首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
2.
3.
This study focused on the expression analysis of antioxidant defense genes in Brassica oleracea and in Trifolium repens. Plants were exposed for 3, 10, and 56 days in microcosms to a field-collected suburban soil spiked by low concentrations of cadmium and/or lead. In both species, metal accumulations and expression levels of genes encoding proteins involved and/or related to antioxidant defense systems (glutathione transferases, peroxidases, catalases, metallothioneins) were quantified in leaves in order to better understand the detoxification processes involved following exposure to metals. It appeared that strongest gene expression variations in T. repens were observed when plants are exposed to Cd (metallothionein and ascorbate peroxidase upregulations) whereas strongest variations in B. oleracea were observed in case of Cd/Pb co-exposures (metallothionein, glutathione transferase, and peroxidase upregulations). Results also suggest that there is a benefit to use complementary species in order to better apprehend the biological effects in ecotoxicology.  相似文献   

4.
Microorganisms have developed copper-resistance mechanisms in order to survive in contaminated environments. The abundance and expression of the copper-resistance genes cusA and copA, encoding respectively for a Resistance Cell Nodulation protein and for a P-type ATP-ase pump, was assessed along a gradient of copper concentration in microcosms prepared from Seine estuary mudflat sediment. We demonstrated that the abundance of copA and cusA genes decreased with the increase of copper concentration and that cusA gene was up to ten times higher than the copA gene. Only the copA gene was expressed in both oxic and anoxic conditions. The abundance and activity of the microbial community remained constant whatever the concentrations of copper along the gradient. The molecular phylogeny of the two copper-resistance genes was studied and revealed that the increase of copper increased the diversity of copA and cusA gene sequences.  相似文献   

5.
During ovary maturation of crabs, vitellogenin (Vg), a precursor molecule of vitellin (Vn) needed for embryogenesis, can be produced in large quantities in the hepatopancreas and then transported to the ovary by the hemolymph. In the present study, effects of Cd on Vg accumulation in the hepatopancreas and Vg transportation of the freshwater crab Sinopotamon henanense were investigated. We also studied the impacts of Cd on the mRNA expression of genes involved in energy metabolism, protein metabolism, and metallothionein (MT) and glutathione (GSH) synthesis. After Cd treatment, the Vg concentration and the Vg mRNA expression in the hepatopancreas were downregulated. Pearson’s correlation coefficient showed that the Vg level in the hepatopancreas correlated positively with those of the ovary and hemolymph (correlation coefficients 0.844 and 0.749, respectively), suggesting that the Vg transport from the hepatopancreas to the ovary can be impaired by Cd. The levels of carbohydrate and protein in the hepatopancreas of Cd-exposed crabs were decreased, and an inhibited protein metabolism was also observed. Energy production related isocitrate dehydrogenase and cytochrome C oxidase mRNA expressions, and MT and GSH synthesis increased after 10 days of Cd treatment and decreased after 20 days. Cd also caused a time-dependent upregulation of malondialdehyde. Our findings showed that Cd decreased Vg accumulation in the hepatopancreas due to partially excessive energy consumption and an activated defense system in the hepatopancreas, suggesting a possible regulatory mechanism in S. henanense which is the competitive advantage of energy reserves in metabolic Cd stress responses over the high-energy flux during vitellogenesis to ensure a continuous supply of metabolic energy. Moreover, the damage of Vg accumulation in the hepatopancreas caused by Cd could lead to an insufficient accumulation of Vn in the ovary and cause a retardation of oocyte development.  相似文献   

6.
This study aimed to determine the occurrence, abundance, and fate of nine important antimicrobial resistance genes (ARGs) (sul1, sul2, tetB, tetM, ermB, ermF, fexA, cfr, and Intl1) in the simulated soil and pond microcosms following poultry and swine manure application. Absolute quantitative PCR method was used to determine the gene copies. The results were modeled as a logarithmic regression (N?=?mlnt?+?b) to explore the fate of target genes. Genes sul1, Intl1, sul2, and tetM had the highest abundance following the application of the two manure types. The logarithmic regression model fitted the results well (R 2 values up to 0.99). The reduction rate of all genes (except for the genes fexA and cfr) in manure-pond microcosms was faster than those in manure-soil microcosms. Importantly, sul1, intl1, sul2, and tetM had the lowest reduction rates in all the samples and the low reduction rates of tetM was the first time to be reported. These results indicated that ARG management should focus on using technologies for the ARG elimination before the manure applications rather than waiting for subsequent attenuation in soil or water, particularly the ARGs (such as sul1, intl1, sul2, and tetM investigated in this study) that had high abundance and low reduction rate in the soil and water after application of manure.  相似文献   

7.
In chemotherapy, various anti-cancer drugs with different mechanisms of action are used and may represent different risk of undesirable delayed side effects in treated patients as well as in occupationally exposed populations. The aim of the present study was to evaluate genotoxic potential of four widely used anti-cancer drugs with different mechanisms of action: 5-fluorouracil (5-FU), cisplatin (CDDP) and etoposide (ET) that cause cell death by targeting DNA function and imatinib mesylate (IM) that inhibits targeted protein kinases in cancer cells in an experimental model with human hepatoma HepG2 cells. After 24 h of exposure all four anti-cancer drugs at non-cytotoxic concentrations induced significant increase in formation of DNA double strand breaks (DSBs), with IM being the least effective. The analysis of the changes in the expression of genes involved in the response to DNA damage (CDKN1A, GADD45A, MDM2), apoptosis (BAX, BCL2) and oncogenesis (MYC, JUN) showed that 5-FU, CDDP and ET upregulated the genes involved in DNA damage response, while the anti-apoptotic gene BCL2 and oncogene MYC were downregulated. On the contrary, IM did not change the mRNA level of the studied genes, showing different mechanism of action that probably does not involve direct interaction with DNA processing. Genotoxic effects of the tested anti-cancer drugs were observed at their therapeutic concentrations that may consequently lead to increased risk for development of delayed adverse effects in patients. In addition, considering the genotoxic mechanism of action of 5-FU, CDDP and ET an increased risk can also not be excluded in occupationally exposed populations. The results also indicate that exposure to 5-FU, CDDP and ET represent a higher risk for delayed effects such as cancer, reproductive effects and heritable disease than exposure to IM.  相似文献   

8.
Concentrations of some metals (Cd, Cu, As, Hg, Pb) and polychlorinated biphenyls (PCBs) were investigated in edible marine organisms from different trophic levels and feeding behaviour like bivalve molluscs (Mytilus galloprovincialis and Chlamys glabra), gastropod molluscs (Hexaplex trunculus) and some commercial species of fish (Trachurus trachurus, Boops boops, Sarpa salpa and Gobius niger). These species were collected in the first inlet of the Mar Piccolo of Taranto (Ionian Sea, Southern Italy), classified as ‘Site of National Interest’ established by National Law 426 (1998) and included in the ‘National Environmental Remediation and Restoration Projects’. The aim of this work was to investigate contamination levels and public health risks, associated with consuming seafood harvested from these areas. Moreover, in this study, was also estimated the weekly intake in children and adults, both for metals and PCBs. In comparison with the permissible limits set by EC Regulations, Cd and Pb levels were over the limit in the H. trunculus (in all sampling stations) and in the fish T. trachurus respectively. PCBs were over the legal limit in all sampled species with the exception of M. galloprovincialis (station 1), C. glabra and the herbivorous fish S. salpa. In the fish T. trachurus, for example, the concentration of six target PCBs was about five times higher than the EC limit. The estimated intakes of those trace elements included in this study through seafood consumption by the population exceed the provisional tolerable weekly intake recommended by the Joint FAO/WHO Expert Committee on Food Additives for Cd and Hg in the H. trunculus and T. trachurus, especially in children. Moreover, hazard quotience (HQ) for Hg and Cd was >1 in the children for T. trachurus and H. trunculus consumption. As regard non-dioxin-like PCB (NDL-PCB), the estimated intake were always above the ‘provisional guidance value’ (70 ng/kg body weight) Arnich et al. (Regul Toxicol Pharm 54: 287–2, 2009) for all sampled organism. Thus, health risks due to the dietary Hg, Cd and PCBs intake, especially for children, cannot be excluded. Therefore, an extended remediation programme is necessary to safeguard marine ecosystem, human health and, not less important, the economic activities, in the Taranto marine area.  相似文献   

9.
Efficient and sustainable management of rapidly mounting environmental issues has been the focus of current intensive research. The present study aimed to investigate the impact of plant phenological development stage variation on mercury (Hg) tolerance, accumulation, and allocation in two salt marsh macrophytes Triglochin maritima and Scirpus maritimus prevalent in historically Hg-contaminated Ria de Aveiro coastal lagoon (Portugal). Both plant samples and the sediments vegetated by monospecific stands of T. maritima and S. maritimus were collected from reference (R) and sites with moderate (M) and high (H) Hg contamination in Laranjo bay within Ria de Aveiro lagoon. Hg tolerance, uptake, and allocation in T. maritima and S. maritimus, physico-chemical traits (pH, redox potential, and organic matter content) and Hg concentrations in sediments vegetated by these species were impacted differentially by phenological development stages variation irrespective of the Hg contamination level. In T. maritima, Hg concentration increased with increase in Hg contamination gradient where root displayed significantly higher Hg followed by rhizome and leaf maximally at H. However, in S. maritimus, the highest Hg concentration was perceptible in rhizome followed by root maximally at M. Between the two studied plant species, S. maritimus displayed higher Hg tolerance index (depicted by higher plant dry mass allocated to reproductive stage) and higher available Hg at M (during all growth stages) and H (during senescent stage) when compared to T. maritimus. Both plant species proved to be Hg excluder (low root/rhizome–leaf Hg translocation). Additionally, T. maritima also acted as Hg stabilizer while, S. maritimus as Hg accumulator. It can be inferred from the study that (a) the plant phenological development stage variations significantly influenced plant Hg sensitivity by impacting sediment chemistry, plant growth (in terms of plant dry mass), Hg accumulation, and its subsequent allocation capacity, contingent to Hg contamination gradient; (b) S. maritimus accumulated higher Hg but restricted its translocation to above-ground part using exclusion process at both M and H due to its accelerated growth during Hg-tolerant reproductive/metabolically active phenological development stage greater than its counterpart T. maritima; and (c) the studied salt marsh plants although hailed from the same C3 and monocot group did not necessarily display similar phenotypic plasticity and behavior towards Hg-contaminated scenario during their life cycle.  相似文献   

10.
Vegetation associated with lacustrine systems in Northern Patagonia was studied for heavy metal and trace element contents, regarding their elemental contribution to these aquatic ecosystems. The research focused on native species and exotic vascular plant Salix spp. potential for absorbing heavy metals and trace elements. The native species studied were riparian Amomyrtus luma, Austrocedrus chilensis, Chusquea culeou, Desfontainia fulgens, Escallonia rubra, Gaultheria mucronata, Lomatia hirsuta, Luma apiculata, Maytenus boaria, Myrceugenia exsucca, Nothofagus antarctica, Nothofagus dombeyi, Schinus patagonicus, and Weinmannia trichosperma, and macrophytes Hydrocotyle chamaemorus, Isöetes chubutiana, Galium sp., Myriophyllum quitense, Nitella sp. (algae), Potamogeton linguatus, Ranunculus sp., and Schoenoplectus californicus. Fresh leaves were analyzed as well as leaves decomposing within the aquatic bodies, collected from lakes Futalaufquen and Rivadavia (Los Alerces National Park), and lakes Moreno and Nahuel Huapi (Nahuel Huapi National Park). The elements studied were heavy metals Ag, As, Cd, Hg, and U, major elements Ca, K, and Fe, and trace elements Ba, Br, Co, Cr, Cs, Hf, Na, Rb, Se, Sr, and Zn. Geochemical tracers La and Sm were also determined to evaluate contamination of the biological tissues by geological particulate (sediment, soil, dust) and to implement concentration corrections.  相似文献   

11.
A field survey was conducted to evaluate soil metal pollution and endogenous trans-zeatin content in the leaves of plants growing at six sites in a metal-polluted area located in Gejiu, Yunnan, China. Five plant species were collected, and the physicochemical properties and concentrations of five metals in the soil were analyzed. The trans-zeatin content in plant leaves was measured by high-performance liquid chromatography. Based on the Nemerow pollution index, the six sites were classified into four levels of pollution (i.e., low, medium, high, and severely high). The degree of soil metal pollution was cadmium (Cd) > arsenic (As) > lead (Pb) > zinc (Zn) > copper (Cu). The leaf trans-zeatin content in Pteris vittata (an arsenic hyperaccumulator) increased significantly by 98.6 % in soil with a severely high level of pollution compared with soil at a low level of pollution. However, in non-hyperaccumulators Bidens pilosa var. radiata and Ageratina adenophora, a significant decrease in leaf trans-zeatin content of 35.6 and 87.6 %, respectively, was observed. The leaf trans-zeatin content in Artemisia argyi also decreased significantly by 73.6 % in high metal-polluted soil compared with that in medium metal-polluted soil. Furthermore, significant correlations were observed between leaf trans-zeatin content in Pteris vittata and As, Pb, and Cd concentrations in the soil; however, either no correlation or a negative one was observed in the other plant species. Therefore, a high content of trans-zeatin in the leaves of Pteris vittata may play an important role in its normal growth and tolerance to metals.  相似文献   

12.
Metal contamination is a recurring problem in Peru, caused mainly by mine tailings from a past active mining activity. The Ancash region has the largest number of environmental liabilities, which mobilizes high levels of metals and acid drainages into soils and freshwater sources, posing a standing risk on human and environmental health. Native plant species spontaneously growing on naturally acidified soils and acid mine tailings show a unique tolerance to high metal concentrations and are thus potential candidates for soil phytoremediation. However, little is known about their propagation capacity and metal accumulation under controlled conditions. In this study, we aimed at characterizing nine native plant species, previously identified as potential hyperaccumulators, from areas impacted by mine tailings in the Ancash region. Plants were grown on mine soils under greenhouse conditions during 5 months, after which the concentration of Cd, Cu, Ni, Pb, and Zn was analyzed in roots, shoots, and soils. The bioaccumulation (BAF) and translocation factor (TF) were calculated to determine the amount of each metal accumulated in the roots and shoots and to identify which species could be better suited for phytoremediation purposes. Soil samples contained high Cd (6.50–49.80 mg/kg), Cu (159.50–1187.00 mg/kg), Ni (3.50–8.70 mg/kg), Pb (1707.00–4243.00 mg/kg), and Zn (909.00–7100.00 mg/kg) concentrations exceeding national environmental quality standards. After exposure to mine tailings, concentrations of metals in shoots were highest in Werneria nubigena (Cd, 16.68 mg/kg; Cu, 41.36 mg/kg; Ni, 26.85 mg/kg; Zn, 1691.03 mg/kg), Pennisetum clandestinum (Pb, 236.86 mg/kg), and Medicago lupulina (Zn, 1078.10 mg/kg). Metal concentrations in the roots were highest in Juncus bufonius (Cd, 34.34 mg/kg; Cu, 251.07 mg/kg; Ni, 6.60 mg/kg; Pb, 718.44 mg/kg) and M. lupulina (Zn, 2415.73 mg/kg). The greatest BAF was calculated for W. nubigena (Cd, 1.92; Cu, 1.20; Ni, 6.50; Zn, 3.50) and J. bufonius (Ni, 3.02; Zn, 1.30); BCF for Calamagrostis recta (Cd, 1.09; Cu, 1.80; Ni, 1.09), J. bufonius (Cd, 3.91; Cu, 1.79; Ni, 18.36), and Achyrocline alata (Ni, 137; Zn, 1.85); and TF for W. nubigena (Cd, 2.36; Cu, 1.70; Ni, 2.42; Pb, 1.17; Zn, 1.43), A. alata (Cd, 1.14; Pb, 1.94), J. bufonius (Ni, 2.72; Zn, 1.63), and P. clandestinum (Zn, 1.14). Our results suggest that these plant species have a great potential for soil phytoremediation, given their capability to accumulate and transfer metals and their tolerance to highly metal-polluted environments in the Andean region.  相似文献   

13.
Tea saponin (TS), a kind of green biosurfactant produced by plants, was added into the Cd–pyrene co-contaminated soils to evaluate its influence on phytoremediation of Cd and pyrene by Lolium multiflorum. The results showed that the accumulation of pyrene in L. multiflorum was significantly promoted by the TS. Compared with no TS treatments (PL and ML), the aboveground concentrations of pyrene in TS treatments (PLT and MLT) increased by 135 and 30%, respectively, and the underground concentrations of pyrene in TS treatments (PLT and MLT) increased by 40 and 25%. The concentrations of Cd in the aboveground and underground parts in single contaminated treatments were all significantly more than those in co-contaminated treatments, while the situation of pyrene was quite the reverse. Besides, the addition of TS enhanced activities of dehydrogenase and polyphenol oxidase in soils and increased the biomass of L. multiflorum. The micromorphology of L. multiflorum was not affected by TS. The study suggests that the use of L. multiflorum with TS is an alternative technology for remediation of Cd–pyrene co-contaminated soils.  相似文献   

14.
A number of human health effects have been associated with exposure to metal removal fluids (MRFs). Multiple lines of research suggest that a newly identified organism, Mycobacterium immunogenum (MI), appears to have an etiologic role in hypersensitivity pneumonitis (HP) in case of MRFs exposed workers. However, our knowledge of this organism, other possible causative agents (e.g., Pseudomonads), and the microbial ecology of MRFs in general, is limited. In this study, culture-based methods and small subunit ribosomal RNA gene clone library approach were used to characterize microbial communities in MRF bulk fluid and associated biofilm samples collected from fluid systems in an automobile engine plant. PCR amplification data using universal primers indicate that all samples had bacterial and fungal contaminated. Five among 15 samples formed colonies on the Mycobacteria agar 7H9 suggesting the likely presence of Mycobacteria in these five samples. This observation was confirmed with PCR amplification of 16S rRNA gene fragment using Mycobacteria specific primers. Two additional samples, Biofilm-1 and Biofilm-3, were positive in PCR amplification for Mycobacteria, yet no colonies formed on the 7H9 cultivation agar plates. Real-time PCR was used to quantify the abundance of M. immunogenum in these samples, and the data showed that the copies of M. immunogenum 16S rRNA gene in the samples ranges from 4.33?×?104 copy/ml to 4.61?×?107 copy/ml. Clone library analysis revealed that Paecilomyces sp. and Acremonium sp. and Acremonium-like were dominant fungi in MRF samples. Various bacterial species from the major phylum of proteobacteria were found and Pseudomonas is the dominant bacterial genus in these samples. Mycobacteria (more specifically MI) were found in all biofilm samples, including biofilms collected from inside the MRF systems and from adjacent environmental surfaces, suggesting that biofilms may play an important role in microbial ecology in MRFs. Biofilms may provide a shield or sheltered microenvironment for the growth and/or colonization of Mycobacteria in MRFs.  相似文献   

15.
The expansion of invasive Japanese knotweed s.l. is of particular concern because of its aptitudes to rapidly colonize diverse environments, especially anthropized habitats generally characterized by their pollution with heavy metals. Whether the presence of heavy metals impacts the performance traits of this plant is a central question to better understand its invasive properties, though no controlled approach to assess these effects was yet reported. In this aim, we undertook greenhouse experiments where rhizome fragments of Japanese knotweed s.l. (Fallopia japonica and Fallopia × bohemica) were grown during 1 and 3 months, in a soil pot artificially polluted or not with heavy metals added in mixture (Cd, Cr, Pb, Zn). Our results showed that (i) the presence of heavy metals delayed rhizome regeneration and induced lowered plant part weights but did not affect plant height after 3 months; (ii) the effect of metals on the metabolic profiles of belowground part extracts was only detectable after 1 month and not after 3 months of growth, though it was possible to highlight the effect of metals independently of time and genotype for root extracts, and torosachrysone seemed to be the most induced compound; and (iii) the hybrid genotype tested was able to accumulate relatively high concentrations of metals, over or close to the highest reported ones for this plant for Cr, Cd and Zn, whereas Pb was not accumulated. These findings evidence that the presence of heavy metals in soil has a low impact on Fallopia sp. overall performance traits during rhizome regeneration, and has a rather stimulating effect on plant growth depending on pollution level.  相似文献   

16.
This study was performed to determine the concentrations of some trace metals (Cd, Cu, Pb, Ni, Zn, and Fe) in Holothuria tubuosa (Gmelin, 1788) belonging to Echinoderm species and in sediments that they live at three different stations (Gelibolu, Umur Bey/Lapseki, and Dardanos) on Dardanelles Strait between April 2013 and March 2014. The mean trace metal concentrations determined in H. tubulosa and sediment were as follows: Cd 0.18 mg/kg, Cu 2.43 mg/kg, Pb 2.09 mg/kg, Ni 14.58 mg/kg, Zn 16.86 mg/kg, and Fe 73.46 mg/kg and Cd 0.70 mg/kg, Cu 5.03 mg/kg, Pb 14.57 mg/kg, Ni 27.15 mg/kg, Zn 54.52 mg/kg, and Fe 3779.9 mg/kg, respectively. It was detected that the statistical difference between trace metals determined seasonally in muscle tissue of H. tubulosa was significant (p?>?0.05). As a result of the study, it was detected that H. tubulosa is a bioindicator species in determining Ni trace metal in sediment. The results were compared to the limit values of National and International Food Safety, and it was detected that Cd and Ni concentrations measured in sediment were above LEL of Ni and Cd concentrations according to Sediment Quality Guidelines.  相似文献   

17.
Medicago sativa was cultivated at a former harbor facility near Bordeaux (France) to phytomanage a soil contaminated by trace elements (TE) and polycyclic aromatic hydrocarbons (PAH). In parallel, a biotest with Phaseolus vulgaris was carried out on potted soils from 18 sub-sites to assess their phytotoxicity. Total soil TE and PAH concentrations, TE concentrations in the soil pore water, the foliar ionome of M. sativa (at the end of the first growth season) and of Populus nigra growing in situ, the root and shoot biomass and the foliar ionome of P. vulgaris were determined. Despite high total soil TE, soluble TE concentrations were generally low, mainly due to alkaline soil pH (7.8–8.6). Shoot dry weight (DW) yield and foliar ionome of P. vulgaris did not reflect the soil contamination, but its root DW yield decreased at highest soil TE and/or PAH concentrations. Foliar ionomes of M. sativa and P. nigra growing in situ were generally similar to the ones at uncontaminated sites. M. sativa contributed to bioavailable TE stripping by shoot removal (in g ha?1 harvest?1): As 0.9, Cd 0.3, Cr 0.4, Cu 16.1, Ni 2.6, Pb 4, and Zn 134. After 1 year, 72 plant species were identified in the plant community across three subsets: (I) plant community developed on bare soil sowed with M. sativa; (II) plant community developed in unharvested plots dominated by grasses; and (III) plant community developed on unsowed bare soil. The shoot DW yield (in mg ha?1 harvest?1) varied from 1.1 (subset I) to 6.9 (subset II). For subset III, the specific richness was the lowest in plots with the highest phytotoxicity for P. vulgaris.  相似文献   

18.
The toxic effects of Cu (II) on the freshwater green algae Chlorella vulgaris and its chloroplast were investigated by detecting the responses of photosynthesis and oxidant stress. The results showed that Cu (II) arrested the growth of C. vulgaris and presented in a concentration- and time-dependent trend and the SRichards 2 model fitted the inhibition curve best. The chlorophyll fluorescence parameters, including qP, Y (II), ETR, F v /F m , and F v /F 0, were stimulated at low concentration of Cu (II) but declined at high concentration, indicating the photosystem II (PSII) of C. vulgaris was destroyed by Cu (II). The chloroplasts were extracted, and the Hill reaction activity (HRA) of chloroplast was significantly decreased with the increasing Cu (II) concentration under both illuminating and dark condition, and faster decline speed was observed under dark condition. Activities of superoxide dismutase (SOD) and catalase (CAT) and malondialdehyde (MDA) content were also significantly decreased at high concentration Cu (II), companied with a large number of reactive oxygen species (ROS) production. All these results indicated a severe oxidative stress on algal cells occurred as well as the effect on photosynthesis, thus inhibiting the growth of algae, which providing sights to evaluate the phytotoxicity of Cu (II).  相似文献   

19.
Declines of amphibian populations have been a worldwide issue of concern for the scientific community during the last several decades. Efforts are being carried out to elucidate factors related to this phenomenon. Among these factors, pathogens, climate change, and environmental pollution have been suggested as possible causes. Regarding environmental pollutants, some pesticides are persistent in the environment and capable of being transported long distances from their release point. In Costa Rica, some pesticides have been detected in protected areas, at locations where amphibian populations have declined. Information about toxicity of pesticides used in Costa Rican agriculture to amphibians is still scarce, particularly for native species.Toxicity tests with chlorothalonil, a fungicide intensively used in Costa Rica, were carried out exposing tadpoles of three Costa Rican native species: Agalychnis callidryas, Isthmohyla pseudopuma, and Smilisca baudinii in order to evaluate acute and chronic toxicity as well as the biomarkers cholinesterase activity (ChE), glutathione-S transferase activity (GST), and lipid peroxidation (LPO).96-h LC50: 26.6 (18.9–35.8) μg/L to A. callidryas, 25.5 (21.3–29.7) μg/L to I pseudopuma and 32.3 (26.3–39.7) μg/L to S. baudinii were determined for chlorothalonil. These three species of anurans are among the most sensitive to chlorothalonil according to the literature. Besides, GST was induced in S. baudinii after exposure to sub-lethal concentrations of chlorothalonil while evisceration occurred in S. baudinii and A. callidryas tadpoles exposed to lethal concentrations of the fungicide. Chronic exposure to sub-lethal concentrations accelerated development in S. baudinii and caused lesions in tail of S. baudinii and I. pseudopuma tadpoles. Our results demonstrate that chlorothalonil is highly toxic to native amphibian species and that low concentrations can cause biochemical responses related to phase II of biotransformation and effects on development.  相似文献   

20.
Concentrations of heavy metals (Cu, Ni, Zn, Cd and Pb) were measured in sediments, water and liver and kidney tissues of three Indian major carps (Labeo rohita, Catla catla and Cirrhinus cirrhosus), belonging to two different weight groups (250 and 500 g), collected from ponds at two different sites (Nalban bheri and Diamond Harbour). The tissues were analysed for the levels of different antioxidant defence systems such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GRd), glutathione S-transferase (GST), glutathione (GSH) and malondialdehyde (MDA). Concentrations of all the metals were significantly higher (P < 0.05) in sediment, water and the tissues from Nalban bheri compared to those in Diamond Harbour. Metal concentrations were the lowest in C. cirrhosus, which increased with an increase in fish weight, and the liver accumulated higher amount of metals than the kidney. Activities of all enzymatic and non-enzymatic antioxidant parameters except GPx and GRd were significantly higher (P < 0.05) in the tissues from Nalban bheri than those in Diamond Harbour. Significant multicollinearity was found in the values of SOD, CAT, GST, GRd, GPx and MDA with Pb, Cu and Ni in all three fish species at Nalban and with Cd in L. rohita and C. catla. Principal component analysis results revealed that stress response in a polluted site was directly regulated by an amalgamation of GSH profile and the levels of MDA in a synchronized manner. The study indicated a tissue-specific and species-specific difference for heavy metal-induced oxidative stress response in fish and a correlation between different heavy metals and individual oxidative stress markers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号