首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The problem of selecting a pesticide application strategy in the face of increasing resistance to the pesticide in the pest population is dealt with. The grower in this situation may do better by sacrificing a portion of the present crop in return for a reduced resistance to future applications. The model presented represents an attempt to forge a compromise between excessive complexity, rendering the model difficult to study, and excessive simplicity, rendering the model useless. The effects of timing of the application of the pesticide within the season are discussed. The principle conclusions are the following: (i) If immigration of pests from refugia is significant then proper timing of the application of pesticide may be used to help alleviate resistance growth. (ii) Resistance growth may best be reduced by spraying earlier than what would otherwise be the best time. (iii) The value of the discount rate (and of the time horizon) has a profound effect on the nature of the optimal policy.  相似文献   

2.
《Ecological modelling》2003,162(3):177-198
Slugs are devastating agricultural and horticultural pests. However, their population dynamics are not well understood and this hinders the construction of efficient control strategies. This is especially true with organic farming for which biological controls are preferred. Moreover, the dominant species, Deroceras reticulatum, does not follow a regular annual life cycle, as do the majority of the other slug species. Its dominance may be associated with this fact. In this paper, we investigate whether mechanisms associated with the slugs’ time-delayed population dynamics are responsible for the large variations in numbers, with particular emphasis on their sensitivity to environmental conditions. In order to do this, several versions of a non-autonomous delay differential equation model are developed in which we highlight some of the contentious issues in slug modelling. Analyses of the models are combined with numerical experiments using parameters based upon controlled laboratory experiments. In the absence of seasonal forcing, we find that the delay term may be neglected in the simplest models. However, the presence of a predator dramatically increases the impact of the delay term and may drive a delay induced instability. Notably, we find that in all cases the delay term is of considerable qualitative importance in models which incorporate seasonal fluctuations. We highlight the fact that the models are capable of producing a large range of solution behaviour and, furthermore, discuss the conditions for, and thus the likelihood of their relevance.  相似文献   

3.
Host plant resistance (HPR) to insects is an effective, economical, and environment friendly method of pest control. The most attractive feature of HPR is that farmers virtually do not need any skill in application techniques, and there is no cash investment by the resource poor farmers. Considerable progress has been made in identification and development of crop cultivars with resistance to the major pests in different crops. There is a need to transfer resistance genes into high-yielding cultivars with adaptation to different agro-ecosystems. Resistance to insects should form one of the criteria to release varieties and hybrids for cultivation by the farmers. Genes from the wild relatives of crops, and novel genes, such as those from Bacillus thuringiensis can also be deployed in different crops to make HPR an effective weapon to minimize the losses due to insect pests. HPR will not only cause a major reduction in pesticide use and slowdown the rate of development of resistance to insecticides in insect populations, but also lead to increased activity of beneficial organisms and reduction in pesticide residues in food and food products.  相似文献   

4.
The control of pests by their natural enemies represents an important regulating ecosystem service that helps maintain the stability of crop ecosystems. These services, however, are often ignored in pest management decision making. In addition, the use of broad-spectrum insecticides can damage the populations of natural enemies, reducing the cost-effectiveness of insecticide investment if unaccounted for in treatment decisions.The existing literature on modeling of biological control of insect pests has generally focused on simulations of the population dynamics of pest and natural enemy species and the processes underlying pest control. But agriculture is a managed ecosystem where predator–prey relationships are heavily influenced by human managers. In modeling managerial choices, this study develops an intra-seasonal dynamic bioeconomic optimization model for insecticide-based pest management that explicitly takes into account both the biological control effect of natural enemies on pest density and the nontarget mortality effect of insecticides on the level of natural pest control supplied. The model captures predator–prey interactions, linking them to crop growth and yield damage functions, which in turn are evaluated in a dynamic optimization framework. We introduce a new decision rule for judicious insecticide decisions using a natural enemy-adjusted economic threshold. This threshold represents the pest population density at which insecticide control becomes optimal in spite of the opportunity cost of injury to natural enemies of the target pest. Using field data from Michigan, the model is applied to the case of soybean aphid (Aphis glycines, Matsumura), a recent invasive pest of soybean (Glycine max), whose management is of both economic and environmental importance to the North Central region of the United States. As illustrated by the numerical examples, such natural enemy-adjusted threshold is likely to lead to fewer recommendations for insecticide use than naïve models that ignore natural enemies, resulting in less insecticide use, while maintaining profitability for farmers that rely on chemical pest control methods.The bioeconomic model developed in this study can be used to conduct a wide variety of analyses such as identifying dynamically optimal spray strategies and estimating the implied economic value of natural control services. Furthermore, with the incorporation of inter-year carry-over factors, such as overwintering of pests and natural enemies, the current model can contribute to building multi-year models for studying long-term pest management.  相似文献   

5.
A graphical technique is demonstrated which, when combined with any resource simulation model, permits the resource manager to explore the effects of different management options. Also, this technique (nomogram or response surface) permits derivation of “optimal solutions” given particular objectives. Examples of the methodology are given for the spruce budworm—forest system in eastern Canada. Effects of several kinds of uncertainties are dicussed, including uncertainties in model assumptions, management precision, future objectives and system evolution. The graphical nature of nomograms helps managers and analysts to grasp more easily the complicated behavior of ecological systems models. Finally, the role of computer models in decision-making is discussed.  相似文献   

6.
We compare pesticide use and total cost of mosquito control under integrated and chemical control strategies using data from the San Joaquin Valley, California. The analysis shows that the use of biological control allows substantial cuts in chemical treatments, inspection effort and control costs required to meet mosquito control targets. Thus, integrated pest management in this case is clearly superior economically as well as preferable from an ecological perspective. These results suggest the desirability of public action to augment mosquitofish supplies, the lack of which currently constitutes a key obstacle to broader application of the integrated strategy.  相似文献   

7.
Denitrification is an important process in aquatic sediments, but its role has not been assessed in the N mass balance of upper-Midwestern (USA) reservoirs that receive large agricultural riverine N inputs. We used a 4400-ha reservoir to determine the role of denitrification in the N mass balance and effectiveness in reducing downstream transport of NO(3-)N. Sediment denitrification was (1) measured monthly (March 2002-March 2003) at eight sites in the Lake Shelbyville reservoir in central Illinois using the acetylene inhibition, chloramphenicol technique, (2) scaled to the overall reservoir and compared to N not accounted for in a mass balance, and (3) estimated indirectly using long-term (1981-2003) mass balances of N in the reservoir. Denitrification rates in the reservoir were high during spring and early summer of 2002, when maximum NO(3-)N concentrations were measured (10-14 mg NO(3-)N/L). We estimated that denitrification for the year was between 2580 and 5150 Mg N. Missing N from the mass balance was 3004 Mg N, suggesting that sediment denitrification was the sink. Areal rates of sediment denitrification in the reservoir ranged from 62 to 225 g N x m(-2) x yr(-1), with rates a function of both denitrification intensity (microg N x g dry mass x h(-1)) and the overall mass of sediment present. From 1981 to 2003 the average NO(3-)N inlet flux was 8900 Mg N/yr. About 58% of the total NO(3-)N input was removed, and annual NO(3-)N removed as a percentage of inputs was significantly related to reservoir retention time (average = 0.36 yr for the 23 years, range = 0.21-0.84 yr). By scaling denitrification in Lake Shelbyville to other reservoirs in Illinois, we estimated a sink of 48900 Mg N/yr. When combined with estimated in-stream denitrification, 60900 Mg N/yr was estimated to be removed by sediment denitrification. This reduces riverine export from Illinois to the Gulf of Mexico, where the flux during the 1990s was about 244000 Mg N/yr, and illustrates the importance of reservoir denitrification as an N sink in Midwestern agricultural landscapes.  相似文献   

8.
Decision making in dune management: theory and practice   总被引:1,自引:0,他引:1  
Effective decision making depends upon the availability of quality information. Procedures involved in assessing dune vulnerability and protection require monitoring of sporadic processes and information must be collected from many discipline sources. In particular, a significant challenge to strategic management is recognition of subtle discontinuities which could undermine the long term stability of the dune system. These changes may be irregular and/or non linear requiring managers to be aware of existing parameters, patterns and emerging discontinuities. A range of components within the system should be measured on a systematic, temporal and spatial basis. An environmentalchecklist is a useful management technique which systematises information, so that strategic objectives can be made operational and achievable. Problems can be identified and solved with this methodology particularly if it is incorporated into aW problem solving model. The checklist procedure proposed in this paper has been developed and tested in field conditions for a range of north-west and south-European dune systems. Whereas a universalchecklist applicable to all systems is utopian in aim, intra and extra-regional comparisons can be undertaken with only minor modifications of some components. Parameters covering site and dune morphology, beach condition; surface character of the seaward 200 m of the dunes; pressure of use and recent protection measures are the basis for calculating vulnerability and protection indices. The balance between these indices can be determined, analysed and form the foundation for future informed management decisions.  相似文献   

9.
A general model TOHM was developed to predict the terrestrial fate of zinc, cadmium, chromium, lead and mercury emitted by the operation of a coal-fired electric generating facility. The general model consisted of interfacing submodels describing atmospheric dispersion, precipitation, soil chemistry, and soil erosion. The models were developed from input data from a semi-arid region of the southwest United States, and except for the climatic and topographic constraints, are not site specific. TOHM was found to predict no substantial increase in indigenous levels of zinc, chromium and lead in the impact (deposition) area. However, both mercury and cadmium were predicted to be emitted and eroded to the environmental sink (receiving lake) in concentrations exceeding that naturally present in the system. TOHM is currently unvalidated, though comparison of soil erosion predictions with erosion quantities measured in the impact area gives good agreement.  相似文献   

10.
The discovery of soybean aphid, Aphis glycines Matusumura, in North America in 2000 provided the opportunity to investigate the relative strength of top-down and bottom-up forces in regulating populations of this new invasive herbivore. At the Kellogg Biological Station Long Term Ecological Research site in agroecology, we contrasted A. glycines establishment and population growth under three agricultural production systems that differed markedly in disturbance and fertility regimes. Agricultural treatments consisted of a conventional-tillage high-input system, a no-tillage high-input system, and a zero-chemical-input system under conventional tillage. By selectively restricting or allowing predator access we simultaneously determined aphid response to top-down and bottom-up influences. Irrespective of predator exclusion, our agricultural manipulations did not result in bottom-up control of A. glycines intrinsic rate of increase or realized population growth. In contrast, we observed strong evidence for top-down control of A. glycines establishment and overall population growth in all production systems. Abundant predators, including Harmonia axyridis, Coccinella septempunctata, Orius insidiosus, and various predaceous fly larvae, significantly reduced A. glycines establishment and population increase in all trials. In contrast to other systems in which bottom-up forces control herbivore populations, we conclude that A. glycines is primarily controlled via top-down influences of generalist predators under a wide range of agricultural management systems. Understanding the role of top-down and bottom-up forces in this context allows agricultural managers to focus on effective strategies for control of this invasive pest.  相似文献   

11.
Hemlock woolly adelgid (HWA; Adelges tsugae) infestations have resulted in the continuing decline of eastern hemlock (Tsuga canadensis) throughout much of the eastern United States. While the initial impacts of HWA infestations have been documented, our understanding of forest response to this disturbance remains incomplete. HWA infestation is not occurring in isolation but within a complex ecological context. The role of potentially important interacting factors, such as elevated levels of white-tailed deer herbivory, is poorly understood. Despite the potential for herbivory to alter forest successional trajectories following a canopy disturbance, little is known about herbivory-disturbance interactions, and herbivory is rarely considered in assessing forest response to a co-occurring disturbance. We used repeated censuses of deer exclosures and paired controls (400 paired plots) to quantify the impact of deer herbivory on tree seedling species abundance in 10 eastern hemlock ravines that span a gradient in HWA-induced canopy decline severity. Use of a maximum likelihood estimation framework and information theoretics allowed us to quantify the strength of evidence for alternative models developed to estimate the impacts of herbivory on tree seedling abundance as a function of varying herbivore density and canopy decline severity. The exclusion of deer herbivory had marked impacts on the abundance of the studied seedling species: Acer rubrum, Acer saccharum, Betula lenta, Nyssa sylvatica, Quercus montana, and Tsuga canadensis. For all six species, the relationship between seedling abundance and deer density was either exponential or saturating. Although the functional form of the response varied among seedling species, the inclusion of both deer density and canopy decline severity measures consistently resulted in models with substantially greater support. Canopy decline resulted in higher proportional herbivory impacts and altered the ranking of herbivory impacts by seedling species. Our results suggest that, by changing species' competitive abilities, white-tailed deer herbivory alters the trajectory of forest response to this exotic insect pest and has the potential to shift future overstory composition.  相似文献   

12.
《Ecological modelling》2003,165(1):49-77
New models of Lake Ladoga ecosystem and the results of modeling are presented. In the first part the model of phytoplankton succession in the process of anthropogenic eutrophication of the lake is considered under the evolution of the phosphorus loading. The still continued anthropogenic eutrophication of the lake started in 1962 when the phosphorus load began to increase. Since 1962 during the evolution of the lake’s state from oligotrophic to developed mezotrophic one, the structure of phytoplankton community dominating species was significantly changed as well as its total productivity. The system state in the model is described by 14 parameters: nine phytoplankton complexes, zooplankton, dissolved organic matter, detritus, dissolved mineral phosphorus and dissolved oxygen. The number of parameters of this model is noticeably larger than that of previous models created by the authors. The relative dynamics of phytoplankton complexes in the lake’s ecosystem evolution was simulated by the new model. It is shown that the modeling results are adequately corresponding to the observation data. The results of phytoplankton structure modeling allow to estimate the impact of phytoplankton on the water quality as well as give the prediction of the lake’s ecosystem evolution with the changes of the phosphorus loading.  相似文献   

13.
Although indirect effects are important structuring forces in ecological communities, they are seldom considered in the design of pest control operations. However, such effects may cause unpredicted and deleterious changes in other populations that could reduce or even negate the benefit to endangered species for which control is undertaken. Furthermore, the complexity and nonlinearities inherent in interacting ecological communities may cause thresholds in the strength of pest control, on either side of which indirect effects could vary greatly in their magnitude and desirability. We constructed a four-species simulation model for a common pest community in New Zealand beech (Nothofagus spp.) forests: house mice, ship rats, stoats, and brushtail possums. When the model was perturbed to simulate common control techniques, marked increases in the abundance of nontarget pest species were observed at the next forest mast. Higher mouse numbers were observed following both toxin (1080) application and rat kill-trapping, and higher rat numbers were observed following stoat kill-trapping, due to a release from predation in all cases. In comparison, a marked decrease in stoat abundance at the next forest mast was observed following simultaneous control of rats and mice, due to the effects of decreased prey abundance on the stoat population. For rat control, the size of the indirect effect on mouse numbers increased monotonically with control strength. Because the curvature of the relationship is slight, the relationship between the direct benefits of control and the indirect costs incurred would remain relatively unchanged regardless of the strength of control employed. For simultaneous mouse and rat control, however, high levels of control (as initially simulated) were predicted to cause decreased peak stoat abundance at the next mast event, whereas intermediate and low levels of control were predicted to cause increased stoat abundance. Hence, this study demonstrates two points of concern for pest managers. First, indirect effects of control operations do have the potential to reduce the planned-for benefit. Second, thresholds in the strength of control employed can potentially occur, across which indirect effects switch from being of conservation benefit to being of conservation concern.  相似文献   

14.
Management of invasive species involves choosing between different management strategy options, but often the best strategy for a particular scenario is not obvious. We illustrate the use of optimization methods to determine the most efficient management strategy using one of the most devastating invasive forest pests in North America, the gypsy moth (Lymantria dispar), as a case study. The optimization approach involves the application of stochastic dynamic programming (SDP) to a metapopulation framework with different infestation patch sizes, with the goal of minimizing infestation spread. We use a novel "moving window" approach as a way to address a spatially explicit problem without being explicitly spatial. We examine results for two cases in order to develop general rules of thumb for management. We explore a model with limited parameter information and then assess how strategies change with specific parameterization for the gypsy moth. The model results in a complex but stable, state-dependent management strategy for a multiyear management program that is robust even under situations of uncertainty. The general rule of thumb for the basic model consists of three strategies: eradicating medium-density infestations, reducing large-density infestations, and reducing the colonization rate from the main infestation, depending on the state of the system. With specific gypsy moth parameterization, reducing colonization decreases in importance relative to the other two strategies. The application of this model to gypsy moth management emphasizes the importance of managing based on the state of the system, and if applied to a specific geographic area, has the potential to substantially improve the efficiency and cost-effectiveness of current gypsy moth eradication programs, helping to slow the spread of this pest. Additionally, the approach used for this particular invasive species can be extended to the optimization of management programs for the spread of other invasive and problem species exhibiting metapopulation dynamics.  相似文献   

15.
Plant-mediated competition among insect herbivores occurs when one species induces changes in plant chemistry, nutrition, or morphology that render plants resistant to attack by others. We explored plant-mediated interspecific interactions between the potato leafhopper (Empoasca fabae) and the Colorado potato beetle (Leptinotarsa decemlineata), two important pests on potatoes. Leafhoppers colonize fields in advance of beetles, and thus the possibility exists that previous feeding by leafhoppers induces changes in potato plants that have adverse consequences for beetles. The consequences of leafhopper-induced resistance for beetle performance were studied in the greenhouse, field cages, and in large open-field plots. Potato plants were exposed to four densities of leafhoppers (none, low, moderate, and high), and visible feeding symptoms were measured as percentage leaf curling, chlorosis, and necrosis. The oviposition preference, performance, and survivorship of Colorado potato beetles were then measured on the four categories of induced plants in field-cage and greenhouse settings. In open field plots, survival on the four categories of induced plants was determined by placing cohorts of beetle adults onto plants and measuring the densities of resulting eggs, larvae, and emerging Fl adults. Leafhopper-induced symptoms on potato plants were density dependent, with the percentage of curled, chlorotic, and necrotic leaves increasing with leafhopper density. Previous feeding by leafhoppers adversely affected oviposition and larval performance of beetles. Fewer egg masses were deposited on plants that incurred high levels of leafhopper feeding. Similarly, larval development was delayed and emerging adult beetles weighed less when fed induced foliage from the high leafhopper-density treatment. Beetles survived less well in the field on plants experiencing moderate and high levels of leafhopper feeding as evidenced by lower densities of eggs, larvae, and emerging F1 adults. Overall, leafhoppers and beetles competed through feeding-induced changes in plant quality. Notably, the asymmetric interaction took place at a large spatial scale in open field plots and had negative consequences that persisted to the next beetle generation. Ultimately, to establish an effective management strategy for crop pests such as leafhoppers, it is essential to consider the positive indirect effects of induced resistance along with the negative direct effects on crop yield.  相似文献   

16.
A computer model was developed to simulate the fate of small populations of birds. It uses general and easily available data as input. Monte-Carlo techniques are used and a survival probability is calculated for every population member four times per simulated year. The model allows for density-dependence in winter survival and also in fecundity.Simulation results are used to compile standard age-specific life-tables for all complete cohorts generated. A mean life-table is also made. The survivor functions, both accumulated and mean, are contrasted with control functions and tested for significance.The model has been applied to classical population data in ornithology, namely those for the great tit and the tawny owl in Wytham Woods (Oxford, UK). There was a fair agreement between simulation results and field data.  相似文献   

17.
The objectives of this study were to (1) develop a modular-based structural stand density management model (SSDMM) and corresponding algorithmic analogue for natural (naturally regenerated stands without a history of density regulation) and managed (naturally or artificially regenerated stands with a history of density regulation) jack pine (Pinus banksiana Lamb.) stand-types, and (2) demonstrate the utility of the model in operational density management decision-making. Employing an Ontario-centric database consisting of 262 and 221 tree-list measurements obtained from 91 and 139 permanent and temporary sample plots situated within natural and managed stand-types, respectively, combined with data derived from density control experiments and sawmill simulation studies, six integrated estimation modules were constructed: Module A consisted of the parameterization of the core yield–density relationships which together drive the entire yield prediction system (e.g., size–density relationships for quadratic mean diameter, dominant height, mean volume, and mean live crown ratio, and site-specific height–age relationships); Module B consisted of the development of Weibull-based parameter prediction equation systems for recovering diameter distributions and composite height-diameter equations for height estimation; Module C consisted of the development of composite taper equations for predicting log products and stem volumes; Module D consisted of the development of allometric-based composite biomass equations for each above-ground component (bark, stem, branch and foliage) from which biomass estimates and associated carbon-based equivalents were derived; Module E consisted of the development of sawmill-specific composite equations for estimating chip and lumber volumes; and Module F consisted of the development of composite equations for estimating wood density and mean maximum branch diameter. The utility of the model was demonstrated by simultaneously contrasting a set of complex density management regimes (commercial thinning and variable planting densities) in terms of a broad array of stand-level yield outcomes and performance measures: overall productivity, log-product distributions, biomass production and carbon yields, recoverable products (chip and lumber volumes) and associated monetary values, economic efficiency, duration of optimal site occupancy, structural stability, and fibre attributes (wood density and mean maximum branch diameter). In summary, the modular-based SSDMM provides the analytical foundation for evaluating the likelihood of realizing a multitude of stand-level objectives when designing density control regimes for jack pine stand-types.  相似文献   

18.
Agricultural environments are critical to the conservation of biota throughout the world. Efforts to identify key influences on the conservation status of fauna in such environments have taken complementary approaches. Many studies have focused on the role of remnant or seminatural vegetation and emphasized the influence on biota of spatial patterns in the landscape. Others have recognized that many species use diverse "countryside" elements within farmland, and emphasize the benefits of landscape heterogeneity for conservation. Here, we investigated the effect of independent measures of both the spatial pattern (extent and configuration) and heterogeneity of elements (i.e., land uses/vegetation types) on bird occurrence in farm-scale agricultural mosaics in southeastern Australia. Birds were sampled in all types of elements in 27 mosaics (each 1 x 1 km) selected to incorporate variation in cover of native vegetation and the number of different element types in the mosaic. We used an information-theoretic approach to identify the mosaic properties that most strongly influenced bird species richness. Subgroups of birds based on habitat requirements responded most strongly to the extent of preferred elements in mosaics. Woodland birds were richer in mosaics with higher cover of native vegetation while open-tolerant species responded to the extent of scattered trees. In contrast, for total species richness, mosaic heterogeneity (richness of element types) and landscape context (cover of native vegetation in surrounding area) had the greatest influence. These results showed that up to 76% of landscape-level variation in richness of bird groups is attributable to mosaic properties directly amenable to management by landowners. Key implications include (1) conservation goals for farm landscapes must be carefully defined because the richness of different faunal components is influenced by different mosaic properties; (2) the extent of native vegetation is a critical influence in agricultural environments because it drives the farm-scale richness of woodland birds and has a broader context effect on total bird richness in mosaics; (3) land-use practices that enhance the heterogeneity of farmland mosaics are beneficial for native birds; and (4) the cumulative effect of even small elements in farm mosaics contribute to the structural properties of entire landscapes.  相似文献   

19.
50 年代以来,由于社会经济迅速发展的压力,加上保护不力,使长江流域上中游生态环境趋于恶化。对长江流域各省市生态环境破坏状况的调研表明,与长江流域洪灾加剧紧密相关的生态破坏主要是:森林过度采伐,植被破坏严重;坡地盲目开垦,水土流失加重;湖泊消亡加剧,蓄洪容量减小;泥沙大量淤积,河道泄洪能力下降。  相似文献   

20.
In recent years, Conogethes pluto (Lepidoptera: Crambidae) has become a major pest of Alpinia and other ornamental gingers in the Northern Territory and Queensland, Australia. This pest damages the flowers and bores into the stems, causing substantial losses to production. Currently, no synthetic sex pheromone is available to monitor or control this pest. This work aims at the identification of the sex pheromone of this pest. Analysis of the sex pheromone gland of female C. pluto by gas chromatography/electroantennogram detector revealed the presence of seven candidate pheromone compounds that elicited electroantennogram responses. Using gas chromatography/mass spectrometry analysis and micro-derivatization reactions, six compounds were identified as (E)-10-hexadecenal, as the main pheromone compound, (Z)-10-hexadecenal, hexadecanal, (E)-10-hexadecen-1-ol, (10E,12E)-hexadeca-10,12-dienal and (3Z,6Z,9Z)-tricosa-3,6,9-triene as minor pheromone compounds. In two-field trapping experiments, C. pluto responded to the six-component blend, and three of six compounds, i.e., (E)-10-hexadecenal, (3Z,6Z,9Z)-tricosa-3,6,9-triene, and (10E,12E)-hexadeca-10,12-dienal were shown to be necessary for attraction. In a subsequent experiment testing various doses (i.e., 0.01, 0.1, and 1 mg) of the six-component blend, the largest number of males was captured in traps baited with a lure loading of 1 mg. The availability of the sex pheromone of C. pluto will enable monitoring and provides the basis for additional control options for this pest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号