首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P Mukherjee  S Viswanathan 《Chemosphere》2001,45(6-7):1071-1083
Street canyon module and gaussian line source module of a regional-scale dispersion model Indic Airviro were used to simulate ambient carbon monoxide (CO) concentrations due to traffic flow at two roadside monitoring locations in Singapore. The fleet average emission factors for each vehicle category was estimated from US EPA MOBILE 5 A guidelines as a function of speed, vehicle deterioration rates and model years. 1-h CO concentrations and worst case 8-h levels have been simulated and compared with measured readings. This study used model-simulated rooftop concentration levels from non-localized sources as background levels at the two sites. The resulting CO concentrations correlate well with actual measured levels and provide a unique approach to predict the impact of CO from transportation.  相似文献   

2.
This paper describes a long-term trend study of passenger exposure to carbon monoxide (CO) inside a vehicle traveling on an arterial highway in northern California. CO exposure was measured during four field surveys on State Route #82 (El Camino Real) on the San Francisco Peninsula in 1980–1981, 1991–1992, 2001–2002, and 2010–2011. Each field survey took at least 12 months. Fifty trips from each survey—for a total of 200 trips—were matched by date, day of the week, and starting time of the day to facilitate comparisons over three decades. The mean net CO concentration of each trip was obtained by subtracting the background CO level from the average CO concentration for the entire trip. The mean net CO concentration (0.5 ppm) for 2010–2011 was only 5.2% of that (9.7 ppm) for 1980–1981. For the 50 trips, the average travel time for the 1980–1981 period (39.6 min) was only 8.3% higher than during the 2010–2011 period (36.3 min). The estimated round-trip distance on the highway was held constant at 11.8 miles. The reduction in the mean net CO concentration was attributed to more stringent CO emission standards on new vehicles sold in California since 1980. The state’s cold-temperature CO standard implemented in 1996 appeared to reduce high CO concentrations that were observed during the late fall and winter of 1980–1981. In addition, the observed standard deviation in concentration fell from 3.1 ppm in 1980–1981 to 0.2 ppm in 2010–2011, and the range of the 50 mean net CO concentrations narrowed from 14.9 ppm in 1980–1981 to 1.1 ppm in 2010–2011, but the relative variability, as indicated by the geometric standard deviation, remained the same. These results have important scientific implications for regulatory policies designed to control air pollution from motor vehicles.

Implications: Many developing countries launched or expanded their mobile source emission control programs in the 1990s, yet many of them do not have adequate inspection and maintenance (I/M) programs. The El Camino Real study shows the long-term public health benefits of more stringent motor vehicle emission standards for carbon monoxide (CO) on new cars and of an I/M program (Smog Check) on the existing fleet in California. The study provides a protocol for conducting standardized field surveys of in-vehicle exposure on a periodic basis. Such surveys would enable developing countries to assess the progress of their mobile source emission control programs.  相似文献   


3.
Traffic-generated air pollutant emissions can be classified into exhaust and non-exhaust emissions. Increased attention is focussing on non-exhaust emissions as exhaust emissions are progressively limited by regulations. To characterise metal-rich emission from abrasion processes, size-segregated analysis of atmospheric aerosol particles sampled with micro-orifice uniform deposit impactors (MOUDI) in March 2007 in London was performed. The samples were collected at a roadside and a background site and were analysed for Al, Ba, Cu, Fe, Sb, Ti, V, Zn, Ca2+, K+, Mg2+, Na+, and NH4+. Most components showed a clear roadside increment, which was evident as a higher mass concentration and a change in the size distribution. In particular, Fe, Cu, Ba, and Sb correlated highly, indicative of a common traffic-related source. Using complementary information on the fleet composition, vehicle number and average speed, the brake wear emission was calculated using the EMEP/CORINAIR emission database. The total PM10 and barium emission of the traffic was determined by ratio to NOx whose source strength was estimated from published emission factors. Barium was found to comprise 1.1% of brake wear (PM10) particles from the traffic fleet as a whole, allowing its use as a quantitative tracer of brake wear emissions at other traffic-influenced sites.  相似文献   

4.
The investigators developed a system to measure black carbon (BC) and particle-bound polycyclic aromatic hydrocarbon (PAH) emission factors during roadside sampling in four cities along the United States-Mexico border, Calexico/Mexicali and El Paso/Juarez. The measurement system included a photoacoustic analyzer for BC, a photoelectric aerosol sensor for particle-bound PAHs, and a carbon dioxide (CO2) analyzer. When a vehicle with measurable emissions passed the system probe, corresponding BC, PAH, and CO2 peaks were evident, and a fuel-based emission factor was estimated. A picture of each vehicle was also recorded with a digital camera. The advantage of this system, compared with other roadside methods, is the direct measurement of particulate matter components and limited interference from roadside dust. The study revealed some interesting trends: Mexican buses and all medium-duty trucks were more frequently identified as high emitters of BC and PAH than heavy-duty trucks or passenger vehicles. In addition, because of the high daily mileage of buses, they are good candidates for additional study. Mexican trucks and buses had higher average emission factors compared with U.S. trucks and buses, but the differences were not statistically significant. Few passenger vehicles had measurable BC and PAH emissions, although the highest emission factor came from an older model passenger vehicle licensed in Baja California.  相似文献   

5.
Three separate mathematical models were combined to calculate the changes in carbon monoxide (CO) concentrations that might result from traffic engineering changes. The three models used were: (1) The Dynamic Highway Transportation model (DHTM) which relates traffic flow patterns to physical parameters and traffic signal characteristics of a network; (2) an emission model that predicts CO emissions from traffic flow parameters such as number of stops, idling time, etc; and (3) the APRAC-1A urban diffusion model which calculates CO concentrations from source distributions and meteorological factors. The composite model was applied to traffic in downtown Chicago for a specific set of meteorological conditions. Results are compared for two traffic signal control schemes. In those blocks where concentrations were highest, the model indicates a 20% reduction is possible through improved traffic signal controls. The model should be useful for testing other traffic control measures.  相似文献   

6.
The effect of the general growth of CO vehicular emissions in urban areas on the CAMP station measurements in downtown areas, where vehicular traffic is saturated is considered. With the assumption that the street-level CO concentration is derived from the sum of an urban background term and a local street-effect term, the urban background CO concentration is computed with a diffusion model by introducing a simple area source distribution. The local street-effect term is taken to be constant at a saturation emission level corresponding to a saturation traffic density when the emission per vehicle-mile and meteorological conditions are fixed. The present analysis indicates that the local street-effect term, AC, has a major role in determining street-level concentrations for pollutants, such as CO, whose air quality standard is based on maximum concentrations with averaging times of 1 hour and 8 hours. The relevance of this analysis to the abatement requirements of the Clean Air Amendments and to the driving cycle adopted is discussed.  相似文献   

7.
The study presents the levels of air pollution by aromatic organic compounds BTEX (benzene, toluene, ethylbenzene, o-, m-, and p-xylenes) in the city of Algiers. The sampling was carried out using Radiello passive sampler. Three sampling campaigns were carried out in roadside, tunnel, urban background, and semirural sites in Algiers. In order to determine the diurnal mean levels of air pollution by BTEX to which people are exposed, a modified passive sampler was used for the first time. In addition, monitoring of pollution inside vehicles was also made. In the spring of 2009, more than 27 samplings were carried out. In the background and road traffic sites the Radiello sampler was exposed for 7 days, whereas the time exposure was reduced to 1 day in the case of the vehicle as well as the tunnel. The results indicate that average benzene concentrations in the roadside and inside vehicle exceed largely the limit value of 5 μg m?3 established by the European Community (EC). On the other hand, it has been noticed that the concentration levels of other BTEX are relatively high. Also, in order to identify the origin of emission sources, ratios and correlations between the BTEX species have been highlighted. This study shows that road traffic remains the main source of many local emission in Algiers.

Implications The vehicle fleet in Algeria is growing rapidly since the 1990s following economic growth and is responsible for the increasing air pollution in large cities. Because there are no data collection of BTEX carried out by national air quality network, all environmental and transportation policies are based on European emissions standards, but national emission standards are currently not in place. This work will contribute to the analysis of real emissions of BTEX in Algiers, for the development of management and for assessment of population exposure variation depending on the location in the city of Algiers.  相似文献   

8.
Emissions generated roadside and at intersections are observed to be affected when there is a sudden change in the traffic flow pattern or increase in the vehicular population, particularly, during peak hours and during special events. The vehicles that queue up at traffic intersections spend a longer amount of time in idle driving mode generating more pollutant emissions per unit time. Other driving patterns (i.e., acceleration, deceleration and cruising) are also observed at intersections, affecting the emission pattern and therefore the resulting pollutant concentrations. The emission rate is not only affected by the increase in the vehicular population but also by the constantly changing traffic flow patterns and vehicles’ driving modes. The nature of the vehicle flows also affects the rate and nature of the dispersion of pollutants in the vicinity of the road, influencing the pollutant concentration. It is, therefore, too complex to simulate the effect of such dynamics on the resulting emission rates using conventional deterministic causal models.In view of this, a simple semi-empirical box model based on the ‘traffic flow rate’, is demonstrated in the present study for estimating the hourly average carbon monoxide (CO) concentrations on a 1-week data at one of the busiest traffic intersections in Delhi. The index of agreement for a whole week, was found to be 0.84, suggesting that the semi-empirical model is 84% error free. A value of 0.87 was found for weekdays and 0.75 for weekend days. The correlation coefficient for the whole week was found to be 0.75, with 0.78 for the weekdays and 0.62 for the weekend days. The RMSE and RRMSE were found to be 1.87% and 41% for a whole week, with 1.81% and 39.93% for the weekdays and 2.0% and 43.47% for the weekend days, respectively. Specific vehicle emission rates are optimized in this study for individual vehicle category, which may be useful in assessing their impacts on the air quality when there is a significant change in a specific vehicular population and the traffic pattern.  相似文献   

9.
Urban roadside levels of benzene, toluene, ethylbenzene and xylenes (BTEX) were investigated in three typical cities (Guangzhou, Macau and Nanhai) in the Pearl River Delta Region of south China. Air samples were collected at typical ground level microenvironments by multi-bed adsorbent tubes. The BTEX concentrations were determined by thermal desorption–gas chromatography–mass selective detector (TD–GC–MSD) technique. The mean concentrations of benzene, toluene, ethylbenzene and xylenes were, respectively, 51.5, 77.3, 17.8 and 81.6 μg/m3 in Guangzhou, 34.9, 85.9, 24.1, 95.6 μg/m3 in Macau, and 20.0, 39.1, 3.0 and 14.2 μg/m3 in Nanhai. The relative concentration distribution pattern and mutual correlation analysis indicated that in Macau BTEX were predominantly traffic-related while in Guangzhou benzene had sources other than vehicle emission. In Nanhai, both benzene and toluene had different sources other than vehicle emission. The samples collected from Guangzhou showed that BTEX had significant higher concentrations in November than those in July.  相似文献   

10.
Using models to estimate the contribution of traffic to air pollution levels from known traffic data typically requires the knowledge of model parameters such as emission factors and meteorological conditions. This paper presents a state-space model analysis method that does not require the knowledge of model parameters; these parameters are identified from measured traffic and ambient air quality data. This method was used to analyze carbon monoxide (CO) in downtown Fairbanks, AK, which is the community of focus for this paper. It was found that traffic contributed, on average, 53% to the total CO levels over the last six winters. The correlation coefficient between the measured and model-predicted daily profiles of the CO concentration was 0.98, and the results were in good agreement with earlier findings obtained via a thorough CO emission inventory. This justified the usability of the method and it was further used to analyze fine particulate matter (PM2.5) in downtown Fairbanks. It was found that traffic contributed, on average, approximately 30% to the total PM2.5 levels over the last six winters. The correlation coefficient between the measured and model-predicted daily profiles of the PM2.5 concentration was 0.98.  相似文献   

11.
Vehicular emission (VE) is one of the important anthropogenic sources for airborne carbonyls in urban area. Six types of VE-dominated samples were collected at representative locations in Hong Kong where polluted by a particular fueled type of vehicles, including (i) a gas refilling taxis station (liquefied petroleum gas [LPG] emission); (ii) a light-duty passenger car park (gasoline emission); (iii) a minibus station (diesel emission); (iv) a single-deck-bus depot (diesel emission); (v) a double-deck-bus depot (diesel emission); and (vi) a whole-food market entrance for light- and heavy-duty vehicles (diesel emission). A total of 15 carbonyls in the samples were quantified. Formaldehyde was the most abundant carbonyl among the VE-dominated samples, and its contribution to the total quantified amount on a molar basis ranged from 54.8% to 60.8%. Acetaldehyde and acetone were the next two abundant carbonyls. The carbonyls were quantified at three roadside locations in Hong Kong. The highest concentrations of formaldehyde and acetaldehyde, 22.7 +/- 8.4 and 6.0 +/- 2.8 microg/m3, respectively, were determined in the samples collected at a main transportation gate for goods between Hong Kong and Mainland China. The total quantified carbonyl concentration, 37.9 +/- 9.3 microg/m3, was the highest at an entrance of a cross-harbor tunnel in downtown area. The theoretical carbonyls compositions of the three roadside locations were estimated according to the VE-dominated sample profiles and the statistics on vehicle numbers and types during the sampling period. The measured compositions of formaldehyde were much higher than the theoretical compositions in summer, demonstrating that photochemical reactions significantly contributed to the formaldehyde production in the roadsides.  相似文献   

12.
Carbon monoxide (CO) emitted from roasted coffee is a potential occupational respiratory exposure hazard to workers within the coffee industry. The current study objective was to estimate CO emission factors from commercially available roasted whole bean and ground coffee measured in loose form, not packaged, and to assess the utility of CO monitoring in nonventilated storage spaces such as within coffee roasting and packaging facilities, transport vessels, and cafés. Determinants affecting CO emissions from coffee were investigated, including form (whole bean vs. ground), roast level (light, medium, medium-dark, dark), and age (time since the package was opened). CO emission factors were estimated for roasted coffee samples from a variety of manufacturers purchased from local grocery stores and online. Emission tests were performed on 36 brands of coffee, some with more than one sample per brand and with various roast levels. Decaying source equations or smoothing functions were fitted to the CO concentration measurements. Maximum observed emission factors at the peak of the predicted concentration curve were adjusted by the time required to reach the maximum CO concentration and reported as emission factors (EFbuildup). Ground coffee had a significantly increased EFbuildup (P < 0.0001) compared with whole bean. Roast level did not significantly affect emissions for whole bean (P = 0.72) but did for ground (P < 0.001) coffee. For ground coffee, medium-dark and dark roasts had significantly higher emissions than medium and light roasts. Worst-case emission factors from commercially available whole bean and ground coffee measured in loose form, not packaged, showed that roasted coffee can rapidly emit CO. CO concentrations should be monitored in storage spaces in service and manufacturing facilities as well as transport vessels to ensure exposures do not exceed occupational exposure limits. Storage spaces may need to be ventilated to control CO concentrations to safe levels.

Implications: Emission rates of carbon monoxide (CO) from roasted coffee showed that unventilated or underventilated storage spaces should be monitored and ventilated, if necessary, to control CO concentrations to safe levels.  相似文献   


13.
Articles have recently been published on aerosol size distributions and number concentrations in cities, however there have been no studies on transport of these particles. Eddy covariance measurements of vertical transport of aerosol in the size range 11 nm<Dp<3 μm are presented here. The analysis shows that typical average aerosol number fluxes in this size range vary between 9000 and 90,000 cm−2 s−1. With concentrations between 3000 and 20,000 cm−3 this leads to estimates of particle emission velocity between 20 and 75 mm s−1. The relationships between number flux and traffic activity, along with emission velocity and boundary layer stability are demonstrated and parameterised. These are used to derive an empirical parameterisation for aerosol concentration in terms of traffic activity and stability. The main processes determining urban aerosol fluxes and concentrations are discussed and quantified where possible. The difficulties in parameterising urban activity are discussed.  相似文献   

14.
A particle measurement campaign was conducted in a suburban environment near a major road in Kuopio, Central Finland from 3 August to 9 September 1999. The mass concentrations of fine particles (PM2.5) were measured simultaneously at distances of 12, 25, 52 and 87 m from the centre of a major road at a height of 1.8 m, using identical samplers. The concentration measurements were conducted during 16 daytime hours (from 6.00 a.m. to 10.00 p.m.) for 27 days. Traffic flows and relevant meteorological parameters were measured on-site; meteorological measurements from a nearby synoptic weather station were also utilised. We also suggest a preliminary model for predicting the concentrations of PM2.5 and apply this model in order to analyse the measured data. The regionally and long-range transported contribution was evaluated on the basis of a semi-empirical mathematical model utilising as input values the daily sulphate, nitrate and ammonium measurements at the EMEP stations (Co-operative programme for monitoring and evaluation of the long-range transmission of air pollutants in Europe). The influence of primary vehicular emissions from the nearest roads was evaluated using a roadside emission and dispersion model, CAR-FMI, in combination with a meteorological pre-processing model, MPP-FMI. The contribution of non-exhaust particulate matter emissions (including resuspension of particulate matter from road surfaces) was estimated simply to be directly proportional to the concentrations originating from primary vehicular emissions. Comparison of the predicted results and measurements yields information on the relative importance of various source categories of the measured concentrations of PM2.5. The regionally and long-range transported contribution, the primary and non-exhaust vehicular emissions, and other sources were estimated to contribute on average 41±6%, 33±6% and 26±7% of the observed PM2.5 concentrations, respectively. The model presented could also be applied in other European cities for analysing the source contributions to measured fine particulate matter concentrations.  相似文献   

15.
Airborne particle number concentrations and size distributions as well as CO and NOx concentrations monitored at a site within the central business district of Brisbane, Australia were correlated with the traffic flow rate on a nearby freeway with the aim of investigating differences between weekday and weekend pollutant characteristics. Observations over a 5-year monitoring period showed that the mean number particle concentration on weekdays was (8.8±0.1)×103 cm−3 and on weekends (5.9±0.2)×103 cm−3—a difference of 47%. The corresponding mean particle number median diameters during weekdays and weekends were 44.2±0.3 and 50.2±0.2 nm, respectively. The differences in mean particle number concentration and size between weekdays and weekends were found to be statistically significant at confidence levels of over 99%. During a 1-year period of observation, the mean traffic flow rate on the freeway was 14.2×104 and 9.6×104 vehicles per weekday and weekend day, respectively—a difference of 48%. The mean diurnal variations of the particle number and the gaseous concentrations closely followed the traffic flow rate on both weekdays and weekends (correlation coefficient of 0.86 for particles). The overall conclusion, as to the effect of traffic on concentration levels of pollutant concentration in the vicinity of a major road (about 100 m) carrying traffic of the order of 105 vehicles per day, is that about a 50% increase in traffic flow rate results in similar increases of CO and NOx concentrations and a higher increase of about 70% in particle number concentration.  相似文献   

16.
Carboxyhemoglobin (COHb) levels in blood are principally due to inhalation of carbon monoxide, although a low level (approximately 0.3%) of COHb is endogenous. A carboxyhemoglobin level above 1.5 % in non-smokers indicates exposure to CO in excess of the 10 mg/m3 air quality standard established under the Clean Air Act Amendments of 1970.

In most major U.S. cities, automobile emissions constitute the principal source of CO; in Chicago, according to EPA estimates,1 light duty vehicles are responsible for 69.3% of all CO emissions. Thus as new automobiles incorporating emission controls enter the automotive fleet and older, emission-uncontrolled automobiles are phased out, ambient CO concentrations should decline and corresponding reductions in blood carboxyhemoglobin levels of nonsmokers can be expected.  相似文献   

17.
Abstract

Air samples of particulate matter (PM) with an aerodynamic diameter less than 10 µm (PM10) were collected from six sites in Bangkok, Thailand, using high-volume air samplers. Daily samples were taken at intervals of 12 days from November 1999 to November 2000. Size-selected sampling using a multislit Andersen size-fractionated cascade impactor was undertaken at one site in central Bangkok to identify particulate size distribution. The annual average PM10 concentration at all six sites exceeded the Thailand National Ambient Air Quality Standard (NAAQS) of 50 µg/m3. The daily PM10 concentrations at heavy traffic roadside areas ranged between 30 and 160 µg/m3. The highest PM10 level occurred during the winter period (November–February), which is the dry season. From our results, which are based on a 1-yr survey, it can be observed that the particulate concentrations are associated with traffic volumes and seasonal factors (temperature and rainfall). The relative importance of size fractions in contributing to PM load is presented and discussed. Twenty polycyclic aromatic hydro-carbons (PAHs) associated with PM have been identified and quantified. The summed PAHs based on the 20 species had an average concentration of 60 ng/m3. Benzo(e)pyrene, indeno(123cd)pyrene, and benzo(ghi)perylene were the major compounds with average concentrations of 8, 10, and 13 ng/m3, respectively. Results indicate that more than 97% of PAHs were found in the small particulate size range of <0.95 µm.  相似文献   

18.
In order to investigate the air quality and the abatement of traffic-related pollution during the 2008 Olympic Games, we select 12 avenues in the urban area of Beijing to calculate the concentrations of PM10, CO, NO2 and O3 before and during the Olympic traffic controlling days, with the OSPM model.Through comparing the modeled results with the measurement results on a representative street, the OSPM model is validated as sufficient to predict the average concentrations of these pollutants at street level, and also reflects their daily variations well, i.e. CO presents the similar double peaks as the traffic flow, PM10 concentration is influenced by other sources. Meanwhile, the model predicts O3 to stay less during the daytime and ascend in the night, just opposite to NO2, which reveals the impact of photochemical reactions. In addition, the predicted concentrations on the windward side often exceed the leeward side, indicating the impact of the special street shape, as well as the wind.The comparison between the predicted street concentrations before and during the Olympic traffic control period shows that the overall on-road air quality was improved effectively, due to the 32.3% traffic flow reduction. The concentrations of PM10, CO and NO2 have reduced from 142.6 μg m−3, 3.02 mg m−3 and 118.7 μg m−3 to 102.0 μg m−3, 2.43 mg m−3 and 104.1 μg m−3. However, the different pollutants show diverse changes after the traffic control. PM10 decreases most, and the reduction effect focusing on the first half-day even clears the morning peak, whereas CO and NO2 have even reductions to minify the daily fluctuations on the whole. Opposite to the other pollutants, ozone shows an increase of concentration. The average reduction rate of PM10, CO, NO2 and O3 are respectively 28%, 19.3%, 12.3% and −25.2%. Furthermore, the streets in east, west, south and north areas present different air quality improvements, probably induced by the varied background pollution in different regions around Beijing, along with the impact of wind force. This finding suggests the pollution control in the surrounding regions, not only in the urban area.  相似文献   

19.
Vehicle exhaust is a major source of air pollution in metropolitan cities. Commuters are exposed to high traffic-related pollutant concentrations. Public transportation is the most popular commuting mode in Hong Kong and there are about 10.8 million passenger trips every day. Two-thirds of them are road commuters. An extensive survey was conducted to measure carbon monoxide in three popular passenger commuting modes, bus, minibus, and taxi, which served, respectively, 3.91 million, 1.76 million and 1.31 million passenger trips per day in 1998. Three types of commuting microenvironments were selected: urban–urban, urban–suburban and urban–rural. Results indicated that in-vehicle CO level increased in the following order: bus, minibus and taxi. The overall average in-vehicle CO level in air-conditioned bus, minibus and taxi were 1.8, 2.9 and 3.3 ppm, respectively. The average concentration level difference between air-conditioned buses (1.8 ppm) and non-air-conditioned buses (1.9 ppm) was insignificant. The fluctuation of in-vehicle CO level of non-air-conditioned vehicle followed the variation of out-vehicle CO concentration. Our result also showed that even in air-conditioned vehicles, the in-vehicle CO concentration was affected by the out-vehicle CO concentration although there exists a smoothing out effect. The in-vehicle CO level was the highest in urban–suburban commuting routes and was followed by urban–urban routes. The in-vehicle CO level in urban–rural routes was the lowest. The highest CO level was recorded after the vehicle traversed through tunnel. The average CO exposure of a commuter in tunnel can be 2–3 times higher than that at the other roads. The CO exposure level of public road transportation commuters in Hong Kong was lower than most other cities. Factors governing the CO levels were also discussed.  相似文献   

20.
The association of the direct-acting mutagenicity of soluble organic fraction of airborne particles toward Salmonella typhimurium YG1024 strain with the direct emission was investigated at a roadside and at a residential area in Osaka, Japan. The direct-acting mutagenicity was evaluated as mutagenic activity per unit volume of ambient air (rev m−3) and/or that per airborne particulate weight collected on a filter (rev mg−1). The annual or diurnal changes of the mutagenicity of airborne particles at the residential site showed similar patterns to those of some gaseous pollutants such as NO2 and SO2, which were emitted from combustion processes. This result indicates that the mutagenicity is mainly attributable to the primary emissions. From the analysis of the relationship between the wind sector and the mutagenic intensity, rev m−3 and rev mg−1 values were strongly affected by the emissions from the fixed sources and from the mobile sources, respectively. The rev m−3 value and concentration of 1-nitropyrene (1-NP) in unit per m3 at the roadside were a factor of 2.6 and 2.8 higher than those at the residential site, respectively, but the rev mg−1 value and concentration of 1-NP in unit per mg at the roadside were substantially comparable to those at the residential area. These observations suggest that the characteristics of the airborne particles can be attributed to the automotive emissions even at the suburban area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号