共查询到20条相似文献,搜索用时 15 毫秒
1.
A New Perspective on Sustainable Soil Remediation—Case Study Suggests Novel Fungal Genera Could Facilitate in situ Biodegradation of Hazardous Contaminants
下载免费PDF全文

Lauren M. Czaplicki Ellen Cooper P. Lee Ferguson Heather M. Stapleton Rytas Vilgalys Claudia K. Gunsch 《补救:环境净化治理成本、技术与工艺杂志》2016,26(2):59-72
Deciding upon a cost effective and sustainable method to address soil pollution is a challenge for many remedial project managers. High pressure to quickly achieve cleanup goals pushes for energy‐intensive remedies that rapidly address the contaminants of concern with established technologies, often leaving little room for research and development especially for slower treatment technologies, such as bioremediation, for the more heavily polluted sites. In this case study, new genomic approaches have been leveraged to assess fungal biostimulation potential in soils polluted with particularly persistent hydrophobic contaminants. This new approach provides insights into the genetic functions available at a given site in a way never before possible. In particular, this article presents a case study where next‐generation sequencing has been used to categorize fungi in soils from the Atlantic Wood Industries Superfund site in Portsmouth, Virginia. Data suggest that original attempts to harness fungi for bioremediation may have focused on fungal genera poorly suited to survive under heavily polluted site conditions, and that more targeted approaches relying on native indigenous fungi which are better equipped to survive under site‐specific conditions may be more appropriate. ©2016 Wiley Periodicals, Inc. 相似文献
2.
3.
A pilot‐scale study was performed using a palladium‐catalyzed and polymer‐coated nanoscale zero‐valent iron (ZVI) particle suspension at the Naval Air Station in Jacksonville, Florida. A total of 300 pounds of nanoscale ZVI particle suspension was injected via a gravity feed and recirculated through a source area containing chlorinated volatile organic compounds (VOCs). The recirculation created favorable mixing and distribution of the iron suspension and enhanced the mass transfer of sorbed and nonaqueous constituents into the aqueous phase, where the contaminants could be reduced. Between 65 and 99 percent aqueous‐phase VOC concentration reduction occurred, due to abiotic degradation, within five weeks of the injection. The rapid abiotic degradation processes then yielded to slower biological degradation as subsequent decreases in ‐elimination parameters were observed—yet favorable redox conditions were maintained as a result of the ZVI treatment. Post‐treatment analyses revealed cumulative reduction of soil contaminant concentrations between 8 and 92 percent. Aqueous‐phase VOC concentrations in wells side gradient and downgradient of the source were reduced up to 99 percent and were near or below applicable regulatory criteria. These reductions, coupled with the generation of innocuous by‐products, indicate that nanoscale ZVI effectively degraded contamination and reduced the mass flux from the source, a critical metric identified for source treatment. A summary of this project was recently presented at the US EPA Workshop on Nanotechnology for Site Remediation in Washington, D.C., on October 21–22, 2005. This case study supplied evidence that nanoscale zero valent iron, an emerging remediation technology, has been implemented successfully in the field. More information about this workshop and this presentation can be found at www.frtr.gov/nano/index.htm. © 2006 Wiley Periodicals, Inc. 相似文献
4.
Phytoremediation is an emerging remediation technology that utilizes plants and microbes to clean up contaminated air, soil, and water. Tropical and subtropical environments have an advantage in that long plant‐growing seasons and increased soil temperature can accelerate phytoremediation processes. Various contaminated sites in Hawaii have been addressed using this technology. In this article, work progress and advances of phytoremediation are briefly reviewed and exemplified with seven chemically contaminated sites in Hawaii. The investigations were performed for one or more of the following remediation needs: explosive residues, hydrocarbons, pesticide residues, soil stabilization, and slaughterhouse wastewater. In this unique article, studies of testing of over 100 plant species for remediation are reviewed and documented. The general trend leads one to consider that salt‐ and/or drought‐tolerant plants can bear other potential stress‐inducing conditions. © 2004 Wiley Periodicals, Inc. 相似文献
5.
Paul Sonnenfeld 《补救:环境净化治理成本、技术与工艺杂志》2002,13(1):99-105
Activity and Use Limitations (AULs) comprise both institutional controls and engineering controls. AULs, when properly implemented, are valuable tools in the risk‐based corrective action arsenal. However, the proponent of AULs must evaluate their life‐cycle costs and the short‐term and long‐term effectiveness of the AULs to protect human health and the environment. This article describes the various types of AULS and provides a checklist for evaluating the efficacy of the proposed AULs. © 2002 Wiley Periodicals, Inc. 相似文献
6.
Paul L. Edmiston Christine Osborne Karl P. Reinbold Deanna C. Pickett Laura A. Underwood 《补救:环境净化治理成本、技术与工艺杂志》2011,22(1):105-123
Iron‐Osorb® is a solid composite material of swellable organosilica with embedded nanoscale zero‐valent iron that was formulated to extract and dechlorinate solvents in groundwater. The unique feature of the highly porous organosilica is its strong affinity for chlorinated solvents, such as trichloroethylene (TCE), while being impervious to dissolved solids. The swellable matrix is able to release ethane after dechlorination and return to the initial state. Iron‐Osorb® was determined to be highly effective in reducing TCE concentrations in bench‐scale experiments. The material was tested in a series of three pilot scale tests for in situ remediation of TCE in conjunction with the Ohio Environmental Protection Agency at a site in central Ohio. Results of these tests indicate that TCE levels were reduced for a period of time after injection, then leveled out or bounced back, presumably due to depletion of zero‐valent iron. Use of tracer materials and soil corings indicate that Iron‐Osorb® traveled distances of at least 20 feet from the injection point during soil augmentation. The material appears to remain in place once the injection fluid is diluted into the surrounding groundwater. Overall, the technology is promising as a remediation method to treat dilute plumes or create diffuse permeable reactive barriers. Keys to future implementation include developing injection mechanisms that optimize soil distribution of the material and making the system long‐lasting to allow for continual treatment of contaminants emanating from the soil matrix. © 2011 Wiley Periodicals, Inc. 相似文献
7.
8.
9.
10.
11.
12.
13.
14.
15.
Kevin A. Morris 《补救:环境净化治理成本、技术与工艺杂志》2009,20(1):59-68
Mulch biowalls are proving to be an effective means of generating reducing conditions for the in situ anaerobic reduction of contaminants in groundwater that are amenable to the reduction process. Mulch is an inexpensive and readily available substrate that provides a long‐lasting carbon and electron donor source for the stimulation of the anaerobic reduction process in groundwater. Examples of contaminants that are amenable to the biotic anaerobic reduction process include: chlorinated alkenes and alkanes, explosives, perchlorate, some metals, and petroleum hydrocarbons. The microbial degradation of cellulose fibers (mulch) is arguably the oldest reduction process known and is evident anywhere that plant material, soil, and water are present together. This article presents three case studies discussing three different uses of mulch biowalls to stimulate the anaerobic bioremediation of contaminants in shallow soils and groundwater. © 2009 Wiley Periodicals, Inc. 相似文献
16.
17.
18.
The Muggah Creek estuary in Sydney, Nova Scotia, received liquid and solid wastes from a steel mill and its associated coke ovens for approximately 100 years. This resulted in pollution of soils and sediments with polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), heavy metals, and other pollutants, including those in untreated domestic wastewaters. The Canadian federal and Nova Scotia provincial governments organized the Sydney Tar Ponds Agency (STPA) to develop a remediation approach for the Coke Ovens site soils and Sydney Tar Ponds sediments. The STPA developed a remediation approach for the Sydney Tar Ponds sediments, involving solidification/stabilization (S/S) through mixing cement and other materials into the sediments, and then capping them as a waste pile. High‐density polyethylene (HDPE) plastic sheeting vertical barriers are proposed to be used to divert groundwater and surface water from entering into the S/S‐treated sediments and to collect any water and associated pollutants released from the S/S‐treated sediments. The Coke Ovens site soils are proposed to be landfarmed to reduce some of the PAHs and other pollutants and then capped with a layer of soil. This remediation program is estimated to cost on the order of $400 million (CAN). This article presents a review of the significant potential problems with the STPA proposed remediation strategy of the Sydney Tar Ponds sediments and Coke Ovens site soils. © 2006 Wiley Periodicals, Inc. 相似文献
19.