首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
As catchments become increasingly urban, the streams that drain them become increasingly degraded. Urban streams are typically characterized by high-magnitude storm flows, homogeneous habitats, disconnected riparian zones, and elevated nitrogen concentrations. To reverse the degradation of urban water quality, watershed managers and regulators are increasingly turning to stream restoration approaches. By reshaping the channel and reconnecting the surface waters with their riparian zone, practitioners intend to enhance the natural nutrient retention capacity of the restored stream ecosystem. Despite the exponential growth in stream restoration projects and expenditures, there has been no evaluation to date of the efficacy of urban stream restoration projects in enhancing nitrogen retention or in altering the underlying ecosystem metabolism that controls instream nitrogen consumption. In this study, we compared ecosystem metabolism and nitrate uptake kinetics in four stream restoration projects within urban watersheds to ecosystem functions measured in four unrestored urban stream segments and four streams draining minimally impacted forested watersheds in central North Carolina, U.S.A. All 12 sites were surveyed in June through August of 2006 and again in January through March of 2007. We anticipated that urban streams would have enhanced rates of ecosystem metabolism and nitrate uptake relative to forested streams due to the increases in nutrient loads and temperature associated with urbanization, and we predicted that restored streams would have further enhanced rates for these ecosystem functions by virtue of their increased habitat heterogeneity and water residence times. Contrary to our predictions we found that stream metabolism did not differ between stream types in either season and that nitrate uptake kinetics were not different between stream types in the winter. During the summer, restored stream reaches had substantially higher rates of nitrate uptake than unrestored or forested stream reaches; however, we found that variation in stream temperature and canopy cover explained 80% of the variation across streams in nitrate uptake. Because the riparian trees are removed during the first stage of natural channel design projects, the restored streams in this study had significantly less canopy cover and higher summer temperatures than the urban and forested streams with which they were compared.  相似文献   

2.
Streams, as low-lying points in the landscape, are strongly influenced by the stormwaters, pollutants, and warming that characterize catchment urbanization. River restoration projects are an increasingly popular method for mitigating urban insults. Despite the growing frequency and high expense of urban stream restoration projects, very few projects have been evaluated to determine whether they can successfully enhance habitat structure or support the stream biota characteristic of reference sites. We compared the physical and biological structure of four urban degraded, four urban restored, and four forested streams in the Piedmont region of North Carolina to quantify the ability of reach-scale stream restoration to restore physical and biological structure to urban streams and to examine the assumption that providing habitat is sufficient for biological recovery. To be successful at mitigating urban impacts, the habitat structure and biological communities found in restored streams should be more similar to forested reference sites than to their urban degraded counterparts. For every measured reach- and patch-scale attribute, we found that restored streams were indistinguishable from their degraded urban stream counterparts. Forested streams were shallower, had greater habitat complexity and median sediment size, and contained less-tolerant communities with higher sensitive taxa richness than streams in either urban category. Because heavy machinery is used to regrade and reconfigure restored channels, restored streams had less canopy cover than either forested or urban streams. Channel habitat complexity and watershed impervious surface cover (ISC) were the best predictors of sensitive taxa richness and biotic index at the reach and catchment scale, respectively. Macroinvertebrate communities in restored channels were compositionally similar to the communities in urban degraded channels, and both were dissimilar to communities in forested streams. The macroinvertebrate communities of both restored and urban degraded streams were correlated with environmental variables characteristic of degraded urban systems. Our study suggests that reach-scale restoration is not successfully mitigating for the factors causing physical and biological degradation.  相似文献   

3.
Many nearshore restoration projects are currently underway at coastal locations where human influence and development have disrupted natural habitat and coastal ecological systems. The objectives of these projects in general are to restore the lost estuarine functions to the tidal marshland. Often these projects are conducted with little understanding of the potential effects of other nearby projects within the ecosystem, and similarly, it is easy to neglect the effect of the local project on the larger estuarine scale. In this paper, a modeling study is presented to evaluate the hydrodynamic responses of multiple restoration projects and their cumulative effect in the Snohomish River estuary in Washington, USA. The concept of absolute mean tidal transport is introduced and used to measure the cumulative effect of the proposed restoration projects on the estuarine hydrodynamics. The results show that the hydrodynamic responses due to multiple restoration projects are additive in the estuary, and the effect is nonlinear. The hydrodynamic response under restoration conditions depends on the size of the restoration area and the geometric configuration of the existing river channels. Within a complex braided estuary such as the Snohomish, the influence of a specific restoration project is not only experienced locally, but also found to significantly affect tidal transport in all distributary branches within the system.  相似文献   

4.
The degradation of headwater streams is common in urbanized coastal areas, and the role these streams play in contributing to downstream pollution is a concern among natural resource managers and policy makers. Thus, many urban stream restoration efforts are increasingly focused on reducing the downstream flux of pollutants. In regions that suffer from coastal eutrophication, it is unclear whether stream restoration does in fact reduce nitrogen (N) flux to downstream waters and, if so, by how much and at what cost. In this paper, we evaluate whether stream restoration implemented to improve water quality of urban and suburban streams in the Chesapeake Bay region, USA, is effective at reducing the export of N in stream flow to downstream waters. We assessed the effectiveness of restored streams positioned in the upland vs. lowland regions of Coastal Plain watershed during both average and stormflow conditions. We found that, during periods of low discharge, lowland streams that receive minor N inputs from groundwater or bank seepage reduced in-stream N fluxes. Furthermore, lowland streams with the highest N concentrations and lowest discharge were the most effective. During periods of high flow, only those restoration projects that converted lowland streams to stream-wetland complexes seemed to be effective at reducing N fluxes, presumably because the design promoted the spillover of stream flow onto adjacent floodplains and wetlands. The observed N-removal rates were relatively high for stream ecosystems, and on the order of 5% of the inputs to the watershed. The dominant forms of N entering restored reaches varied during low and high flows, indicating that N uptake and retention were controlled by distinctive processes during different hydrological conditions. Therefore, in order for stream restoration to effectively reduce N fluxes exported to downstream waters, restoration design should include features that enhance the processing and retention of different forms of N, and for a wide range of flow conditions. The use of strategic designs that match the dominant attributes of a stream such as position in the watershed, influence of groundwater, dominant flow conditions, and N concentrations is crucial to assure the success of restoration.  相似文献   

5.
Evaluating tributary restoration potential for Pacific salmon recovery.   总被引:1,自引:0,他引:1  
Although habitat restoration can play a key role in the conservation of imperiled species, for animals that demonstrate long migrations and complex life histories, reliance on physical restoration of isolated habitat patches comes with considerable uncertainty. Nevertheless, within freshwater ecosystems, stream restoration has become a major conservation focus, with millions of dollars spent annually on efforts aimed at recovering degraded habitat and imperiled riverine species. Within this context, we addressed fundamental uncertainties of the focus on tributary restoration for recovery of salmon: (1) Is there potential for improving habitat in tributaries? (2) What magnitude of early survival improvement can be expected based on stream restoration? and (3) Will incremental increases in early survival be sufficient to ensure viability overall? We combined simple mechanistic habitat models, population viability measures, and categorical filters to quantify "restoration potential," expressed as increased total life-cycle survival in response to restored tributary condition, across 32 populations composing five major population groups (MPG). A wide gap remains between how much survival improvement is needed vs. what is likely to occur; restoration potential meets the necessary minimum increase needed for only four populations within one MPG. The remaining populations (84%, 4 MPG) still fall far below the survival increase needed for future viability. In addition, across all populations and groups, a 171% increase (on average) in total life-cycle survival is needed; only approximately 106% appears possible. A recovery strategy for these salmon that relies largely on tributary restoration to mitigate for known mortality imposed at other life stages (e.g., migration through hydropower dams) is risky with a low probability of success. We demonstrate an approach for completing an a priori evaluation of restoration potential linked to population viability, such that habitat restoration efforts can be biologically prioritized and scarce resources can be allocated to efforts with the greatest potential and the least amount of risk, in terms of meeting conservation and recovery goals.  相似文献   

6.
基于环境管理的河流健康评价体系的研究进展   总被引:2,自引:0,他引:2  
黄艺  文航  蔡佳亮 《生态环境》2010,19(4):967-973
随着河流环境的逐渐退化,其自然功能和社会功能都受到了严重的威胁,河流健康评价的研究也逐渐成为河流生态研究的热点之一。河流健康评价体系能够明确河流的健康状态,为环境管理和生态修复提高理论基础,同时提高环境管理和生态修复的针对性和有效性。然而,环境管理也是河流健康评价体系的制定基准和目标。文章从国内外研究对河流健康的内涵和河流健康评价的指标体系两个方面进行了综述和分析。目前,国际上对于河流健康的内涵逐渐由仅关注自然功能,向与社会功能等方面结合的方向扩充。河流健康评价指标体系主要有两种:一是指示物种评价法,二是指标综合体系评价法。通过比较这两种方法的发展和优劣,我国更适宜于指标综合体系评价方法,有助于环境管理措施的制定。最后,通过结合和借鉴国内外已有的研究成果,构建了针对我国国情的、基于环境管理的河流健康评价理论框架。  相似文献   

7.
The primary focus of many in-stream restoration projects is to enhance habitat diversity for salmonid fishes, yet the lack of properly designed monitoring studies, particularly ones with pre-restoration data, limits any attempts to assess whether restoration has succeeded in improving salmonid habitat. Even less is known about the impacts of fisheries-related restoration on other, non-target biota. We examined how restoration aiming at the enhancement of juvenile brown trout (Salmo trutta L.) affects benthic macroinvertebrates, using two separate data sets: (1) a before-after-control-impact (BACI) design with three years before and three after restoration in differently restored and control reaches of six streams; and (2) a space-time substitution design including channelized, restored, and near-natural streams with an almost 20-year perspective on the recovery of invertebrate communities. In the BACI design, total macroinvertebrate density differed significantly from before to after restoration. Following restoration, densities decreased in all treatments, but less so in the controls than in restored sections. Taxonomic richness also decreased from before to after restoration, but this happened similarly in all treatments. In the long-term comparative study, macroinvertebrate species richness showed no difference between the channel types. Community composition differed significantly between the restored and natural streams, but not between restored and channelized streams. Overall, the in-stream restoration measures used increased stream habitat diversity but did not enhance benthic biodiversity. While many macroinvertebrates may be dispersal limited, our study sites should not have been too distant to reach within almost two decades. A key explanation for the weak responses by macroinvertebrate communities may have been historical. When Fennoscandian streams were channelized for log floating, the loss of habitat heterogeneity was only partial. Therefore, habitat may not have been limiting the macroinvertebrate communities to begin with. Stream restoration to support trout fisheries has strong public acceptance in Finland and will likely continue to increase in the near future. Therefore, more effort should be placed on assessing restoration success from a biodiversity perspective using multiple organism groups in both stream and riparian ecosystems.  相似文献   

8.
The central tenet of biodiversity-ecosystem function (BEF) theory, that species richness increases function, could motivate restoration practitioners to incorporate a greater number of species into their projects. But it is not yet clear how well BEF theory predicts outcomes of restoration, because it has been developed through tests involving short-run and tightly controlled (e.g., weeded) experiments. Thus, we resampled our 1997 BEF experiment in a restored salt marsh to test for long-term effects of species richness (plantings with 1, 3, and 6 species per 2 x 2 m plot), with multiple ecosystem functions as response variables. Over 11 years, 1- and 6-species assemblages converged on intermediate richness (mean = 3.9 species/ 0.25-m2 plot), and composition changed nonrandomly throughout the site. While three species became rare, the two most productive species became co-dominant. The two dominants controlled and increased shoot biomass, which appeared to decrease species richness. Diversity-function relationships became less positive over 11 years and differed significantly with (a) the species-richness metric (planted vs. measured), and (b) the indicator of function (shoot biomass, height, and canopy layering). The loss of positive relationships between species richness and function in our restored site began soon after we stopped weeding and continued with increasing dominance by productive species. Where species-rich plantings are unlikely to ensure long-term restoration of functions, as in our salt marsh, we recommend dual efforts to establish (1) dominant species that provide high levels of target functions, and (2) subordinate species, which might provide additional functions under current or future conditions.  相似文献   

9.
Abstract: Climate change will likely have profound effects on cold‐water species of freshwater fishes. As temperatures rise, cold‐water fish distributions may shift and contract in response. Predicting the effects of projected stream warming in stream networks is complicated by the generally poor correlation between water temperature and air temperature. Spatial dependencies in stream networks are complex because the geography of stream processes is governed by dimensions of flow direction and network structure. Therefore, forecasting climate‐driven range shifts of stream biota has lagged behind similar terrestrial modeling efforts. We predicted climate‐induced changes in summer thermal habitat for 3 cold‐water fish species—juvenile Chinook salmon, rainbow trout, and bull trout (Oncorhynchus tshawytscha, O. mykiss, and Salvelinus confluentus, respectively)—in the John Day River basin, northwestern United States. We used a spatially explicit statistical model designed to predict water temperature in stream networks on the basis of flow and spatial connectivity. The spatial distribution of stream temperature extremes during summers from 1993 through 2009 was largely governed by solar radiation and interannual extremes of air temperature. For a moderate climate change scenario, estimated declines by 2100 in the volume of habitat for Chinook salmon, rainbow trout, and bull trout were 69–95%, 51–87%, and 86–100%, respectively. Although some restoration strategies may be able to offset these projected effects, such forecasts point to how and where restoration and management efforts might focus.  相似文献   

10.
River restoration success: a question of perception   总被引:1,自引:0,他引:1  
What defines success and failure of river restoration measures is a strongly debated topic in restoration science, but standardized approaches to evaluate either are still not available. The debate is usually centered on measurable parameters, which adhere to scientific objectivity. More subjective aspects, such as landscape aesthetics or recreational value, are usually left out, although they play an important role in the perception and communication of restoration success. In this paper, we show that different perceptions of restoration success exist by analyzing data from 26 river restoration measures in Germany. We addressed both objective parameters, such as hydromorphological changes and changes in fish and benthic invertebrate assemblages, from field investigations, and subjective parameters, such as opinions and perceptions, from water managers via an online survey. With regard to the objective hydromorphological and biotic parameters, our results agree with many studies that have reported improvements in the hydromorphology following restoration; however, there is no similar agreement between results concerning changes in the benthic invertebrate and fish assemblages. The objective results do not correspond to the subjective parameters because self-evaluation of the restoration projects by water managers was overly positive. Indeed, 40% of the respondents admitted that their evaluation was based on gut feeling, and only 45% of the restoration measures were monitored or occasionally checked. This lack of objectively recorded data meant that the water managers were not able to reasonably evaluate restoration success. In contrast, some self-evaluation responses reflected a different perception of the restoration success that was based on landscape aesthetic values or on benefit for the public; others adopted a general "condemned to success" attitude. Based on our data, we argue (1) that goals should be thoughtfully formulated prior to restoration implementation and (2) that it is necessary to monitor river restoration success from different perspectives.  相似文献   

11.
Fluvial processes such as flooding and sediment deposition play a crucial role in structuring riparian plant communities. In rivers throughout the world, these processes have been altered by channelization and other anthropogenic stresses. Yet despite increasing awareness of the need to restore natural flow regimes for the preservation of riparian biodiversity, few studies have examined the effects of river restoration on riparian ecosystems. In this study, we examined the effects of restoration in the Ume River system, northern Sweden, where tributaries were channelized to facilitate timber floating in the 19th and early 20th centuries. Restoration at these sites involved the use of heavy machinery to replace instream boulders and remove floatway structures that had previously lined stream banks and cut off secondary channels. We compared riparian plant communities along channelized stream reaches with those along reaches that had been restored 3-10 years prior to observation. Species richness and evenness were significantly increased at restored sites, as were floodplain inundation frequencies. These findings demonstrate how river restoration and associated changes in fluvial disturbance regimes can enhance riparian biodiversity. Given that riparian ecosystems tend to support a disproportionate share of regional species pools, these findings have potentially broad implications for biodiversity conservation at regional or landscape scales.  相似文献   

12.
Previous studies evaluating the success of river restorations have rarely found any consistent effects on benthic invertebrate assemblages. In this study, we analyzed data from 24 river restoration projects in Germany dating back 1 to 12 years and 1231 data sets from adjacent river reaches that lie within 0-5, 5-10, and 10-15 km rings centered on the restored sites. We calculated restoration success and recolonization potential of adjacent river reaches based on stream-type-specific subsets of taxa indicative for good or bad habitat quality. On average, the restorations did not improve the benthic invertebrate community quality. However, we show that restoration success depends on the presence of source populations of desired taxa in the surrounding of restored sites. Only where source populations of additional desired taxa existed within a 0-5 km ring around the restored sites were benthic invertebrate assemblages improved by the restoration. Beyond the 5-km rings, this recolonization effect was no longer detected. We present here the first field results to support the debated argument that a lack of source populations in the areas surrounding restored sites may play an important role in the failure to establish desired invertebrate communities by the means of river restorations. In contrast, long-range dispersal of invertebrates seems to play a subordinate role in the recolonization of restored sites. However, because the surroundings of the restored sites were far from good ecological quality, the potential for improvement of restored sites was limited.  相似文献   

13.
Abstract: Many of the skills and resources associated with botanic gardens and arboreta, including plant taxonomy, horticulture, and seed bank management, are fundamental to ecological restoration efforts, yet few of the world's botanic gardens are involved in the science or practice of restoration. Thus, we examined the potential role of botanic gardens in these emerging fields. We believe a reorientation of certain existing institutional strengths, such as plant‐based research and knowledge transfer, would enable many more botanic gardens worldwide to provide effective science‐based support to restoration efforts. We recommend botanic gardens widen research to include ecosystems as well as species, increase involvement in practical restoration projects and training practitioners, and serve as information hubs for data archiving and exchange.  相似文献   

14.
Accounting for natural differences in flow variability among rivers, and understanding the importance of this for the protection of freshwater biodiversity and maintenance of goods and services that rivers provide, is a great challenge for water managers and scientists. Nevertheless, despite considerable progress in understanding how flow variability sustains river ecosystems, there is a growing temptation to ignore natural system complexity in favor of simplistic, static, environmental flow "rules" to resolve pressing river management issues. We argue that such approaches are misguided and will ultimately contribute to further degradation of river ecosystems. In the absence of detailed empirical information of environmental flow requirements for rivers, we propose a generic approach that incorporates essential aspects of natural flow variability shared across particular classes of rivers that can be validated with empirical biological data and other information in a calibration process. We argue that this approach can bridge the gap between simple hydrological "rules of thumb" and more comprehensive environmental flow assessments and experimental flow restoration projects.  相似文献   

15.
We tested for unintended mercury contamination problems associated with estuarine floodplain restoration projects of the Louisiana coastal zone, USA. Barataria Bay and Breton Sound are two neighboring deltaic estuaries that were isolated by levees from the Mississippi River about 100 years ago. These estuaries recently have been reconnected to the nutrient-rich Mississippi River, starting major river diversion (input) flows in 1991 for Breton Sound and in 2004 for Barataria Bay. We collected > 2100 fish over five years from 20 stations in these estuaries to test two hypotheses about Hg bioaccumulation: (H1) Background Hg bioaccumulation in fish would be highest in low-salinity upper reaches of estuaries, and (H2) recent river inputs to these upper estuarine areas would increase Hg bioaccumulation in fish food webs. For H1, we surveyed fish Hg concentrations at several stations along a salinity gradient in Barataria Bay in 2003-2004, a time when this estuary lacked strong river inputs. Results showed that average Hg concentrations in fish communities were lowest (150 ng/g dry mass) in higher salinity areas and -2.4x higher (350 ng/g) in low-salinity oligohaline and freshwater upper reaches of the estuary. For H2, we tested for enhanced Hg bioaccumulation following diversion onset in both estuaries. Fish communities from Breton Sound that had long-term (> 10 years) diversion inputs had -1.7x higher average Hg contents of 610 ng/g Hg vs. 350 ng/g background values. Shorter-term diversion inputs over 2-3 years in upper Barataria Bay did not result in strong Hg enrichments or stable C isotope increases seen in Breton Sound, even though N and S stable-isotope values indicated strong river inputs in both estuaries. It may be that epiphyte communities on abundant submerged aquatic vegetation (SAV) are important hotspots for Hg cycling in these estuaries, and observed lesser development of these epiphyte communities in upper Barataria Bay during the first years of diversion inputs may account for the lessened Hg bioaccumulation in fish. A management consideration from this study is that river restoration projects may unintentionally fertilize SAV and epiphyte-based food webs, leading to higher Hg bioaccumulation in river-impacted floodplains and their food webs.  相似文献   

16.
While larger mineral resource development projects offer new jobs and provide a stimulus to the economy of the area where they are sited, they may also pose problems in rural areas associated with rapid population growth. The purpose of an impact management programme is to anticipate and alleviate project effects that are generally perceived as undesirable and to enhance effects that are beneficial to site area communities. While the effective management of project effects is the end towards which all impact assessment efforts are directed, an integrated approach to impact management has been notably lacking. This paper suggests a systems framework for meeting this need by: (1) reviewing the need for impact management efforts; (2) discussing the objectives of, and considerations in, designing impact management programmes; (3) presenting a conceptual framework for, and key components of, such a programme; and (4) suggesting an approach for implementing such a system as an integral part of the project development process.  相似文献   

17.
Along the Pacific Northwest coast, much of the estuarine habitat has been lost over the last century to agricultural land use, residential and commercial development, and transportation corridors. As a result, many of the ecological processes and functions have been disrupted. To protect and improve these coastal habitats that are vital to aquatic species, many projects are currently underway to restore estuarine and coastal ecosystems through dike breaches, setbacks, and removals. Understanding site-specific information on physical processes is critical for improving the success of such restoration actions. In this study, a three-dimensional hydrodynamic model was developed to simulate estuarine processes in the Stillaguamish River estuary, where restoration of a 160-acre parcel through dike setback has been proposed. The model was calibrated to observed tide, current, and salinity data for existing conditions and applied to simulate the hydrodynamic responses to two restoration alternatives. Model results were then combined with biophysical data to predict habitat responses within the restoration footprint. Results showed that the proposed dike removal would result in desired tidal flushing and conditions that would support four habitat types on the restoration footprint. At the estuary scale, restoration would substantially increase the proportion of area flushed with freshwater (<5 ppt) at flood tide. Potential implications of predicted changes in salinity and flow dynamics are discussed relative to the distribution of tidal marsh habitat.  相似文献   

18.
The need to understand the processes contributing to marsh sedimentation has become more urgent with the recent recognition of the role of tidal marshes as sea defences, as well as the many restoration efforts currently under way. This study was designed to build upon previous sedimentation work at Scolt Head Island by Combining techniques for measuring short-term sedimentation, with detailed assessment of hydroperiod, previously used only in comparison with longer-term accretion measurements or in micro-tidal systems. Measurements of water level, sediment deposition (at various distances from the creek margin) and suspended sediment concentration (SSC) (creek margin and an interior site) were made at Hut Marsh over three sequential over-marsh tides during May 1994. Sediment trap data show a significant trend of declining sediment deposition away from the creek when data from all three tides are combined. All tides show higher SSC on the flood tide than on the ebb tide at the creek margin location. There is little difference in flood and ebb SSCs at the interior site. An order of magnitude decrease in sediment deposition within 20 m on the creek shows the rapidity with which sediment is deposited on these marshes. Higher tides influence both the magnitude and pattern of marsh surface sediment deposition. Increased creek velocities on higher tides provide more potential for resuspension within the creek and increase the supply of sediment to the marsh surface. This study suggests that the design of tidal creeks may be essential for the development of sustainable coastal marshes in restoration projects.  相似文献   

19.
河流作为自然界的一部分,是人类文明的摇篮,也是人类活动的重要区域.河岸带是河流生态系统的重要组成部分,在维系生态平衡中发挥着巨大作用.本文以南渡江河岸带生态修复为例,提出了河岸带的3种生态修复策略和5种生态修复模式,并对未来河流生态修复重点提出了相关建议,以期为国内河流生态修复与综合管理提供参考与借鉴.  相似文献   

20.
Ecosystems worldwide have a long history of use and management by indigenous cultures. However, environmental degradation can reduce the availability of culturally important resources. Ecological restoration aims to repair damage to ecosystems caused by human activity, but it is unclear how often restoration projects incorporate the return of harvesting or traditional life patterns for indigenous communities. We examined the incorporation of cultural use of natural resources into ecological restoration in the context of a culturally important but protected New Zealand bird; among award‐winning restoration projects in Australasia and worldwide; and in the peer‐reviewed restoration ecology literature. Among New Zealand's culturally important bird species, differences in threat status and availability for hunting were large. These differences indicate the values of a colonizing culture can inhibit harvesting by indigenous people. In Australasia among award‐winning ecological restoration projects, <17% involved human use of restored areas beyond aesthetic or recreational use, despite many projects encouraging community participation. Globally, restoration goals differed among regions. For example, in North America, projects were primarily conservation oriented, whereas in Asia and Africa projects frequently focused on restoring cultural harvesting. From 1995 to 2014, the restoration ecology literature contained few references to cultural values or use. We argue that restoration practitioners are missing a vital component for reassembling functional ecosystems. Inclusion of sustainably harvestable areas within restored landscapes may allow for the continuation of traditional practices that shaped ecosystems for millennia, and also aid project success by ensuring community support.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号