首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 577 毫秒
1.
The structure of cryptic reef fish assemblages was assessed on sheltered and exposed aspects of coastal breakwaters at two locations in the northwestern Adriatic Sea. There were distinct differences between the two levels of exposure, which were consistent between locations. Habitat characteristics, measured on scales of tens of centimetres, explained 50% of the variability in assemblage structure between exposures, whereas ‘exposure’ alone (implying direct effects of wave energy on the fish) explained <5% of the variation. The most important explanatory variables were the presence of macroalgae, sandy habitat and oyster shell, the last of which increased the degree of small-scale complexity and provided nesting sites for blennies. We found little evidence to suggest that wave action had large direct effects on the fish assemblages, although this may be in part due to the relatively small degree of difference between ‘exposed’ and ‘sheltered’ samples under the calm conditions of a sea with a relatively short fetch. These results suggest that wave action acts mainly indirectly as a structuring force on cryptic reef fish communities, by altering the composition and/or the relative density of epibiota that influence the distribution of fish. Thus, relative wave energy may provide a useful means of predicting fish assemblage structure only at large spatial scales. Microhabitat, composed of a combination of physical complexity and biological elements, always explained the greater part of variability at small (<1 m) spatial scales.  相似文献   

2.
3.
Allochthonous subsidies of energy and nutrients can affect community structure in patchy marine habitats, including rocky reefs, and their ecological consequences may depend on the mechanism of energy transfer. Lingcod (Ophiodon elongatus) are demersal predators that trophically link nearshore rocky reefs with offshore pelagic habitats through consumption of pelagic fishes. We quantified lingcod habitat use and movement patterns to make inferences about the temporal and spatial conditions under which lingcod may acquire pelagic prey. Lingcod maintained small home ranges (21,272 ± 13,630 m2) within a rocky reef in the San Juan Archipelago, Washington; eight of nine individuals used rocky habitat exclusively. Depths occupied by lingcod (0–50 m) coincided with pelagic fish distribution on the rocky reef; however, diel patterns in lingcod activity varied inversely with occurrence of pelagic fishes on the reef. Our findings suggest that the pelagic subsidy to lingcod is not strongly mediated through directed off-reef foraging by lingcod.  相似文献   

4.
A regional benthic survey was conducted in 1994, and the data were used to assess the relationship among three habitat factors (depth, sediment grain size, and latitude) and the distribution of benthic infaunal assemblages on the southern California coastal shelf. Benthic samples were collected with a 0.1 m2 Van Veen grab from 251 sites on the continental shelf (10–200 m deep) from Point Conception, California, to the United States–Mexico international border. The relationship between habitat and assemblages was investigated by conducting a Q-mode cluster analysis to define groups of stations with similar species composition and then examining whether differences were present in physical habitat attributes among those groups of stations. Analysis of data from 175 uncontaminated sites yielded four habitat-related benthic infaunal assemblages along the southern California coastal shelf: a shallow-water assemblage from 10–32 m, a mid-depth assemblage between 32 and 115 m, and two deep-water (115–200 m) assemblages, one in fine and one in coarse sediments. These empirically defined points in the depth and sediment grain size gradients can be used to define reference habitats for the development of biocriteria. Benthic abundance and diversity were greatest in the mid-depth assemblage, conforming to predictions for benthic assemblages in regions of upwelling. Within the 500 km of coastline examined, latitude was not an important factor in defining assemblages. Received: 3 December 1999 / Accepted: 9 October 2000  相似文献   

5.
The spatial, diel and tidal variability in the abundance of piscivorous fishes and their teleost prey, and the dietary composition of predatory fishes were investigated in beds of Heterozostera tasmanica within Port Phillip Bay, Australia, from September 1997 to February 1998. Predatory and prey fish assemblages were sampled from beds of H. tasmanica at three locations during each combination of diel (day and night) and tidal (high and low) cycles. Pelagic and benthic crustaceans represented >60% by abundance of the diets of all predatory fishes. Seven species, 54% of all predatory fishes, were piscivorous. These piscivores consumed individuals from seven families, 36.8% of the fish families being associated with seagrass. Western Australian salmon, Arripis truttacea (Arripidae) (n = 174) and yank flathead, Platycephalus speculator (Platycephalidae) (n = 46) were the most abundant piscivores. A. truttacea consumed larval/post-larval atherinids, gobiids and sillaginids. P. speculator consumed late-juvenile/adult atherinids, clinids and gobiids. While the abundances of piscivores varied between locations (P < 0.001) and diel periods (P = 0.028), the relative differences in piscivore abundance between sites and diel periods were not consistent between tides. The abundances of A. truttacea varied in a complex way amongst sites, diel period and tidal cycle, as shown by a three-way interaction between these factors (P = 0.026). Only during diurnal periods at St. Leonards was the abundance of A. truttacea significantly higher during high than low tides (P < 0.001). During the other diel periods at each site, the abundance of A. truttacea did not vary. P. speculator was significantly more abundant nocturnally (P = 0.017). The abundance of small (prey) fishes varied significantly amongst sites (P < 0.001). During the day, the abundance of small fishes did not vary between high and low tides (P = 0.185), but their nocturnal abundance was greater during low tide (P < 0.001). Atherinids (n = 1732) and sillaginids (n = 1623) were the most abundant families of small fishes. Atherinids were significantly more abundant nocturnally (P = 0.005) and during low tides (P = 0.029), and varied significantly amongst sites (P < 0.001). Sillaginids varied significantly only amongst sites (P < 0.001). Seagrass beds provide a foraging habitat for a diverse assemblage of predatory fishes, many of which are piscivorous. Anti-predator behaviour and amongst-location variability in abundances of piscivorous fishes may explain some of the diel and tidal, and broad-scale spatial patterns in small-fish abundances. Received: 23 July 1999 / Accepted: 18 January 2000  相似文献   

6.
Red morwong (Cheilodactylus fuscus; Cheilodactylidae: Perciformes), are large temperate rocky reef fish that are patchily distributed in local aggregations of 3 to >100 fish. The home ranges and aggregating behaviour of red morwong were investigated using external tags (n = 114, over 35 mo) and ultrasonic transmitters (n = 9 over 20 d) at coastal and estuarine sites in south-east Australia. Adult red morwong had a mean home range during the day of 1865 m2 (SE = 268). Night movement, determined by ultrasonic telemetry, indicated a significantly greater mean home range of 3639 m2 (SE = 416). Home range did not differ significantly with size or sex. Fish movements were greatest and aggregation sizes varied most during the non-reproductive mid-summer period. Tagged fish (N = 20) displaced 200 to 900 m returned in 1 to 3 d to the point of capture, often traversing open sand habitat and other aggregations. During the day, fish were commonly found on bouldered habitat. During the night, these site-specific aggregations fragmented as fish dispersed over a variety of substrata, with crepuscular peaks in activity. Therefore, estimates of habitat-specificity and feeding patterns collected only by day may give misleading results. Received: 28 June 1996 / Accepted: 8 July 1998  相似文献   

7.
Deep-sea corals provide important habitat for many organisms; however, the extent to which fishes and other invertebrates are affiliated with corals or other physical variables is uncertain. The Cape Fear coral mound off North Carolina, USA (366–463 m depth, 33° 34.4′N, 76° 27.8′W) was surveyed using multibeam sonar and the Johnson-Sea-Link submersible. Multibeam bathymetric data (2006) were coupled with in situ video data (2002–2005) to define habitat associations of 14 dominant megafauna at two spatial scales. Results suggested greater habitat specificity of deep-reef fauna than previously documented, with fishes showing greater affinity for certain habitat characteristics than most invertebrates. High vertical profile, degree of coral coverage, and topographic complexity influenced distributions of several species, including Beryx decadactylus, Conger oceanicus, and Novodinia antillensis on the smaller scale (30 × 30 m). On the broad scale (170 × 170 m), several suspension feeders (e.g., N. antillensis, anemones), detritivores (Echinus spp.), and mesopelagic feeders (e.g., Beryx decadactylus, Eumunida picta) were most often found on the south-southwest facing slope near the top of the mound. Transient reef species, including Laemonema barbatulum and Helicolenus dactylopterus, had limited affiliations to topographic complexity and were most often on the mound slope and base. Megafauna at deep-water reefs behave much like shallow-water reef fauna, with some species strongly associated with certain fine-scale habitat attributes, whereas other species are habitat generalists. Documenting the degree of habitat specialization is important for understanding habitat functionality, predicting faunal distributions, and assessing the impacts of disturbance on deep-reef megafauna.  相似文献   

8.
In the last 10 years, several studies have been carried out on the fish fauna of the Ustica Island marine reserve, yet no investigation was specifically addressed to the cryptobenthic fish assemblage. The first task of this study, conducted along the shallow rocky reefs of Ustica, was to determine the species composition, diversity and relative density of the resident cryptobenthic fishes. Furthermore, we aimed to assess the effects of some macro- and microscale habitat characteristics on the distribution pattern of fishes. In particular, the effect of predator density was indirectly evaluated by comparing density data collected within and outside the integral reserve zone. Overall, 20 species belonging to Blenniidae, Gobiidae, Tripterygiidae, Scorpaenidae and Gobiesocidae were recorded. Gobius bucchichi, Scorpaena maderensis, Tripterygion delaisi, T. melanurus and T. tripteronotus were the numerically dominant and most common species. The effects of zone (i.e. of predator density), bottom type and depth on species richness, diversity and evenness were not significant. A greater total fish density was observed on stones compared with rocky cliff and plateau, but only in the shallowest depth range. At level of single species, G. bucchichi was more abundant inside than outside the integral reserve, but only on stones and at 0–2 m depth range. Density of G. bucchichi was generally higher on stones than on rocky cliffs or plateau and between 0 and 5 m depth, although these differences were not always significant. T. delaisi was conversely more abundant in the deepest stratum (7–10 m). Canonical analyses demonstrated that bottom type and depth influenced significantly the fish assemblage structure. The observed differences in the assemblage structure relied mainly upon the dominant species. T. tripteronotus was mainly associated with rocky plateau and the intermediate depth range (3–5 m), whereas S. maderensis, T. melanurus and Lipophrys trigloides inhabited preferentially the rocky cliffs. At microscale level, the habitat choice of the investigated species was almost entirely based on whether the substrate was either vegetated or composed of bare rock. T. delaisi and T. tripteronotus were associated with substrata covered by algae, whilst G. bucchichi, S. maderensis and T. melanurus preferred bare rock bottoms. In some species, the electivity indices for the less abundant type of cover, measured at different spatial scale, changed accordingly. For instance, the smaller the size of the sampled area, the higher was the intensity of the association between G. bucchichi and Anemonia viridis.  相似文献   

9.
Four different habitats were sampled in order to determine the spatial and temporal distribution and abundance of mysids in a seagrass meadow ecosystem. These habitats included meadows of Posidonia oceanica and Cymodocea nodosa, the edge of P. oceanica meadow and sandy substrates. Three random sites for each habitat were sampled along the coast of Alicante at different times, using a hand-net technique (6 m2). Seven species of mysids were identified: Leptomysis posidoniae, Leptomysis buergii, Paramysis helleri, Siriella clausii, Mesopodopsis slabberi, Siriella armata and Mysidopsis gibbosa. Total abundance of mysids was highest at the edge of the P. oceanica meadow, followed by the C. nodosa meadow, sandy substrate and P. oceanica meadow, respectively (P<0.05); this pattern was found during all sampling periods except one. Three species showed persistent spatial segregation by habitat (S. clausii in Posidonia; L. posidoniae at the edge; S. armata in Cymodocea), whereas the other four did not show any clear segregation by habitat (ANOVA, P<0.01). On a site scale (km), spatial variability was very high. Multivariate analyses confirm the existence of differences in the assemblage structure among habitats, with a gradual change from the Posidonia meadow to sand. Posidonia and Cymodocea showed different mysid assemblages. Fragmented, shallow, vegetated habitat on the Mediterranean coast seems to support a higher abundance and species richness of mysids, through habitat diversification, in comparison with homogeneous habitats.  相似文献   

10.
 Mesozooplankton community structure in the vicinity of the Prince Edward Islands (PEIs) was investigated during six surveys conducted in late austral summer (April/May) from 1996 to 1999. Zooplankton samples were collected by oblique tows using a Bongo net fitted with 300-μm mesh. Surface temperature, average temperature and chlorophyll a were measured in conjunction with each net tow. The positions of the Sub-Antarctic Front (SAF) and the Antarctic Polar Front (APF), in relation to the islands, were determined by CTD and/or XBT transects to the west of the islands (upstream). Both fronts were characterized by a high degree of latitudinal variation. Changes in position of the fronts occurred rapidly, the SAF moving up to ∼120 km in a 2-week period. Consequently, the oceanographic environment in the vicinity of the PEIs was subject to a high degree of intra- and inter-survey variation. The positions of the SAF and APF appeared to have a significant impact on phytoplankton biomass in the vicinity of the PEIs, possibly through the alteration of local oceanographic flow dynamics. Water retention over the island shelf in 1996, associated with location of the SAF far to the north of the PEIs, corresponded to enhanced chlorophyll-a concentrations (∼1.54 mg m−3). Conversely, when the fronts were close to the islands, as in 1997 and 1999, higher current velocity limited water retention and chlorophyll-a concentrations in the inter-island region were relatively low (∼0.4 mg m−3). Cluster analyses showed that, in many instances, there was greater similarity among zooplankton communities from different surveys than among communities within surveys, indicating that short-term variability exceeded inter-annual variability. The population structure of the copepod Calanus simillimus indicated that there was inter-annual variation in the timing of the biological season. Differences in the population structure of species, and consequently their contribution to abundance and biomass, may therefore have been an important contributor to inter-annual variation in community structure. Evidence is provided of a long-term southward shift in the position of the SAF. It is postulated that this may affect the PEIs by increasing the proportion of allochthonous energy input, because the PEIs now lie in the path of the front, altering the tropho-dynamics of the island ecosystem. Lower mesozooplankton biomass associated with warmer sub-Antarctic water may have important negative consequences for higher trophic levels that depend on mesozooplankton for food. Received: 10 June 2000 / Accepted: 22 September 2000  相似文献   

11.
Late larvae of the serranid coral trout Plectropomus leopardus (Lacepède), captured in light traps, were released during the day both in open water and adjacent to two reefs, and their behaviour was observed by divers at Lizard Island, northern Great Barrier Reef. Coral trout larvae (n = 110) were present in light-trap catches from 18 November to 3 December 1997, including new moon (30 November). The swimming speed of larvae in open water or when swimming away from reefs was significantly greater (mean 17.9 cm s−1) than the speed of larvae swimming towards or over reefs (mean 7.2 cm s−1). Near reefs, larvae swam at average depths of 2.7 to 4.2 m, avoiding 0 to 2 m. In open water, swimming depth varied with location: larvae >1 km east of Lizard Island swam steeply downward to >20 m in 2 to 4 min; larvae >1 km west oscillated between 2.6 and 13 m; larvae 100 to 200 m east of Lizard Island oscillated between 0.8 and 15 m. Nearly all larvae swam directionally in open water and near reefs. In open water, the average swimming direction of all larvae was towards the island, and 80% (4 of 5) swam directionally (p < 0.05, Rayleigh's test). Larvae swam directionally over the reef while looking for settlement sites. The frequency of behaviours by larvae differed between two reefs of different exposure and morphology. Depending on site, 26 to 32% of larvae released adjacent to reefs swam to open water: of these, some initially swam towards or over the reef before swimming offshore. In some cases, offshore-swimming seemed to be due to the presence of predators, but usually no obvious cause was observed. Depending on the reef, 49 to 64% of the larvae settled. Non-predatory reef residents aggressively approached 19% of settlers. Between 5 and 17% of the larvae were eaten while approaching the reef or attempting to settle, primarily by lizardfishes but also by wrasses, groupers and snappers. A higher percentage of larvae settled in the second week of our study than in the first. Average time to settlement was short (138 s ± 33 SE), but some larvae took up to 15 min to settle. Average settlement depth was 7.5 to 9.9 m, and differed between locations. No settlement took place on reef flats or at depths <4.2 m. Larvae did not appear to be selective about settlement substrate, but settled most frequently on live and dead hard coral. Late-stage larvae of coral trout are capable swimmers with considerable control over speed, depth and direction. Habitat selection, avoidance of predators and settlement seem to rely on vision. Received: 7 July 1998 / Accepted: 26 January 1999  相似文献   

12.
In the coastal waters off the Tanshui River Estuary in northern Taiwan, eight species of clupeoid larvae were observed. They exhibited a distinct temporal succession in association with seasonal temperature changing. The time of peak abundance of Etrumeus teres was in January, Engraulis japonicus in late April, Sardinella spp. in mid-May, Dussumieria elopsoides in early June, Thryssa dussumieri in late June, Stolephorus insularis in mid-September, Encrasicholina heteroloba in early October and E. punctifer in mid-November. The time intervals of the temporal succession of the fishes were approximately 15 to 25 d in the spring/summer and 25 to 35 d in the autumn/winter fishing seasons. Also, they showed spatial segregation by distributing in areas with different water depths: Sardinella spp. at a water depth of 10 to 20 m, T. dussumieri at less than 10 m, E. heteroloba at 20 to 50 m and E. punctifer at 10 to 40 m. The larvae of these sympatric clupeoid species segregated their nursing periods and areas apparently to reduce competition for habitat and thus to maximize the utilization of resources. Received: 3 March 1997 / Accepted: 19 March 1997  相似文献   

13.
The aim of the study was to provide comparable estimates of abundance of herbivorous reef fishes at temperate and tropical localities using a standardized methodology. Faunas of herbivorous fish were sampled on the rocky reefs of temperate northern New Zealand and on the coral reefs of the northern Great Barrier Reef (GBR), Australia, and the San Blas Archipelago in the Caribbean. A pilot study established the most appropriate habitat setting and the scale and magnitude of replication for the sampling program in temperate waters. Herbivorous fishes, including members of families endemic to the southern hemisphere (Odacidae and Aplodactylidae), were most abundant in turbulent, shallow water (0 to 6 m) and had patchy distributions within this habitat. A hierarchical sampling program using 10-min transect counts within the 0 to 6 m depth stratum examined abundance patterns at a range of spatial scales including mainland and island coasts, localities separated by up to 100 km and sites separated by up to 10 km. This program identified a characteristic fauna of seven species of herbivorous fishes with mean total abundances ranging from 23 to 30 individuals per 10-min transect. Species composition of the fauna varied between islands and coasts. A similar methodology was used to sample the major families of herbivorous fish in a number of sites in each of the tropical regions. These sampling programs revealed a fauna dominated by acanthurids and scarids in both the GBR and Caribbean localities. Estimates of abundance from these regions were similar, with a mean of 108 individuals recorded on the GBR and 129 per 10-min transect in the Caribbean. Species richness varied between each region, with 44 taxa recorded from the GBR and 11 from the Caribbean. Abundances of temperate water herbivores in New Zealand were found to be 75 to 80% lower than those recorded from shallow water habitats sampled on coral reefs. This was not related to species richness, since both New Zealand and the Caribbean locality had patterns of low richness. We suggest that the differences in abundance found by our study between temperate and tropical regions are not restricted to herbivorous fishes, but are representative of general latitudinal trends in reef fish faunas. Received: 4 November 1996 / Accepted: 15 December 1996  相似文献   

14.
The region of Madang, Papua New Guinea, has the highest reported species diversity of both anemonefishes (nine species) and their host anemones (ten species). To determine which factors may allow so many anemonefish species to coexist at this location, we studied their patterns of distribution, abundance, and recruitment. Population surveys at three replicate reef sites within four zones situated at varying distances from the mainland (nearshore, mid-lagoon, outer barrier, and offshore) indicated that each species of host anemone and anemonefish lived within a particular range of zones. Each species of anemonefish lived primarily with one species of host. Anemonefish species that lived with the same host species usually had different distribution patterns among zones (e.g., Amphiprion percula occupied Heteractis magnifica in nearshore zones, while A. perideraion occupied H. magnifica in offshore zones). Monitoring of natural populations showed that there were few changes (losses or recruitment) in the number or species of fishes associated with each individual anemone over periods ranging from 3 to 9 months. Recruitment was monitored on anemones with and without residents (resident fishes were removed) within each of three zones (nearshore, mid-lagoon, outer barrier). Significantly more anemonefishes recruited to anemones without resident fishes than to anemones with resident fishes. Each anemonefish species recruited to particular host species and zones. The distribution and abundance of the recruits of each fish species among zones were positively correlated with the distribution and abundance of resident fishes in the benthic habitat. This suggests that the spatial patterns of recruitment among zones strongly determined the distribution and abundance patterns of the benthic populations, and they were not the result of post-recruitment mortality or movement. Coexistence of the nine anemonefish species on the limited anemone resource was considered possible because of niche differentiation (i.e., differences in host and habitat utilization among zones), and the ability of two small species (i.e., Amphiprion sandaracinos and A. leucokranos) to cohabit individual anemones with other anemonefish species. Received: 29 July 1999 / Accepted: 1 September 2000  相似文献   

15.
Coral reef fish generally have relatively sedentary juvenile and adult phases and a presumed highly dispersive pelagic larval phase, yet previous studies that have tried to relate pelagic larval duration (PLD) to population structure have given inconsistent results. In the present study, the population structures of two damselfishes, Stegastes fasciolatus and Dascyllus albisella, were examined using mitochondrial control region sequences. The two species have similar PLDs (∼25 and 27 days respectively), but consistently differ in their settlement preferences, habitat, and densities in populations throughout the Hawaiian Archipelago, from Hawaii north to Kure Atoll, and south to Johnston Atoll. Information on habitat preferences and population densities were collected between September 2000 and October 2002, and tissue samples for the genetic studies were collected between January and April 2004. Based on the differences in habitat and abundance of the two species, the expectation was that S. fasciolatus would have high genetic variability but little population structure compared to D. albisella, and this was largely confirmed. Stegastes fasciolatus had little population structure in most of the Hawaiian Islands, and D. albisella showed evidence of strong population structure throughout its range. An exception to this pattern was the large difference between the Kure Atoll population of S. fasciolatus and all others. These results suggest that the interaction of several biological factors (e.g. species-specific spawning habitat and season) with environmental factors (e.g. seasonal wind and current patterns) may have more influence on population structure than single life history characteristics, such as the PLD.  相似文献   

16.
Chondrilla nucula is a common Caribbean demosponge that grows in a range of habitats, from coral reefs to mangrove swamps. On reefs, C. nucula grows as a thinly encrusting sheet, while in mangrove habitats it surrounds submerged mangrove roots as fleshy, lobate clumps. Previous feeding experiments using predatory reef fish revealed a high degree of variability in the chemical defenses of C. nucula. The present study was undertaken to determine whether a relationship exists between habitat, growth form, and chemical defense of C. nucula. Both laboratory and field feeding-assays of crude extracts confirmed that C. nucula possesses a chemical defense with high intercolony variability, but there was no significant variation in feeding deterrency between reef and mangrove habitats at either geographic location (Bahamas and Florida). Extracts of C. nucula collected during September and October 1994 from the Bahamas were significantly more deterrent than those collected during August 1993, May 1994, and May 1995 from Florida, and extracts of these spring and summer Florida collections were more deterrent than extracts of C. nucula collected in December 1994 and February 1995 in the same locations. There was no evidence that deterrent compounds were concentrated in the surface tissues of the sponge, or that chemical defense could be induced by simulated predation. Laboratory and field assays of the fractionated crude extract revealed that feeding deterrency was confined to the most polar metabolites in the extract. Field transplants were used to determine whether predation influenced the growth form of C. nucula. Uncaged sponges transplanted from the mangrove to the reef were readily consumed by spongivorous reef fishes. Lobate mangrove sponges became thinner after being caged on the reef for 3 mo, but encrusting reef sponges did not become thicker after being caged in the mangroves for the same period of time. Reef sponges that were caged for 3 to 15 mo thickened by only a small amount (<1 mm) compared to uncaged and open-caged (i.e. in cages lacking tops) sponges. Simulated bite marks on both reef and mangrove sponges were repaired at a rapid rate (0.8 to 1.6 mm d−1). Fish predation has an important impact on the distribution and abundance of C. nucula, but the thin growth form common to reef environments may be more the result of hydrodynamics than of grazing by spongivorous fishes. Received: 6 October 1997 / Accepted: 19 March 1998  相似文献   

17.
Photographs of the deep-sea floor often show organisms attached to biogenic structures that protrude from the soft bottom. In particular, the stalks of glass sponges (hexactinellids) provide hard substrata and act as habitat islands for deep-sea fauna. The primary objectives of this study were to determine the abundance of glass sponge “stalks” at an abyssal station in the NE Pacific, to identify the fauna associated with stalks, and to compare the distribution patterns of epifaunal taxa both horizontally and vertically. Densities of stalks and large epifauna were estimated from analysis of ∼9 km of photographic transects taken in 1994–1995 at station M (34°45′N; 123°00′W; 4,100 m depth) off California, USA. At least 87% of the stalks were the spicule columns of live or dead hexactinellids in the genus Hyalonema (Gray, 1832). Stalks appeared to be distributed randomly across the sea floor (density: 0.13 stalks m−2). A colonial zoanthid, Epizoanthus stellaris (Hertwig, 1888), inhabited 20% of the stalks and was the most commonly observed epifaunal organism, followed by other suspension feeders that generally were situated at the top of the structures. Thirty-five stalk communities were collected in tube cores in 1994–1995 using the submersible “Alvin”. A total of 139 taxa was associated with these hard-substratum habitats (another five species were observed only in photographs). Although taxon richness was high, the species diversity of these communities was relatively low due to the dominance in percentage abundance of a foraminiferan, Cibicides lobatulus (Walker and Jakob, 1798), and a serpulid polychaete, Bathyvermilia sp. (Zibrowius, 1973). The relationship between number of taxa and surface area of the stalks yielded a slope (z-value) typical of islands with a low rate of immigration. Three-dimensional complexity created by branching epifauna on the stalks provided more surface area and a variety of cryptic microhabitats. Vertical zonation on the stalks appeared to be controlled by biological interactions among species, with solitary fauna and certain functional groups of colonial organisms restricted by sheet-like colonial organisms that appeared to be dominant space competitors. Received: 13 April 2000 / Accepted: 9 November 2000  相似文献   

18.
Visual assessments of topographic habitat structure and benthos on coral reefs were appraised using quantitative data collected from 16 replicate surveys within each of 21 sites on Seychelles reefs. Results from visual assessments of reef benthos were similar to those obtained using techniques frequently used to assess benthic complexity and composition. Visual estimates of habitat topography were correlated with rugosity, reef height and holes of 10–70 cm diameter, whilst visual estimates of benthic composition were very similar to those obtained from line intercept transects. Visual estimates of topography correlated strongly with species richness of fish communities and explained 42% of the variation in these data. The relationship between visual estimates of topography and species richness is strongest with fish 10–30 cm total length (TL), abundance of fish within this size category also correlating positively with topographic visual assessments. Visual techniques are prone to observer bias, however with regular training they can be used to quickly provide a reliable and effective means of assessing habitat complexity and benthos on coral reefs.  相似文献   

19.
The gastropods Lepetodrilus fucensis and Depressigyra globulus are abundant faunal components of animal communities at deep-sea hydrothermal vents along the Juan de Fuca Ridge in the NE Pacific. The population structure and recruitment pattern of both species were studied using modal decomposition of length–frequency distributions. Gastropod populations were collected from Axial Volcano and Endeavour Segment in 2002 and 2003. Polymodal size–frequency distributions, particularly at Axial Volcano vent sites, suggest a discontinuous recruitment pattern for D. globulus. In contrast, there were no distinct peaks visible in the distributions of L. fucensis, suggesting a continuous recruitment pattern for this species. For both species, distributions were positively skewed towards the smaller length–classes, implying post-settlement mortality is high. However, variations in growth, due to short- and long-term variability in environmental conditions in the hydrothermal vent habitat, as well as biological interactions, may also be influencing the distribution and abundance of subsequent life-history stages. Using maximum shell lengths from populations of known ages, the growth rate of L. fucensis was estimated as 9.6 μm day−1, indicating adulthood would be reached in ∼1 year. Our results suggest that, despite occupying the same habitat, abundance and population structure are regulated by different biotic and abiotic processes in L. fucensis and D. globulus.  相似文献   

20.
Karlson RH  Connolly SR  Hughes TP 《Ecology》2011,92(6):1282-1291
Species assemblages vary in structure due to a wide variety of processes operating at ecological and much broader biogeographical scales. Cross-scale studies of assemblage structure are necessary to fully understand this variability. Here, we evaluate the abundance and occupancy patterns of hierarchically sampled coral assemblages in three habitats (reef flat, crest, and slope) and five regions (Indonesia, Papua New Guinea, the Solomon Islands, American Samoa, and the Society Islands) across the west-central Pacific Ocean. Specifically, we compare two alternative models that unify spatial variance and occupancy via the negative binomial distribution. The first assumes a power-law scaling between the mean and variance of abundance; the second assumes a quadratic variance-mean relationship and a constant abundance-invariant aggregation parameter. Surprisingly, the well-established power-law model performs worse than the model assuming abundance-invariant aggregation, for both variance-mean and occupancy-abundance relationships. We also find strong evidence for regional and habitat variation in these relationships and in the levels of aggregation estimated by the abundance-invariant aggregation model. Among habitats, corals on reef flats exhibited lower occupancy and higher levels of aggregation compared to reef crests and slopes. Among regions, low occupancy and high aggregation were most pronounced across all habitats in American Samoa. These patterns may be related to habitat and regional differences in disturbance and recovery processes. Our results suggest that the spatial scaling of abundance and occupancy is sensitive to processes operating among these habitats and at regional scales. However, the consistency of these relationships across species within assemblages suggests that a theoretical unification of spatial variance and occupancy patterns is indeed possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号