共查询到20条相似文献,搜索用时 15 毫秒
1.
Jardine PM Mehlhorn TL Larsen IL Bailey WB Brooks SC Roh Y Gwo JP 《Journal of contaminant hydrology》2002,55(1-2):137-159
Field-scale processes governing the transport of chelated radionuclides in groundwater remain conceptually unclear for highly structured, heterogeneous environments. The objectives of this research were to provide an improved understanding and predictive capability of the hydrological and geochemical mechanisms that control the transport behavior of chelated radionuclides and metals in anoxic subsurface environments that are complicated by fracture flow and matrix diffusion. Our approach involved a long-term, steady-state natural gradient field experiment where nonreactive Br- and reactive 57Co(II)EDTA2- 109CdEDTA2-, and 51Cr(VI) were injected into a fracture zone of a contaminated fractured shale bedrock. The spatial and temporal distribution of the tracer and solutes was monitored for 500 days using an array of groundwater sampling wells instrumented within the fast-flowing fracture regime and a slower flowing matrix regime. The tracers were preferentially transported along strike-parallel fractures coupled with the slow diffusion of significant tracer mass into the bedrock matrix. The chelated radionuclides and metals were significantly retarded by the solid phase with the mechanisms of retardation largely due to redox reactions and sorption coupled with mineral-induced chelate-radionuclide dissociation. The formation of significant Fe(III)EDTA byproduct that accompanied the dissociation of the radionuclide-chelate complexes was believed to be the result of surface interactions with biotite which was the only Fe(III)-bearing mineral phase present in these Fe-reducing environments. These results counter current conceptual models that suggest chelated contaminants move conservatively through Fe-reducing environments since they are devoid of Fe-oxyhydroxides that are known to aggressively compete for chelates in oxic regimes. Modeling results further demonstrated that chelate-radionuclide dissociation reactions were most prevalent along fractures where accelerated weathering processes are expected to expose more primary minerals than the surrounding rock matrix. The findings of this study suggest that physical retardation mechanisms (i.e. diffusion) are dominant within the matrix regime, whereas geochemical retardation mechanisms are dominant within the fracture regime. 相似文献
2.
Identification of key parameters controlling dissolved oxygen migration and attenuation in fractured crystalline rocks 总被引:1,自引:0,他引:1
In the crystalline rocks of the Canadian Shield, geochemical conditions are currently reducing at depths of 500-1000 m. However, during future glacial periods, altered hydrologic conditions could potentially result in enhanced recharge of glacial melt water containing a relatively high concentration of dissolved oxygen (O2). It is therefore of interest to investigate the physical and geochemical processes, including naturally-occurring redox reactions, that may control O2 ingress. In this study, the reactive transport code MIN3P is used in combination with 2k factorial analyses to identify the most important parameters controlling oxygen migration and attenuation in fractured crystalline rocks. Scenarios considered are based on simplified conceptual models that include a single vertical fracture, or a fracture zone, contained within a rock matrix that extends from the ground surface to a depth of 500 m. Consistent with field observations, Fe(II)-bearing minerals are present in the fractures (i.e. chlorite) and the rock matrix (biotite and small quantities of pyrite). For the parameter ranges investigated, results indicate that for the single fracture case, the most influential factors controlling dissolved O2 ingress are flow velocity in the fracture, fracture aperture, and the biotite reaction rate in the rock matrix. The most important parameters for the fracture zone simulations are flow velocity in the individual fractures, pO2 in the recharge water, biotite reaction rate, and to a lesser degree the abundance and reactivity of chlorite in the fracture zone, and the fracture zone width. These parameters should therefore receive increased consideration during site characterization, and in the formulation of site-specific models intended to predict O2 behavior in crystalline rocks. 相似文献
3.
The codisposal of toxic metals and radionuclides with organic chelating agents has been implicated in the facilitated transport of the inorganic contaminants away from primary waste disposal areas. We investigated the transport of Co(II)NTA through undisturbed cores of fractured shale saprolite. Experiments were conducted across the pH range 4 to 8 by collecting cores from different locations within the weathering profile. Aqueous complexation, adsorption, dissociation and oxidation reactions influenced Co(II)NTA transport. The suite of reaction products identified in column effluent varied with experimental pH. At low pH and in the presence of abundant exchangeable aluminum, Co transport occurred predominantly as the Co2+ ion. At higher pH, Co was transported primarily as Co(II)NTA and the Co(III) species Co(III)(HNTA)2 and Co(III)(IDA)2. The formation of the geochemical oxidation products (Co(III) species) has far reaching implications as these compounds are kinetically and thermodynamically stable, are transported more rapidly than Co(II)NTA, and are resistant to biodegradation. These results demonstrate that natural minerals, in the physical structure encountered naturally, can be more important in the formation of mobile, stable contaminant forms than they can be for the retardation and dissociation of the contaminants. 相似文献
4.
Natural attenuation of diesel aliphatic hydrocarbons in contaminated agricultural soil 总被引:2,自引:0,他引:2
Serrano A Gallego M González JL Tejada M 《Environmental pollution (Barking, Essex : 1987)》2008,151(3):494-502
A diesel fuel spill at a concentration of 1 L m(-2) soil was simulated on a 12 m(2) plot of agricultural land, and natural attenuation of aliphatic hydrocarbons was monitored over a period of 400 days following the spill after which the aliphatic hydrocarbon concentrations were found to be below the legal contamination threshold for soil. The main fraction of these compounds (95%) remained at the surface layer (0-10 cm). Shortly after the spill (viz. between days 0 and 18), evaporation was the main origin of the dramatic decrease in pollutant concentrations in the soil. Thereafter, soil microorganisms used aliphatic hydrocarbons as sources of carbon and energy, as confirmed by the degradation ratios found. Soil quality indicators, soil microbial biomass and dehydrogenase activity, regained their original levels about 200 days after the spill. 相似文献
5.
Kauppi S Romantschuk M Strömmer R Sinkkonen A 《Environmental science and pollution research international》2012,19(1):53-63
Purpose
Prevalence of organic pollutants or their natural analogs in soil is often assumed to lead to adaptation in the bacterial community, which results in enhanced bioremediation if the soil is later contaminated. In this study, the effects of soil type and contamination history on diesel oil degradation and bacterial adaptation were studied. 相似文献6.
An YJ Kampbell DH Weaver JW Wilson JT Jeong SW 《Environmental pollution (Barking, Essex : 1987)》2004,130(3):325-335
Subsurface contamination by trichloroethene (TCE) was detected at a Michigan National Priorities List (NPL) site in 1982. The TCE plume resulted from the disposal of spent solvent and other chemicals at an industrial facility located in the eastern shore of Lake Michigan. TCE degradation products of three dichloroethene (DCE) isomers, vinyl chloride (VC) and ethene were present. The plume was depleted of oxygen and methanogenic at certain depths. Transects of the plume were sampled by slotted auger borings the year after the TCE plume was first discovered. Water samples were also taken from lake sediments to a depth of 12 m about 100 m offshore. Later samples were taken along the shoreline of the lake with a hand-driven probe. Later in 1998 water was taken from sediments about 3-m from the shoreline. The average concentration of each chemical and net apparent base coefficient between appropriate pairs of transects between the lower site and lakeshore were calculated. Loss rates were then calculated from an analytical solution of the two-dimensional advective-dispersive-reactive transport equation. Net apparent rate coefficients and a set of coupled reaction rate equations were used to extract the apparent loss coefficients. This study showed the field evidence for natural attenuation of TCE. 相似文献
7.
Olson PE Flechter JS Philp PR 《Environmental science and pollution research international》2001,8(4):243-249
The natural attenuation of polyaromatic hydrocarbons (PAHs) in the vadose zone of a naturally revegetated former industrial sludge basin (0.45 ha) was examined. This was accomplished by comparing the concentration of 16 PAH contaminants present in sludge collected below the root zone of plants with contaminants present at 3 shallower depths within the root zone. Chemical analysis of 240 samples from 60 cores showed the average concentration of total and individual PAHs in the 0-30 cm, 30-60 cm, and bottom of the root zone strata were approximately 10, 20, and 50%, respectively, of the 16, 800 ppm average total PAH concentration in deep non-rooted sludge. Statistically significant differences in average PAH concentrations were observed between each strata studied and the non-rooted sludge except for the concentrations of acenaphthene and chrysene present at the bottom of the root zone in comparison to sludge values. The rooting depth of the vegetation growing in the basin was dependent on both vegetation type and plant age. Average rooting depths for trees, forbs (herbaceous non-grasses), and grasses were 90, 60, and 50 cm, respectively. The deepest root systems observed (100-120 cm) were associated with the oldest (12-14 year-old) mulberry trees. Examination of root systems and PAH concentrations at numerous locations and depths within the basin indicated that plant roots and their microbially active rhizospheres fostered PAH disappearance; including water insoluble, low volatility compounds, i.e. benzo(a)pyrene and benzo(ghi)perylene. The reduced concentration of PAHs in the upper strata of this revegetated former sludge basin indicated that natural attenuation had occurred. This observation supports the concept that through appropriate planting and management practices (phytoremediation) it will be possible to accelerate, maximize, and sustain natural processes, whereby even the most recalcitrant PAH contaminants (i.e. benzo(a)pyrene) can be remediated over time. 相似文献
8.
Natural attenuation of xenobiotic organic compounds in a landfill leachate plume (Vejen,Denmark) 总被引:1,自引:0,他引:1
Baun A Reitzel LA Ledin A Christensen TH Bjerg PL 《Journal of contaminant hydrology》2003,65(3-4):269-291
Demonstration of natural attenuation of xenobiotic organic compounds (XOCs) in landfill leachate plumes is a difficult task and still an emerging discipline within groundwater remediation. One of the early studies was made at the Vejen Landfill in Denmark in the late 1980s, which suggested that natural attenuation of XOCs took place under strongly anaerobic conditions within the first 150 m of the leachate plume. This paper reports on a revisit to the same plume 10 years later. Within the strongly anaerobic part of the plume, 49 groundwater samples were characterized with respect to redox-sensitive species and XOCs. The analytical procedures have been developed further and more compounds and lower detection limits were observed this time. In addition, the samples were screened for degradation intermediates and for toxicity. The plume showed fairly stationary features over the 10-year period except that the XOC level as well as the level of chloride and nonvolatile organic carbon (NVOC) in the plume had decreased somewhat. Most of the compounds studied were subject to degradation in addition to dilution. Exceptions were benzene, the herbicide Mecoprop (MCPP), and NVOC. In the early study, NVOC seemed to degrade in the first part of the plume, but this was no longer the case. Benzyl succinic acid (BSA) was for the first time identified in a leachate plume as a direct indicator, and as the only intermediate of toluene degradation. Toxicity measurements on solid phase-extracted (SPE) samples revealed that toxic compounds not analytically identified were still present in the plume, suggesting that toxicity measurements could be helpful in assessing natural attenuation in leachate plumes. 相似文献
9.
Fraser M Barker JF Butler B Blaine F Joseph S Cooke C 《Journal of contaminant hydrology》2008,100(3-4):101-115
An emplaced source of coal tar creosote within the sandy Borden research aquifer has documented the long-term (5140 days) natural attenuation for this complex mixture. Plumes of dissolved chemicals were produced by the essentially horizontal groundwater flowing at about 9 cm/day. Eleven chemicals have been extensively sampled seven times using a monitoring network of approximately 280, 14-point multilevel samplers. A model of source dissolution using Raoult's Law adequately predicted the dissolution of 9 of 11 compounds. Mass transformation has limited the extent of the plumes as groundwater has flowed more than 500 m, yet the plumes are no longer than 50 m. Phenol and xylenes have been removed and naphthalene has attenuated from its maximum extent on day 1357. Some compound plumes have reached an apparent steady state and the plumes of other compounds (dibenzofuran and phenanthrene) are expected to continue to expand due to an increasing mass flux and limited degradation potential. Biotransformation is the major process controlling natural attenuation at the site. The greatest organic mass lost is associated with the high solubility compounds. However, the majority of the mass loss for most compounds has occurred in the source zone. Oxygen is the main electron acceptor, yet the amount of organics lost cannot be accounted for by aerobic mineralization or partial mineralization alone. The complex evolution of these plumes has been well documented but understanding the controlling biotransformation processes is still elusive. This study has shown that anticipating bioattenuation patterns should only be considered at the broadest scale. Generally, the greatest mass loss is associated with those compounds that have a high solubility and low partitioning coefficients. 相似文献
10.
Damikouka Ioanna Katsiri Alexandra 《Environmental science and pollution research international》2021,28(42):59180-59189
Environmental Science and Pollution Research - Metals can be mobilized from contaminated sediments under variable environmental conditions. This paper discusses the effects of specific ions of the... 相似文献
11.
Sorption and transport of trichloroethylene in caliche soil 总被引:3,自引:0,他引:3
Sorption of TCE to the caliche soil exhibited linear isotherm at the high TCE concentrations (Co = 122-1300 mg L−1) but Freundlich isotherm at the low concentration range (1-122 mg L−1). Sorption strength of the carbonate fraction of the soil was about 100-fold lower than the sorption strength of soil organic matter (SOM) in the caliche soil, indicating weak affinity of TCE for the carbonate fraction of the soil. Desorption of TCE from the caliche soil was initially rapid (7.6 × 10−4 s−1), then continued at a 100-fold slower rate (7.7 × 10−6 s−1). Predominant calcium carbonate fraction of the soil (96%) was responsible for the fast desorption of TCE while the SOM fraction (0.97%) controlled the rate-limited desorption of TCE. Transport of TCE in the caliche soil was moderately retarded with respect to the water (R = 1.75-2.95). Flow interruption tests in the column experiments indicated that the rate-limited desorption of TCE controlled the non-ideal transport of TCE in the soil. Modeling studies showed that both linear and non-linear nonequilibrium transport models provided reasonably good match to the TCE breakthrough curves (r2 = 0.95-0.98). Non-linear sorption had a negligible impact on both the breakthrough curve shape and the values of sorption kinetics parameters at the high TCE concentration (Co = 1300 mg L−1). However, rate-limited sorption/desorption processes dominated at this concentration. For the low TCE concentration case (110 mg L−1), in addition to the rate-limited sorption/desorption, contribution of the non-linear sorption to the values of sorption kinetics became fairly noticeable. 相似文献
12.
Natural attenuation of chlorinated ethene compounds: model development and field-scale application at the Dover site 总被引:1,自引:0,他引:1
T. Prabhakar Clement Christian D. Johnson Yunwei Sun Gary M. Klecka Craig Bartlett 《Journal of contaminant hydrology》2000,42(2-4)
A multi-dimensional and multi-species reactive transport model was developed to aid in the analysis of natural attenuation design at chlorinated solvent sites. The model can simulate several simultaneously occurring attenuation processes including aerobic and anaerobic biological degradation processes. The developed model was applied to analyze field-scale transport and biodegradation processes occurring at the Area-6 site in Dover Air Force Base, Delaware. The model was calibrated to field data collected at this site. The calibrated model reproduced the general groundwater flow patterns, and also, it successfully recreated the observed distribution of tetrachloroethene (PCE), trichloroethene (TCE), dichloroethylene (DCE), vinyl chloride (VC) and chloride plumes. Field-scale decay rates of these contaminant plumes were also estimated. The decay rates are within the range of values that were previously estimated based on lab-scale microcosm and field-scale transect analyses. Model simulation results indicated that the anaerobic degradation rate of TCE, source loading rate, and groundwater transport rate are the important model parameters. Sensitivity analysis of the model indicated that the shape and extent of the predicted TCE plume is most sensitive to transmissivity values. The total mass of the predicted TCE plume is most sensitive to TCE anaerobic degradation rates. The numerical model developed in this study is a useful engineering tool for integrating field-scale natural attenuation data within a rational modeling framework. The model results can be used for quantifying the relative importance of various simultaneously occurring natural attenuation processes. 相似文献
13.
Natural attenuation of chlorinated solvents at Area 6, Dover Air Force Base: groundwater biogeochemistry 总被引:1,自引:0,他引:1
Witt ME Klecka GM Lutz EJ Ei TA Grosso NR Chapelle FH 《Journal of contaminant hydrology》2002,57(1-2):61-80
Monitored natural attenuation (MNA) has recently emerged as a viable groundwater remediation technology in the United States. Area 6 at Dover Air Force Base (Dover, DE) was chosen as a test site to examine the potential for MNA of tetrachloroethene (PCE) and trichloroethene (TCE) in groundwater and aquifer sediments. A "lines of evidence" approach was used to document the occurrence of natural attenuation. Chlorinated hydrocarbon and biogeochemical data were used to develop a site-specific conceptual model where both anaerobic and aerobic biological processes are responsible for the destruction of PCE, TCE, and daughter metabolites. An examination of groundwater biogeochemical data showed a region of depleted dissolved oxygen with elevated dissolved methane and hydrogen concentrations. Reductive dechlorination likely dominated in the anaerobic portion of the aquifer where PCE and TCE levels were observed to decrease with a simultaneous increase in cis-1,2-dichloroethene (cis-DCE), vinyl chloride (VC), ethene, and dissolved chloride. Near the anaerobic/ aerobic interface, concentrations of cis-DCE and VC decreased to below detection limits, presumably due to aerobic biotransformation processes. Therefore, the contaminant and daughter product plumes present at the site appear to have been naturally atteuated by a combination of active anaerobic and aerobic biotransformation processes. 相似文献
14.
The photocatalytic degradation of gaseous trichloroethylene (TCE) without water has been studied. The degradation products were determined to be CO2, HCl and Cl2, and the reaction stoichiometry, was described as . The degradation rate was found to be linear with 0.16 power of the illumination intensity. When the TCE concentration was low (1014 mol L−1 or a little more), its degradation rate model could be considered as first order kinetics. A mechanism of valence band hole oxidation was proposed. 相似文献
15.
16.
Fracture "skins" are alteration zones on fracture surfaces created by a variety of biological, chemical, and physical processes. Skins increase surface area, where sorption occurs, compared to the unaltered rock matrix. This study examines the sorption of organic solutes on altered fracture surfaces in an experimental fracture-flow apparatus. Fracture skins containing abundant metal oxides, clays, and organic material from the Breathitt Formation (Kentucky, USA) were collected in a manner such that skin surface integrity was maintained. The samples were reassembled in the lab in a flow-through apparatus that simulated approximately 2.7 m of a linear fracture "conduit." A dual-tracer injection scheme was utilized with the sorbing or reactive tracer compared to a non-reactive tracer (chloride) injected simultaneously. Sorption was assessed from the ratio of the first temporal moments of the breakthrough curves and from the loss of reactive tracer mass and evaluated as a function of flow velocity and solute type. The breakthrough curves suggest dual-flow regimes in the fracture with both sorbing and non-sorbing flow fields. Significant sorption occurs for the reactive components, and sorption increased with decreasing flow rate and decreasing compound solubility. Based on moment analysis, however, there was little retardation of the center of solute mass. These data suggest that non-equilibrium sorption processes dominate and that slow desorption and boundary layer diffusion cause extensive tailing in the breakthrough curves. 相似文献
17.
Ezra S Feinstein S Yakirevich A Adar E Bilkis I 《Journal of contaminant hydrology》2006,86(3-4):195-214
This study investigates the mechanisms controlling the distribution of 3-bromo-2,2-bis(bromomethyl)propanol (TBNPA) and 2,2-bis(bromomethyl)propan-1,3-diol (DBNPG) in a fractured chalk aquitard. An extensive monitoring program showed a systematic decrease in the TBNPA/DBNPG ratio with distance from the contamination source. Sorption of TBNPA on the white and/or gray chalks comprising the aquitard is approximately one order of magnitude greater than that of DBNPG. This results in more efficient removal of TBNPA from the fracture into the porous matrix and thus decreases the TBNPA/DBNPG ratio in the fracture water. Mathematical modeling of solute transport in the fracture domain illustrates the probable importance of sorption in controlling the spatial variation in TBNPA and DBNPG ratio. 相似文献
18.
Surfactant-enhanced oxidation of trichloroethylene by permanganate--proof of concept 总被引:5,自引:0,他引:5
Li Z 《Chemosphere》2004,54(3):419-423
Oxidative dechlorination of chlorinated solvents by permanganate is an emerging technology for remediation of groundwater contaminated with dissolved chlorinated contaminants. In this study, the enhancement of trichloroethylene (TCE) degradation by permanganate in aqueous solution in the presence of surfactant was evaluated through a continuous stir batch reactor system with the presence of permanganate as the limiting reagent and free phase TCE. The TCE degradation was determined by continuous monitoring the amount of chloride produced, which was then reverted to the rate of permanganate consumption. It was found that the chloride production, an indication of TCE degradation, followed a pseudo-first-order reaction kinetics with respect to KMnO(4) in the presence of free phase TCE. When no surfactants were present, the observed pseudo-first-order rate constant (k(obs)) was 0.08-0.19 min(-1) and the half-life (t(1/2)) was 4-9 min for MnO(4)(-). When the surfactant concentration was less than its critical micelle concentration (CMC), the k(obs) values increased to 0.42-0.46 min(-1) and the t(1/2) reduced to 1.5-1.7 min for MnO(4)(-). As the surfactant concentration was greater than the CMC, the k(obs) values increased to 0.56-0.58 min(-1) and the t(1/2) reduced to 1.2-1.3 min. The preliminary results showed that combination of permanganate with a proper type of surfactant can speed up contaminant removal. 相似文献
19.
Davis JW Odom JM Deweerd KA Stahl DA Fishbain SS West RJ Klecka GM DeCarolis JG 《Journal of contaminant hydrology》2002,57(1-2):41-59
A polyphasic approach based on cultivation and direct recovery of 16S rRNA gene sequences was utilized for microbial characterization of an aquifer contaminated with chlorinated ethenes. This work was conducted in order to support the evaluation of natural attenuation of chlorinated ethenes in groundwater at Area 6 at Dover Air Force Base (Dover, DE). Results from these studies demonstrated the aquifer contained relatively low biomass (e.g. direct microscopic counts of < 10(7) bacteria/g of sediment) comprised of a physiologically diverse group of microorganisms including iron reducers, acetogens, sulfate reducers, denitrifiers, aerobic and anaerobic heterotrophs. Laboratory microcosms prepared with authentic sediment and groundwater provided direct microbiological evidence that the mineralization of vinyl chloride and cis-dichloroethene as well as each step in the complete reductive dechlorination of tetracloroethene to ethene can occur in the Area 6 aquifer. Enrichment cultures capable of the oxidative degradation of cis-1,2-dichloroethene (cis-DCE) and vinyl chloride (VC) were obtained from groundwater across the aquifer demonstrating the possible importance of direct, non-cometabolic oxidation of cis-DCE and VC in natural attenuation. Culture-independent analyses based upon recovery of 16S rRNA gene sequences revealed the presence of anaerobic organisms distributed primarily between two major bacterial divisions: the delta subdivision of the Proteobacteria and low-G + C gram positive. Recovery of sequences affiliated with phylogenetic groups containing known anaerobic-halorespiring organisms such as Desulfitobacterium, Dehalobacter, and certain groups of iron reducers provided qualitative support for a role of reductive dechlorination processes in the aquifer. This molecular data is suggestive of a functional linkage between the microbiology of the site and the apparent natural attenuation process. The presence and distribution of microorganisms were found to be consistent with a microbially driven attenuation of chlorinated ethenes within the aquifer and in accord with a conceptual model of aquifer geochemistry which suggest that both reductive and oxidative mechanisms are involved in heterogeneous, spatially distributed processes across the aquifer. 相似文献
20.
Determination of the flow-wetted surface in fractured media 总被引:1,自引:0,他引:1
Diffusion and sorption in the rock matrix are important retardation mechanisms for radionuclide transport in fractured media. For the conditions existing in a deep repository in crystalline rock, interaction with the rock matrix is controlled by the water flowrate in the fractures and the surface area in contact with the flowing water (the so-called "flow-wetted surface" (FWS)). The flow-wetted surface may be determined from the frequency of open fractures intersecting a borehole. The choice of packer distance used in these hydraulic measurements is crucial, however, since several open fractures may be found in one packer interval. The use of a packer distance that is too large may result in a considerable underestimation of the flow-wetted surface. This is especially important in zones with a high frequency of open fractures (fracture zones) where a small packer distance is a fundamental requirement. A large volume of hydraulic data has been compiled in Sweden from measurements using quite small packer distances. Over the last decade, the most common packer distance used for the hydraulic tests has been 3 m, although some new measurements using a shorter packer distance have also been performed. In several cases, the resolution of these measurements has been less than 0.5 m. All these data have been analysed in detail. From these data, the flow-wetted surface has been calculated and compared with the flow-wetted surface estimated in earlier studies. The results show the importance of using a small packer distance for carrying out borehole transmissivity measurements. 相似文献