首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A2O工艺处理生活污水短程硝化反硝化的研究   总被引:4,自引:2,他引:4       下载免费PDF全文
在常温条件下,采用A2O工艺处理低C/N比实际生活污水,通过控制好氧区DO为0.3~0.5mg/L以及增大系统内回流比以降低好氧实际水力停留时间(AHRT),成功启动并维持了短程硝化反硝化;系统亚硝态氮积累率稳定维持在90%左右.在C/N比仅为2.34的情况下,短程硝化系统对总氮(TN)的去除率高达75.4%.通过对不同碳源类型、不同硝化类型以及不同DO水平下A2O系统脱氮效率的比较研究发现,低氧短程硝化反硝化阶段与外加碳源的全程硝化反硝化阶段的TN去除率相当.同时研究表明,低DO运行并不会导致A2O工艺发生污泥膨胀.当接种污泥为膨胀污泥时,控制DO在0.3~0.5mg/L反而有助于改善污泥沉降性能和出水水质.  相似文献   

2.
SBR法短程反硝化动力学分析研究   总被引:1,自引:0,他引:1  
实验室中采用SBR反应器,研究短程硝化反硝化工艺的影响因素,通过实验数据对SBR短程硝化反硝化工艺的反硝化动力学方程参数进行确定,通过维持SBR反应器内的水温,控制溶解氧浓度和氨氮浓度等反应条件,分析实验数据,最后推导出短程反硝化动力学方程式.实验中,由于反应起始和反应过程中COD和NO2--N浓度远大于饱和常数,所以短程反硝化反应近似于零级反应,亚硝酸盐氮和有机物浓度对反硝化速率影响很小,反硝化速率仅是温度和pH值的函数.  相似文献   

3.
针对氮肥生产企业废水特点,采用短程硝化ASBR组合工艺。介绍了工程设计参数、处理工艺流程及设计特点。考察了工艺运行的情况,结果表明,该组合工艺对化工废水有稳定的处理效果,对COD的去除率可达90.8%。  相似文献   

4.
低温低氨氮SBR短程硝化稳定性试验研究   总被引:8,自引:0,他引:8       下载免费PDF全文
在11~15℃条件下,采用序批式反应器(SBR)研究(50±5)mg/L氨氮浓度下短程硝化的稳定性.结果表明,2种溶解氧浓度(初始DO浓度分别为0.9~1.5,4.5~5.0mg/L)下反应器均能达到良好的稳定性和去除效果,150个周期内亚硝化率一直维持在95%以上,氨氧化率85%以上,平均SVI为35.22mL/g,2种DO水平下的平均氨氮污泥负荷分别为0.15,0.23kgN/(kgMLSS·d).当初始DO浓度为4.5~5.0mg/L时,21~23℃条件下无法实现短程硝化的稳定运行,经过42个周期亚硝化率降至70%,而31~33℃条件可以实现短程硝化的恢复并维持其稳定.经过不同温度条件下的对比分析及FISH试验研究,表明11~15℃与31~33℃均可抑制NOB的活性,从而有利于实现生活污水短程硝化的稳定运行.  相似文献   

5.
实际生活污水短程/全程硝化反硝化处理中试研究   总被引:7,自引:0,他引:7  
马勇  彭永臻  陈伦强  吴学蕾 《环境科学》2006,27(12):2477-2482
常温条件下,用A/O生物脱氮工艺中试试验装置处理实际生活污水,控制好氧区低DO浓度(0.5 mg/L),实现了短程硝化反硝化反应,亚硝酸氮平均积累率可达85%或更高.研究了低DO短程硝化反硝化、低DO全程硝化反硝化和高DO全程硝化反硝化3种运行方式或状态在总氮去除率、耗氧量、污泥性能和反应机理上的差别.结果表明,短程硝化反硝化是生物脱氮的最优运行方式,它可有效提高系统脱氮率、降低运行费用.短程硝化反硝化过程中缺氧区和好氧区的pH值变化幅度较大;而全程硝化反硝化过程中,缺氧区pH值变化很小或基本不变化,好氧区pH值变化幅度较大.全程硝化和短程硝化的硝化速率相差不大,但短程反硝化速率和全程反硝化速率相比增加了15%.可以应用DO和pH在线控制A/O工艺硝化反应过程.  相似文献   

6.
低温低氨氮SBR短程硝化稳定性试验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
在11~15℃条件下,采用序批式反应器(SBR)研究(50±5)mg/L氨氮浓度下短程硝化的稳定性.结果表明,2种溶解氧浓度(初始DO浓度分别为0.9~1.5,4.5~5.0mg/L)下反应器均能达到良好的稳定性和去除效果,150个周期内亚硝化率一直维持在95%以上,氨氧化率85%以上,平均SVI为35.22mL/g,2种DO水平下的平均氨氮污泥负荷分别为0.15,0.23kgN/(kgMLSS·d).当初始DO浓度为4.5~5.0mg/L时,21~23℃条件下无法实现短程硝化的稳定运行,经过42个周期亚硝化率降至70%,而31~33℃条件可以实现短程硝化的恢复并维持其稳定.经过不同温度条件下的对比分析及FISH试验研究,表明11~15℃与31~33℃均可抑制NOB的活性,从而有利于实现生活污水短程硝化的稳定运行.  相似文献   

7.
研究了A/DAT-IAT生物脱氮工艺在低溶解氧浓度下,处理高氨氮、低碳氮比工业废水时,去除氨氮过程中亚硝酸盐积累的情况。结果表明,系统在低DO浓度下有效去除氨氮的同时,能够实现长期稳定的亚硝酸盐积累,并且没有发生污泥膨胀。在试验的稳定运行阶段,当系统运行正常,DO=1·0mg/L时,DAT池亚硝化率(NO2--N/NOX--N)平均可达82·1%,氨氮去除率>95%,污泥的沉降性能一直良好,SVI值处于90~125mL/g范围内。  相似文献   

8.
应用在线控制优化污泥种群强化A/O工艺短程硝化   总被引:1,自引:0,他引:1  
马勇  彭永臻  吴学蕾  曾薇 《环境科学》2007,28(5):1044-1049
应用A/O中试试验装置处理实际生活污水,研究了在线过程控制对微生物种群活性和结构的影响,分子生物学FISH检测表明,污泥种群的优化是可能的也是有效的,基于DO、pH传感器在线信息动态控制DO浓度和曝气量可以实现系统中亚硝酸盐氧化菌(NOB)的淘洗,从而获得稳定的短程硝化反应.应用过程控制不但可实现污泥种群优化,提高系统脱氮效率,而且可最大程度的节约运行费用.  相似文献   

9.
曲洋  张培玉  于德爽  郭沙沙  杨瑞霞 《环境科学》2010,31(10):2376-2384
研究了异养硝化-好氧反硝化菌应用于短程硝化系统的可行性.采用生物强化技术将4株高效异养硝化-好氧反硝化菌投入耐盐短程硝化污泥中,考察了其对含海水污水的SBR短程硝化系统的强化效果,并比较了强化系统与原系统的差异性.结果表明,强化系统的NO2--N最大积累量比原系统降低34.92%,而且到达NO2--N最大积累量的时间比原系统提前2h.强化系统的TN和COD在硝化段中后期持续降低,硝化结束时其TN和COD去除率比原系统高出15.24%和5.39%,NH4+-N去除率和亚硝化率比原系统高出6.85%和14.47%.强化系统的pH比原系统高0.46,而ORP低25.84mV.强化系统的性能提升是由强化菌的异养硝化作用和好氧反硝化作用引起的.当受到70%海水盐度冲击时,强化系统的稳定性高于原系统,强化菌的加入有效地抑制了系统从短程硝化向全程硝化转变的趋势.在强化系统与原系统运行的各阶段,强化菌种的数量发生了变化,且随着系统排泥强化菌大量流失.本研究为异养硝化-好氧反硝化菌应用于短程脱氮系统的可行性提供了理论参考.  相似文献   

10.
新型SBR工艺是在传统SBR工艺基础上进行改进,于反应器中加一隔板而成的。实验研究了不同的C/N、DO和好氧区与缺氧厌氧区体积比对同步硝化反硝化的影响,当进水CODcr NH4^+-N浓度分别为198-604、48.7~57.0mg/L,DO浓度为1.0~3.0mg/L时反应器中CODcr、NH4^+-N去除率分别达到89.3%~93.4%、77.6%~97.5%。  相似文献   

11.
刘宏  彭永臻  卢炯元  李慧  南彦斌  王瑾  陈永志 《环境科学》2017,38(11):4656-4663
采用SBR反应器处理实际生活污水,单周期分别交替4次(30℃)和7次(18℃)好氧/缺氧模式,好氧/缺氧时间比为30min/30 min.进水氨氮和亚硝氮浓度为61.44 mg·L~(-1)和0.77 mg·L~(-1),分别运行61和90周期时,出水氨氮分别为0.68mg·L~(-1)和1.28 mg·L~(-1),氨氮去除率高达98.94%和99.57%;亚硝氮积累浓度达到20.57 mg·L~(-1)和20.18 mg·L~(-1),亚硝氮积累率分别达到95.92%和99.58%.在实现短程硝化过程中,氨氧化菌(AOB)活性逐渐增加最后稳定在100.00%左右,而亚硝酸盐氧化菌(NOB)活性先增加后逐渐降低,分别在32和74周期时,AOB活性超过NOB活性,AOB成为优势菌种,61和90周期时NOB活性被完全抑制.  相似文献   

12.
新型SBR工艺是在传统SBR工艺基础上进行改进,于反应器中加一隔板而成的。实验研究了不同的C/N、DO和好氧区与缺氧厌氧区体积比对同步硝化反硝化的影响,当进水CODCr、NH4+-N浓度分别为198~604、48.7~57.0 m g/L,DO浓度为1.0~3.0 m g/L时反应器中CODCr、NH4+-N去除率分别达到89.3%~93.4%、77.6%~97.5%。  相似文献   

13.
MUCT工艺全程硝化和短程硝化模式下反硝化除磷研究   总被引:2,自引:2,他引:2  
曾薇  王向东  张立东  李博晓  彭永臻 《环境科学》2012,33(10):3513-3521
采用MUCT工艺处理低C/N比实际生活污水,研究在全程硝化及短程硝化模式下系统的反硝化除磷性能.MUCT反应器在常温下运行180 d,结果表明,采用低DO和短水力停留时间(HRT)实现了短程硝化,亚硝酸盐积累率达到70%以上.系统表现出较好的反硝化除磷性能,短程硝化期间磷的去除率和反硝化除磷率分别为90%和91%,全程硝化期间磷的去除率和反硝化除磷率分别为60%和88%.虽然短程硝化模式下磷的去除效果明显优于全程硝化模式,但荧光原位杂交(FISH)试验结果表明,2种模式下污泥中PAOs占总菌群的比例基本相同,平均为37%.COD去除效果稳定,试验期间出水COD均低于50 mg.L-1.不同硝化模式下污泥的批次试验表明:短程硝化期间,以NO2--N作为电子受体为主的反硝化除磷菌占总聚磷菌的比例和全程硝化期间以NO3--N作为电子受体为主的反硝化除磷菌的比例相比没有明显变化,平均为38%;与全程硝化时期相比,短程硝化阶段对有限碳源的利用率更高,磷的去除效果更好.短程硝化模式下的反硝化除磷更有利于低碳源污水的处理.  相似文献   

14.
环境温度下,以生物活性碳A/O工艺实现短程硝化反硝化处理城市生活污水。研究了具有短程硝化反硝化功能的生物活性碳污泥培养,并对HRT、曝气量及A/O体积比、回流比进行了讨论。结果得到在环境温度20~26℃,进水NH4+-N浓度150 mg/L,HRT为8 h,曝气量0.3 L/min条件下,亚硝酸积累率高达75%,达到了短程硝化目的;在A/O体积比为1:2,回流比为2:1时,短程硝化反硝化的TN去除率高达86.9%,COD去除率达92.7%;生物活性碳污泥在试验阶段无污泥膨胀发生,SVI稳定在150左右;处理实际城市生活污水,系统运行稳定,COD、NH4+-N、TN去除率分别平均达91.3%,98.8%,90.2%。  相似文献   

15.
应用A/O生物脱氮中试试验装置处理实际生活污水,从pH、污泥浓度(MLSS)、自由氨(FA)、温度、污泥龄(SRT)、溶解氧(DO)和水力停留时间(HRT)等方面系统的分析了A/O工艺实现短程硝化反硝化的主要影响因素.结果表明,DO浓度是A/O工艺实现短程硝化反硝化的主要因素,由FISH检测发现长期控制低DO浓度(0.3~0.7 mg·L-1)可以导致亚硝酸盐氧化菌(NOB)的淘洗,从而实现稳定的亚硝酸盐积累率,试验获得平均亚硝酸氮积累率为85%,有时甚至超过95%.提高DO浓度,1周内亚硝酸氮积累率从85%降到10%,继续维持低DO浓度,大约需要2个污泥龄时间才可重新恢复到较高的亚硝酸氮积累率(>75%).低DO浓度下,试验初期污泥沉淀性能随着亚硝酸氮积累率的增加而变差,而在试验后期,无论亚硝酸氮积累率多高,污泥沉淀性能一直很好,SVI值处于80~120 mL·g-1  相似文献   

16.
SBR工艺短程硝化快速启动条件的优化   总被引:5,自引:1,他引:5       下载免费PDF全文
以低COD/TN的实际生活污水为研究对象,采用SBR反应器,对短程硝化的启动条件进行了优化.结果表明,温度30℃、溶解氧(DO) 2.0mg/L、污泥龄为7d时,系统在实时控制条件下运行32周期,可以成功启动短程硝化.在总氮(TN)去除率>95%的情况下,亚硝酸盐积累率(NO2--N /NOx--N)>90%,随后的64d,温度恢复到常温(20~24℃),系统仍稳定运行.荧光原位杂交技术(FISH)检测表明,经过32个周期种群优化,污泥中氨氧化菌(AOB)的含量提高了38.9%,亚硝酸盐氧化菌(NOB)的含量降低了53.2%.在线动态控制DO浓度和曝气时间可以逐渐淘汰系统中的NOB,从而获得稳定的短程硝化,提高系统脱氮效率.  相似文献   

17.
采用A/O工艺处理模拟高氨氮废水,在一定条件下实现了稳定的短程硝化(积累率≥80%),污泥沉降性能良好,短程硝化后期污泥沉降性能逐渐恶化。实验结果表明,通过补充废水的N/P虽然能够略微降低SVI,但是仍然不能有效的缓解污泥膨胀。当COD负荷>0.27kg/(kg.d)时发生污泥膨胀。将DO控制在1.5~2.0mg/L,沉淀池的固液分离效果良好,并且氨氮去除率、COD去除率和亚硝氮积累率均>90%,污泥膨胀现象得到有效控制。  相似文献   

18.
以低碳氮比的生活污水为研究对象,采用SBR反应器,通过减少好氧阶段的搅拌时间快速启动短程硝化脱氮过程,对典型运行周期内氮去除规律进行研究,并从微生物角度进一步验证了短程硝化脱氮工艺的实现。结果表明:减少50%好氧搅拌时间后,亚硝酸盐积累率(NAR)由36.05%增加到54.06%,好氧阶段停止搅拌后,NAR被提高到90.17%,并且以此状态持续稳定运行;典型运行周期内SBR具有良好的NH4+-N去除效果和较高的NAR,实测NH4+-N去除率达89.46%,出水NAR达89.13%;实时荧光定量PCR技术(q-PCR)检测表明,经过140 d的种群优化,污泥中氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)含量分别占总菌数的70.3%和2.1%,从分子生物学角度验证了短程硝化工艺的实现。  相似文献   

19.
短程硝化反硝化去除高氨氮猪场废水中的氮   总被引:8,自引:0,他引:8       下载免费PDF全文
对比分析了运用缺氧/好氧SBR工艺处理2种COD/N不同的废水的脱氮效果,结果表明,2种废水的脱氮主要是通过短程硝化反硝化实现的,反应器中的NH4+-N浓度和pH值是控制亚硝酸型硝化的重要因素,经过部分厌氧消化的废水由于保持了较高的COD/N,脱氮效果明显好于完全厌氧消化废水,NH4+-N去除率达到98%以上,但出水反硝化不完全,投加乙酸钠后出水NOx--N由100~120mg/L减少到10~20mg/L,乙酸钠投加量以275mg/L为宜.  相似文献   

20.
短程硝化生物脱氮工艺的稳定性   总被引:22,自引:6,他引:22  
采用序批式活性污泥法 (SBR)处理实际豆制品废水 ,系统研究了温度和曝气时间对短程硝化反硝化生物脱氮工艺稳定性的影响 .结果表明 ,反应器内温度只有超过 28℃时 ,利用温度实现的短程硝化反硝化生物脱氮工艺才能稳定地运行 ;另外 ,首次发现过度曝气对短程硝化影响较大 ,在过度曝气条件下运行12d ,硝化类型就由NO2--N累积率为 96 %的短程硝化转变为NO2--N累积率为39.3%的全程硝化 .因此 ,为使短程硝化反硝化生物脱氮工艺稳定、持久地运行必须实现该工艺的实时控制 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号