首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SPU系列喷涂聚氨酯(脲)弹性体的研制   总被引:1,自引:0,他引:1  
采用半预聚物法合成了以聚醚多元醇、液化MDI,二胺扩链剂、端氨基聚醚等为主要原料的双组分喷涂聚氨酯弹性体.研究了配方中多异氰酸酯种类、软硬段质量分数、不同扩链剂等影响聚氨酯弹性体的因素.结果表明,采用半预聚物法制备的聚氨酯(脲)弹性体具有优良的物理性能及工艺性能,通过改变预聚体中多异氰酸酯类型、调节配方中软硬段质量分数,选择聚醚多元醇和端氨基聚醚种类,合理搭配不同的扩链剂,可以得到不同性能的聚氨酯(脲)弹性体材料.  相似文献   

2.
对纤维类废弃物热化学催化液化反应各反应物的用量比例、反应条件进行优化,并初步测定了最优条件下液化产物的组分.结果表明,纤维类废弃物在浓硫酸/苯酚(浓硫酸的质量分数为6%)的混合催化体系中,当温度为160℃,时间为70min时的液化效果最好.气相色谱-质谱联用仪和红外光谱仪的分析结果表明,液化产物中甲基和亚甲基等基团的振动加强,以及存在麦草纤维素的单体葡萄糖的衍生物,液化反应破坏了纤维类废弃物的晶格结构,从而打破了生物利用的禁锢,使其易被微生物降解.利用液化产物进行混合菌株发酵培养,其真蛋白含量可达到30.74%;其酒精含量可达到19.0%(V/V).  相似文献   

3.
目的设计并制备一种特殊分子结构的新型聚氨酯,并将其形状记忆性能应用于涂层自修复。通过与市售同类涂层进行性能对比,更为严谨科学地评测新型自修复涂层的性能。方法以羟甲基丁酸、二甲基甲酰胺作为扩链剂,采用聚乙二醇为分子链软段,以异佛尔酮二异氰酸酯为硬段,采用溶液聚合法得到水性聚氨酯。设置对照组,涂以不同聚氨酯涂层,进行加速腐蚀试验。使用体视显微镜测试、傅氏转换红外光谱分析、热重分析、电化学工作站对聚氨酯的表面形貌、化学结构、热性、极化特性及交流阻抗等性能指标参数进行测试。结果同等划痕处理情况下,所制备的自修复聚氨酯各项性能明显优于市面上使用的聚氨酯有机涂层材料性能。结论具有形状记忆性能的聚氨酯具有良好的自修复性能,可用于自修复涂层的成膜物。  相似文献   

4.
以雪峰柚皮为原料,采用EDTA-2Na改性制备颗粒吸附剂,对其理化性质进行表征,并研究其对水中Ni~(2+)的去除效果。结果表明,实验条件下,吸附剂产物最优制备工艺为:w_(柚粉):w_(EDTA-2Na)=1∶1(质量比),温度为120℃,时间为4 h,浓硫酸2 mL,产物对Ni~(2+)去除率可达99.87%,饱和吸附量为140.62 mg/g;红外光谱及SEM表征分析证实,产物的—OH、—NH_2、—COOH等活性基团增多,表面结构不规则,具有丰富孔道。通过考察投加量、pH值、盐浓度和粒度等影响因素发现,pH值(pH≥2)、粒度(只影响其吸附速率)和盐浓度对产物吸附效果影响均微弱,在投加量为0.75 g/L、Ni~(2+)初始浓度为100 mg/L下,处理30 min达到吸附平衡。改性产物对Ni~(2+)的吸附过程符合准二级动力学方程,等温吸附过程与Langmuir和Freundlich模型吻合。  相似文献   

5.
改性聚氨酯海绵的合成及其油水分离性能   总被引:1,自引:0,他引:1       下载免费PDF全文
以膨胀石墨与氧化锌为原料,采用复合改性法改性聚氨酯海绵,在硅烷偶联剂的作用下,用月桂酸的醇溶液表面修饰后制备出改性聚氨酯海绵. 通过扫描电子显微镜(SEM)与接触角测定仪进行表征,对改性聚氨酯海绵的吸油、吸水及循环使用性能进行了测定,并试验获得了最佳的油水分离条件. 结果表明:改性聚氨酯海绵具有良好的疏水超亲油性,在膨胀石墨分散液与氧化锌胶体溶液体积比为1∶1时,对于质量浓度为20 g/L的机油水溶液,饱和单位吸油量最高可达17.7 g/g,对机油的选择性吸附系数为10.41,油水分离效果最佳;在选择吸附过程中,15 min以内油水分离效率就能达到78.41%;改性聚氨酯海绵每次循环利用后,单位吸油量的减幅均低于7.3%,循环使用性能良好. 研究显示,该种改性聚氨酯海绵对油水体系中的油类具有很好的选择性,吸附完成后,经过简单的挤压将油回收后即可循环利用,具有便捷、高效、循环、无二次污染的特性.   相似文献   

6.
利用碳酸盐矿化菌在底物诱导下的酶化作用,分解产生碳酸根离子,矿化固结环境(土壤水体)当中的游离重金属离子,减少其危险。文章以Zn2+溶液模拟重金属离子污染体系,研究过程中发现,生产的矿化产物主要是ZnO.5(OH)62(CO)3。分别用菌粉和菌液进行微生物矿化试验,对矿化产物进行底物分解率,SEM,XRD,矿化粒径的对比研究。从对比研究结果看,菌粉复活后,可以达到与菌液基本相同的矿化效果。而菌粉相对于菌液而言,其主要优势在于能长时间储存,产品体积小,运输起来更方便,因此,菌粉具有更广泛的应用性。  相似文献   

7.
为了缓解我国高度依赖石油进口带来的风险,发展将煤炭通过科学手段转化为石油的煤制油工艺,是缓解石油和天然气供需矛盾的现实手段。煤制油残渣是煤制油工业的主要污染产物,妥善解决煤制油残渣是实现煤制油工艺绿色发展的重要组成部分。综述了目前国内最普遍的4种煤制油技术并分析其各自优缺点。并对不同煤制油工艺产生的残渣进行分类,对其组成结构和物化性质进行总结,并在此基础上选择煤直接液化残渣,阐述了其利用技术研究进展,主要包括燃烧、热解、制备沥青产物和其他利用途径4个部分。提出煤制油技术的未来发展趋势是研究煤炭的结构转换过程、更加廉价高效的催化剂及其催化原理、催化剂分离的高通量反应器以及产品分离技术。煤制油残渣的高值化利用方式中,沥青类产物和高性能碳材料具有可观的经济前景和研究价值。  相似文献   

8.
以异佛尔酮二异氰酸酯(IPDI)、聚丙二醇(PPG-1000)为主要原料,二羟甲基丙酸(DMPA)为亲水扩链剂,一缩二乙二醇(DEG)为小分子扩链剂,三乙胺(TEA)为中和剂,合成水性聚氨酯(WPU)溶液。研究了异氰酸根与羟值(NCO/OH)摩尔比、中和度等因素对WPU溶液黏度性能的影响。初步获得水性聚氨酯压制剂的制备工艺,即:NCO/OH投料比0.80~1.0,中和度100%,初聚温度60℃,预聚75℃,预聚时间3h,扩链1.5h,按照此配比及工艺制备的水性聚氨酯溶液稳定性能较好。  相似文献   

9.
铺设TDI聚氨酯塑胶跑道的危害与对策   总被引:13,自引:0,他引:13  
本文分析了铺设TDI型聚氨酯塑胶跑道的危害与对策。研究结果表明:TDI聚氨酯跑道除TDI外,组分中还含有多种催化剂、二元胺类扩链剂、有机分子增塑剂、溶剂、橡胶配合剂、苯溶剂等有毒有害化学物质;聚氨酯跑道铺设套用游离TDI不超过0.7%的标准,其实际指标高出100倍以上;预计数年后我国每年将产生35万吨无法自然降解的、含有有毒有害物质的、难以处理的TDI聚氨酯跑道垃圾;建议尽决停止铺设TDI聚氨酯跑道。对体育场馆运动面层材料进行环保立项,并建立完善的检测体系;研制符合环保要求的合成运动面层材料。  相似文献   

10.
为解决粉煤灰提取有价成分后固体残渣中由于含氟硅酸盐而难以利用的问题,利用氟硅酸盐在微晶玻璃制备中可作成核剂的特性,提出了将两条工艺路线相结合的新方法,即以该类固体残渣为原料制备微晶玻璃,实现此类固体废物的资源化利用。通过等温晶化制度对产品进行晶化处理。研究表明,晶化产物中生成了大量以镁橄榄石为主晶相的微晶体,该方法是可行的。  相似文献   

11.
崔振邦  杜敏 《装备环境工程》2015,12(6):104-108,120
目的研究压粉法制备微型Sb/Sb2O3全固态pH电极,克服玻璃电极的不足。方法压粉法制备Sb/Sb2O3固体pH电极,利用扫描电子显微镜、X射线衍射研究电极表面成分分布与特征,利用电位法、循环伏安法、断电流法对所制备的电极性能进行研究评价。结果该电极的有效成分均匀分布于电极表面,电极活化时间小于200 s。在pH值为1.0~5.0范围内有良好的线性响应,其响应斜率为-32.87 m V/pH。该电极具有良好的抗离子干扰能力和可逆性,循环伏安测试证实了该电极的电极反应,将该电极应用于溶液pH值的测量,与玻璃电极相比误差约为0.05,满足测量的需求。结论利用压粉法成功制备了Sb/Sb2O3固体pH电极。  相似文献   

12.
利用聚丁二酰亚胺对聚氨酯泡沫体进行化学改性处理,研究改性载体固定化微生物处理高氨氮模拟废水的效果。结果表明:当聚氨酯单元与聚丁二酰亚胺单元摩尔比为10∶1时,对泡沫进行改性后聚氨酯泡沫载体亲水性能良好,且具有较高的微生物负载量。改性后泡沫体上具有化学活性的官能团增加,有利于通过载体结合法固定化微生物细胞;,改性后的聚氨酯泡沫体作为微生物固定化载体用于模拟废水处理时,对主要污染指标呈现良好的污染物去除效果。  相似文献   

13.
文章以电解金属锰渣(EMR)作为矿粉(GGBFS)的硫酸盐激发剂,并利用水泥熟料和生石灰作为碱性激发剂,制备了一种复合矿渣基胶凝材料。引入混料试验设计方法,以电解锰渣粉、熟料粉、石灰作为变量,固定矿粉百分比,以该材料体系的3、7、28 d的抗压强度作为响应指标,建立回归模型。对不同龄期的回归模型进行残差分析以及各项参数的显著性检验,表明模型参数可靠。通过对模型等值线图分析,各材料不同掺量与强度之间的变化规律更为直观。  相似文献   

14.
以速生杉木为原料,经过苯酚液化物后加入六次甲基四胺熔融纺丝,初纺纤维固化处理后直接炭化制备出碳纤维,并对碳纤维的比表面积、孔径分布以及吸附特性进行了研究。研究结果表明,木材液化物碳纤维样品的等温线属于典型的Ⅰ型吸附等温线,其吸附滞后回线属于H4型。木材液化物碳纤维孔径主要以微孔为主,微孔率达到73.4%。碳纤维样品的BET比表面积、微孔面积、微孔容随着炭化温度的提高呈增大趋势,其中600~800℃是其孔隙结构发生变化的关键温度区间。液化原料中木材/苯酚比对其制备的碳纤维的比表面积、孔容及孔径的影响变化不大。  相似文献   

15.
为研究稻壳粉的对有机化合物吸附能力,以蒽和双酚A为代表,从时间、温度、溶剂三个方面研究了稻壳粉吸附率的变化.通过红外光谱分析吸附前后稻壳粉表面分子基团的变化.研究表明,稻壳粉对蒽、双酚A具有快速稳定的吸附能力,用于木塑复合材料时能够提高其环保性能。  相似文献   

16.
以电解金属锰渣(EMR)作为矿粉(GGBFS)的硫酸盐激发剂,并利用水泥熟料(Clinker)和生石灰(Lime)作为碱性激发剂,制备一种复合矿渣基胶凝材料。引入混料试验设计方法,以电解锰渣粉、熟料粉、石灰作为变量,固定矿粉百分比,以该材料体系的3、7、28 d的抗压强度作为响应指标,建立回归模型。对不同龄期的回归模型进行残差分析以及各项参数的显著性检验,表明模型参数可靠。通过对模型等值线图分析,各材料不同掺量与强度之间的变化规律更为直观。  相似文献   

17.
以电解金属锰渣(EMR)作为矿粉(GGBFS)的硫酸盐激发剂,并利用水泥熟料(Clinker)和生石灰(Lime)作为碱性激发剂,制备一种复合矿渣基胶凝材料。引入混料试验设计方法,以电解锰渣粉、熟料粉、石灰作为变量,固定矿粉百分比,以该材料体系的3、7、28 d的抗压强度作为响应指标,建立回归模型。对不同龄期的回归模型进行残差分析以及各项参数的显著性检验,表明模型参数可靠。通过对模型等值线图分析,各材料不同掺量与强度之间的变化规律更为直观。  相似文献   

18.
该文制备了3种固体超强酸催化剂用于直接液化,分别是Cl~-/ZrO_2、Cl~-/Fe_2O_3和Cl~-/ZrO_2-Fe_2O_3,研究直接液化催化剂对液化产物性能的影响;制备4种分子筛催化剂用于催化裂解,分别是HZSM-5、Fe~(3+)/HZSM-5、Co~(2+)/HZSM-5和Ni~(2+)/HZSM-5,研究催化裂解催化剂对裂解产物性能的影响。实验测定了催化剂的比表面积,进行了X射线衍射分析。直接液化产物的测定显示,Cl~-/ZrO_2的催化效果最好,其轻油混合相的酸值和羟值分别为26.55和404.56 mg KOH/g,重油相的酸值和羟值分别为30.84和206.63 mg KOH/g。催化裂解产物的测定显示,Fe~(3+)/HZSM-5的催化效果最好,其轻油混合相的酸值和羟值分别为27.71 mg KOH/g和320.27 mg KOH/g,重油相的酸值和羟值分别为14.35和294.97 mg KOH/g。催化剂的表征表明,7种催化剂均属于介孔材料,直接液化催化剂中,Cl~-/ZrO_2的比表面积最大;催化裂解催化剂中,Fe~(3+)/HZSM-5的比表面积最大。金属离子是以掺杂的形式位于HZSM-5晶体中,并没有呈现出独立的衍射峰即没有形成独立的金属氧化物。  相似文献   

19.
芬兰塑料纸板公司将塑料液化技术用于塑料垃圾再生利用获得成功。利用这项技术可将塑料垃圾液化,而且液化时不需要对垃圾进行严格的分类和清洗。液化塑料可作为沥青的替代品,用于铺设马路,因此被称为“塑料柏油”。““塑料柏油”的最大特点是具有良好的伸缩性。比普通柏油更耐寒、耐磨,而且造价低廉。目前,用液化塑料作筑路材料已进入大规模试验阶段。芬兰国家技术研究中心将对这种材料的耐久性及其对环境的影响继续进行研究。除用作筑路材料外,液化塑料还有其他许多用途。如制造能够卷起来的“塑料柏油板”、与重油混合用作工业燃料…  相似文献   

20.
分别采用酸性水溶液和碱性水溶液作为反应溶剂,在水热反应釜中进行直接液化反应,初级液化产物在不同温度下催化裂解,通过测定液体产物的酸值、羟值、热值以及残渣的纤维素、半纤维素、木质素、挥发分含量来确定最佳实验条件。结果表明:使用15%氢氧化钠水溶液作为反应溶剂时液化效果较好,主要体现为木质素明显液化。供氢体的加入对于稻壳的液化没有大的影响,液体产物的酸性变化不大,而羟值普遍减小,分子量增大。加入供氢体后产物的热值有所增加,但是热值还是偏低,不适合作为燃料油使用。以Fe~(3+)/SO_4~(2-)/TiO_2粉体为催化裂解催化剂,裂解产物不理想,热值太低。使用HZSM-5作为裂解催化剂时,催化剂加入量为6%、温度为300℃时热值发生了极大的变化,达到了10 MJ/kg以上,已经比较接近新鲜稻壳的热值,具有了作为燃料油的潜质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号