1) decreased in effluent of plants treating domestic or industrial wastewater with anaerobic/aerobic or membrane bioreactor (MBR) technologies, but tetG, tetX, sul1, and intI1 increased along the treatment units of plants treating vitamin C production wastewater by anaerobic/aerobic technology. In plant treating cephalosporins production wastewater by UASB/aerobic process, the quantities of tetG, tetX, and sul1 first decreased in anaerobic effluent water but then increased in aerobic effluent water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号