共查询到20条相似文献,搜索用时 265 毫秒
1.
Jianming Xu Ouyuan Jiang Lvyao Li Guilan Duan Williamson Gustave Weiwei Zhai Lina Zou Xia An Xianjin Tang 《环境科学学报(英文版)》2023,35(5):410-420
Root exudates are crucial for plants returning organic matter to soils, which is assumed to be a major source of carbon for the soil microbial community. This study investigated the influence of root exudates on the fate of arsenic (As) with a lab simulation experiment. Our findings suggested that root exudates had a dose effect on the soil physicochemical properties, As speciation transformation and the microbial community structure at different concentrations. The addition of root exudates increased the soil pH while decreased the soil redox potential (Eh). These changes in the soil pH and Eh increased As and ferrous (Fe(II)) concentrations in soil porewater. Results showed that 40 mg/L exudates addition significantly increased arsenite (As(III)) and arsenate (As(V)) by 541 and 10 times respectively within 30 days in soil porewater. The relative abundance of Fe(III)-reducing bacteria Geobacter and Anaeromyxobacter increased with the addition of root exudates, which enhanced microbial Fe reduction. Together these results suggest that investigating how root exudates affect the mobility and transformation of As in paddy soils is helpful to systematically understand the biogeochemical cycle of As in soil-rice system, which is of great significance for reducing the health risk of soil As contamination. 相似文献
2.
Pot and field experiments were conducted to investigate the effects of water regimes on the speciation and accumulation of arsenic (As) and cadmium (Cd) in Brazilian upland rice growing in soils polluted with both As and Cd. In the pot experiment constant and intermittent flooding treatments gave 3-16 times higher As concentrations in soil solution than did aerobic conditions but Cd showed the opposite trend. Compared to arsenate, there were more marked changes in the arsenite concentrations in the soil solution as water management shifted, and therefore arsenite concentrations dominated the As speciation and bioavailability in the soil. In the field experiment As concentrations in the rice grains increased from0.14 to 0.21 mg/kg while Cd concentrations decreased from 0.21 to 0.02 mg/kg with increasing irrigation ranging from aerobic to constantly flooding conditions. Among the various water regimes the conventional irrigation treatment produced the highest rice grain yield of 6.29 tons/ha. The As speciation analysis reveals that the accumulation of dimethylarsinic acid (from 11.3% to 61.7%) made a greater contribution to the increase in total As in brown rice in the intermittent and constant flooding treatments compared to the intermittent-aerobic treatment. Thus, water management exerted opposite effects on Cd and As speciation and bioavailability in the soil and consequently on their accumulation in the upland rice. Special care is required when irrigation regime methods are employed to mitigate the accumulation of metal(loid)s in the grain of rice grown in soils polluted with both As and Cd. 相似文献
3.
Jumin Hao Mei-Juan Han Songman Han Xiaoguang Meng Tsan-Liang Su Qingwu K. Wang 《环境科学学报(英文版)》2015,36(10):152-162
Arsenic (As) is one of the most toxic contaminants found in the environment. Development of novel detection methods for As species in water with the potential for field use has been an urgent need in recent years. In past decades, surface-enhanced Raman scattering (SERS) has gained a reputation as one of the most sensitive spectroscopic methods for chemical and biomolecular sensing. The SERS technique has emerged as an extremely promising solution for in-situ detection of arsenic species in the field, particularly when coupled with portable/handheld Raman spectrometers. In this article, the recent advances in SERS analysis of arsenic species in water media are reviewed, and the potential of this technique for fast screening and field testing of arsenic-contaminated environmental water samples is discussed. The problems that remain in the field are also discussed and an outlook for the future is featured at the end of the article. 相似文献
4.
A freshwater microalga, Chlorella vulgaris, was grown in the presence of varying phosphate concentrations( 10–500 μg/L P) and environmentally realistic concentrations of arsenate(As(Ⅴ))(5–50 μg/L As). Arsenic speciation in the culture medium and total cellular arsenic were measured using AEC-ICP-MS and ICP-DRC-MS, respectively, to determine arsenic biotransformation and uptake in the various phosphorus scenarios. At high phosphate concentration in the culture medium, 100 μg/L P, the uptake and biotransformation of As(Ⅴ) was minimal and dimethylarsonate(DMAs(Ⅴ)) was the dominant metabolite excreted by C. vulgaris, albeit at relatively low concentrations. At common environmental P concentrations, 0–50 μg/L P, the uptake and biotransformation of As(Ⅴ) increased. At these higher As-uptake levels, arsenite(As(Ⅲ)) was the predominant metabolite excreted from the cell. The concentrations of As(Ⅲ) in these low P conditions were much higher than the concentrations of methylated arsenicals observed at the various P concentrations studied. The switchover threshold between the(small) methylation and(large) reduction of As(Ⅴ) occurred around a cellular As concentration of 1 fg/cell. The observed nearly quantitative conversion of As(Ⅴ) to As(Ⅲ) under low phosphate conditions indicates the importance of As(Ⅴ) bio-reduction at common freshwater P concentrations. These findings on the influence of phosphorus on arsenic uptake, accumulation and excretion are discussed in relation to previously published research. The impact that the two scenarios of As(Ⅴ) metabolism, As(Ⅲ) excretion at high As(Ⅴ)-uptake and methylarsenical excretion at low As(Ⅴ)-uptake, have on freshwater arsenic speciation is discussed. 相似文献
5.
Jin Xie Xiao-Dong Niu Jiao-Jiao Xie Kai-Qiang He Meng-Dan Shi Su-Juan Yu Chun-Gang Yuan Jing-Fu Liu 《环境科学学报(英文版)》2021,33(10):1-7
The distribution and chemical speciation of arsenic (As) in different sized atmospheric particulate matters (PMs), including total suspended particles (TSP), PM10, and PM2.5, collected from Baoding, China were analyzed. The average total mass concentrations of As in TSP, PM10, and PM2.5 were 31.5, 35.3, and 54.1 µg/g, respectively, with an order of PM2.5 >PM 10 > TSP, revealing that As is prone to accumulate on fine particles. Due to the divergent toxicities of different As species, speciation analysis of As in PMs is further conducted. Most of previous studies mainly focused on inorganic arsenite (iAsIII), inorganic arsenate (iAsV), monomethylarsonate (MMA), and dimethylarsinate (DMA) in PMs, while the identification and sensitive quantification of trimethylarsine oxide (TMAO) were rarely reported. In this study, a high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry system was optimized for As speciation including TMAO in PMs. An anion exchange column was used to separate MMA, DMA and iAsV, while a cation exchange column to separate TMAO and iAsIII. Results showed that iAsV was the dominate component in all the samples, corresponding to a portion of 79.2% ± 9.3% of the total extractable species, while iAsIII, TMAO and DMA made up the remaining 21%. Our study demonstrated that iAsIII accounted for about 14.4% ± 11.4% of the total extracted species, with an average concentration of 1.7 ± 1.6 ng/m3. It is worth noting that TMAO was widely present in the samples (84 out of 97 samples), which supported the assumption that TMAO was ubiquitous in atmospheric particles. 相似文献
6.
以某个砒霜厂旧址为研究对象,分析场地的重金属污染特征。结果表明,该场地受到砷、铜、铅、镉和锌等重金属污染,其中,砷污染指标超过评价标准值达7 199倍;基于《展览会用地土壤环境质量评价标准(暂行)》条件下,采用RBCA模型计算砷、镉、铜、锌对人体健康的环境风险,结果表明,该场地砷超过了致癌风险指数标准限值-6(10)及非致癌危害商标准限值(1),说明砷具有很大的环境风险;采用IEUBK模型计算铅对人体的健康风险,结果表明,铅也具有一定的环境风险。因此,该污染场地在开发利用过程中需要对环境风险区域进行治理修复后才能使用。 相似文献
7.
本方法叙述了用示波极谱法测定水与污水中的微量砷。水样中的有机砷和无机砷被高锰酸钾氧化生成砷酸,在支持电解质中测定。校准曲线范围为0~10.0μg/10ml,方法的相对标准偏差分别为4.7,2.9和2.1回收率范围为91.67%~105.88%。 相似文献
8.
《环境科学学报(英文版)》2024,36(3):515-526
Arsenic(As)fate in paddy fields has been one of the most significant current issues due to the strong As accumulation potential of rice plants under flooded conditions.However,no attempt was done to explore As methylation and volatilization under non-flooded con-ditions.Herein,we investigated the effects of water management on As methylation and volatilization in three arsenic-contaminated soils enhanced by biostimulation with straw-derived organic matter and bioaugmentation with genetic engineered Pseudomonas putida KT2440(GE P.putida).Under flooded conditions,the application of biochar(BC),rice straw(RS)and their combination(BC+RS)increased total As in porewater.However,these effects were greatly attenuated under non-flooded conditions.Compared with RS amendment alone,the combination of GE P.putida and RS further promoted the As methylation and volatilization,and the promotion percentage under non-flooded conditions were significantly higher than that under flooded conditions.The combined GE P.putida and RS showed the highest effi-ciency in As methylation(88 μg/L)and volatilization(415.4 μg/(kg·year))in the non-flooded soil with moderate As contamination.Finally,stepwise multiple linear regression analysis presented that methylated As,DOC and pH in porewater were the most important factors contributing to As volatilization.Overall,our findings suggest that combination of bioaug-mentation with GE P.putida and biostimulation with RS/BC+RS is a potential strategy for bioremediation of arsenic-contaminated soils by enhancing As methylation and volatiliza-tion under non-flooded conditions. 相似文献
9.
William R. Cullen Qingqing Liu Xiufen Lu Anthony McKnight-Whitfor Hanyong Peng Aleksandra Popowich Xiaowen Yan Qi Zhang Michael Fricke Hongsui Sun X. Chris Le 《环境科学学报(英文版)》2016,28(11):7-27
Hundreds of millions of people around the world are exposed to elevated concentrations of inorganic and organic arsenic compounds, increasing the risk of a wide range of health effects. Studies of the environmental fate and human health effects of arsenic require authentic arsenic compounds. We summarize here the synthesis and characterization of more than a dozen methylated and thiolated arsenic compounds that are not commercially available. We discuss the methods of synthesis for the following14 trivalent(Ⅲ) and pentavalent() arsenic compounds: monomethylarsonous acid(MMA~Ⅲ), dicysteinylmethyldithioarsenite(MMA~Ⅲ(Cys)_2), monomethylarsonic acid(MMA~Ⅴ),monomethylmonothioarsonic acid(MMMTAⅤ) or monothio-MMA~Ⅴ, monomethyldithioarsonic acid(MMDTA~Ⅴ) or dithio-MMA~Ⅴ, monomethyltrithioarsonate(MMTTA~Ⅴ) or trithio-MMA~Ⅴ,dimethylarsinous acid(DMA~Ⅲ), dimethylarsino-glutathione(DMA~Ⅲ(SG)), dimethylarsinic acid(DMA~Ⅴ), dimethylmonothioarsinic acid(DMMTA~Ⅴ) or monothio-DMAⅤ, dimethyldithioarsinic acid(DMDTA~Ⅴ) or dithio-DMA~Ⅴ, trimethylarsine oxide(TMAO~Ⅴ), arsenobetaine(AsB), and an arsenicin-A model compound. We have reviewed and compared the available methods,synthesized the arsenic compounds in our laboratories, and provided characterization information. On the basis of reaction yield, ease of synthesis and purification of product, safety considerations, and our experience, we recommend a method for the synthesis of each of these arsenic compounds. 相似文献
10.
11.
土壤硒的生物有效性研究 总被引:18,自引:0,他引:18
对黑麦幼苗的试验表明,黑麦幼苗中的总硒(Se)浓度与总干重的乘积与0.1mol/L KH2PO4浸提态Se呈显著相关.对黑油菜的试验表明,在酸性土壤上,当Se(Ⅵ)的量≥0.5mg/kg时,可显著减少黑油菜的产量;而当Se(Ⅳ)的量达到2.0mg/kg时对产量影响不大;黑油菜吸收Se(Ⅵ)的量要大于吸收Se(Ⅳ)的量.通过田间采样分析表明,KH2PO4浸提态Se能反映土壤对植物的供Se状况,推荐用0.1mol/L KH2PO4溶液作为酸性土壤生物有效性Se的浸提溶液.影响土壤Se生物有效性的主要因子是CaCO3,其次是粉粒、有机质、黏粒含量.pH值可通过CaCO3对KH2PO4浸提态Se产生影响. 相似文献
12.
Polycyclic aromatic hydrocarbons (PAHs) and their oxygenated derivates (O-PAHs) are identified in soils and groundwater of industrialized sites and contribute to the risk for Humans and the Environment. Nevertheless, data are scarce in literature concerning their retention and transfer in soils and no soil - water partition coefficients are available for these compounds. Sorption of two PAHs, fluorene and acenaphthene and two O-PAHs, 9H-fluorenone and dibenzofuran onto two soils with different organic carbon contents was evaluated and compared by determining their sorption isotherms. Effect of ionic strength and liquid to solid ratio, on fluorene and fluorenone sorption was also evaluated. Sorption equilibrium is achieved within less than 24 hr of mixing and linear sorption models best fit the isotherm data. Acenaphthene and dibenzofuran are similarly sorbed onto the soil. KD of fluorene is higher than the one of fluorenone, showing a smaller affinity of fluorenone towards the solid phase. This means that O-PAH could form larger contamination plumes in groundwater than PAHs. Decreasing the L/S ratio from 100 to 50 and 30, increases the sorption of fluorenone onto the soil by 56% and 67% respectively, while the sorption of fluorene is slightly increased. Increasing the ionic strength of the aqueous phase also modifies the sorption of fluorenone, contrary to the sorption of fluorene which is slightly affected. 相似文献
13.
杭州城市土壤重金属污染研究进展及展望 总被引:1,自引:0,他引:1
文章综述了杭州城市土壤重金属污染主要来源、重金属污染分布状况、重金属存在形态及相关性,并对下一步土壤重金属研究提出了展望。分析表明,杭州土壤重金属污染主要来源于工业"三废"排放、汽车尾气排放和农业化肥的施用。杭州对蔬菜地、茶园等农业用地、商业居住区、工业区附近土壤污染研究较多,对Cu、Pb和Zn等关注较多,而对Hg和As关注很少。城市土壤已受到一定程度的重金属污染,土壤中Cd、Cr、Cu、N i、Pb、Zn和Mn均有明显的积累,其浓度分布具有一定的地域差异,以工业区和商业区污染较重。土壤中Cd、Co、Cr、N i和Hg以稳定的残余态为主,而Cu、Pb、Zn和Mn以活性较高的非残余态为主,因杭州土壤呈中性偏碱性,正常情况下不会有明显的重金属释放。下一步应重点关注工业企业搬迁后场地重金属污染修复以及Hg和As的污染问题。 相似文献
14.
15.
16.
Rapid evaluation of arsenic contamination in paddy soils using field portable X-ray fluorescence spectrometry 总被引:1,自引:0,他引:1
Arsenic (As) in paddy fields is deteriorating food security and human health through rice ingestion. Rice is the dominant food source of arsenic exposure to half of the world''s population. Therefore, an in situ effective method for As risk evaluation in paddy soil is strongly needed to avoid As exposure through rice ingestion. Herein, we developed a rapid analytical methodology for determination of As in plant tissues using field portable X-ray fluorescence spectrometry (FP-XRF). This method was applied to rice roots in order to evaluate the As contamination in paddy soils. The results showed that rice roots with iron plaques were superior to rhizosphere soils for generating FP-XRF signals, especially for field sites with As concentrations lower than the soil detection limit of FP-XRF (30.0 mg/kg). Moreover, the strong linear relationships of As concentrations between the rice roots and corresponding leaves and grains proved that the rice root, rather than the soil, is a better predictor of As concentrations in rice grains. The research provides an efficient As monitoring method for As contaminated paddy fields by using wetland plant roots with iron plaques and XRF-based analytical techniques. 相似文献
17.
Elevated arsenic and selenium concentrations in water cause health problems to both humans and wildlife. Natural and anthropogenic activities have caused contamination of these elements in waters worldwide, making the development of efficient cost-effective methods in their removal essential. In this work, removal of arsenate and selenite from water by adsorption onto a natural goethite(α-FeO OH) sample was studied at varying conditions. The data was then compared with other arsenate, selenite/goethite adsorption systems as much of literature shows discrepancies due to varying adsorption conditions. Characterization of the goethite was completed using inductively coupled plasma mass spectrometry, X-ray diffraction, Fouriertransform infrared spectroscopy, scanning electron microscopy, and Brunauer–Emmett–Teller surface area analysis. Pseudo-first order(PFO) and pseudo-second order(PSO) kinetic models were applied; including comparisons of different regression methods. Various adsorption isotherm models were applied to determine the best fitting model and to compare adsorption capacitates with other works. Desorption/leaching of arsenate and selenite was studied though the addition of phosphate and hydroxyl ions. Langmuir isotherm modeling resulted in maximum adsorption capacities of 6.204 and 7.740 mg/g for arsenate and selenite adsorption,respectively. The PSO model applied with a non-linear regression resulted in the best kinetic fits for both adsorption and desorption of arsenate and selenite. Adsorption decreased with increasing pH. Phosphate induced desorption resulted in the highest percentage of arsenate and selenite desorbed, while hydroxide induced resulted in the fastest desorption kinetics. 相似文献
18.
Jianwei Dong Xinghui Xi Zhining Zhang Zixuan Liu Xiaotian Zhang Husheng Li 《环境科学学报(英文版)》2018,30(12):79-87
Water regulation of the Xiaolangdi Reservoir of the Yellow River was chosen as a case to investigate variations in concentrations and bioavailability of heavy metals caused by water conservancy projects in rivers. Water and suspended sediment (SPS) samples were collected at downstream sampling sites along the river during this period. Concentrations and speciation of Zn, Cr, Cu, Ni, and Pb in water and SPS samples were analyzed, and their bioaccumulation was studied with Daphnia magna. This study indicated that the exchangeable and carbonate-bound fractions of heavy metals in SPS decreased along the studied stretch, and the dissolved heavy metal concentrations increased along the river with 1.6–15 folds. This is because sediment resuspension increased along the river during water regulation, giving rise to the increase of heavy metal release from SPS. The dissolved Zn, Cu, Ni, and Pb concentrations were significantly positively correlated with SPS concentrations, and their increase along the river was greater than Cr. The body burdens of heavy metals in D. magna exposed into samples collected from the reservoir outlet were 1.3–3.0 times lower than those from downstream stations, suggesting that the heavy metal bioavailability increased during water regulation. This should be considered in the reservoir operation. 相似文献
19.