共查询到20条相似文献,搜索用时 15 毫秒
1.
Degradation half-lives in/on vegetation are needed in environmental risk assessment of pesticides, but these data are often not available for most active ingredients. To address this, we first correlated experimental soil degradation half-life data of 41 pesticides obtained from the reviewed literature with the corresponding experimental half-lives on plant surface. Degradation half-lives in soil were found to be four times slower compared with half-lives on plant surfaces. In a second step, we explored measured plant surface half-lives directly with those in vegetation. The results were validated by comparing computed values with results obtained from an experimental set-up. The uptake and dissipation of alpha-cypermethrin (insecticide) and bromopropylate (acaricide) was studied by detecting pesticide residues in whole and peeled tomato fruits using gas chromatography. Half-lives within vegetation were found to be four times faster compared with plant surface half-lives. Using this experimental based approach, it is concluded that the estimation of degradation half-lives of pesticides in/on vegetation to be used as input data in environmental mass balance models can be directly correlated from the more abundant ready experimental degradation half-life data for soil. 相似文献
2.
Gene Whelan John P. McDonald Randal Y. Taira Emmanuel K. Gnanapragasam Charley Yu Christine S. Lew William B. Mills 《Journal of contaminant hydrology》2000,41(3-4)
Multimedia modelers from the US Environmental Protection Agency (EPA) and US Department of Energy (DOE) are collaborating to conduct a comprehensive and quantitative benchmarking analysis of four intermedia models: MEPAS, MMSOILS, PRESTO, and RESRAD. These models represent typical analytically based tools that are used in human-risk and endangerment assessments at installations containing radioactive and hazardous contaminants. The objective is to demonstrate an approach for developing an adequate source term by simplifying an existing, real-world, 90Sr plume at DOE's Hanford installation in Richland, WA, for use in a multimedia benchmarking exercise between MEPAS, MMSOILS, PRESTO, and RESRAD. Source characteristics and a release mechanism are developed and described; also described is a typical process and procedure that an analyst would follow in developing a source term for using this class of analytical tool in a preliminary assessment. 相似文献
3.
Hollander A Sauter F den Hollander H Huijbregts M Ragas A van de Meent D 《Chemosphere》2007,68(7):1318-1326
The aim of this study was to determine whether nested generic box models can be used to predict spatial variance. An inter-comparison study was performed for the nested box model SimpleBox, and the spatially resolved model LOTOS-EUROS, using PCB-153 emissions in Europe as an example. We compared the two models concerning (1) average environmental concentrations, (2) spatial concentration variances, (3) spatial concentration patterns (maps), and (4) agreement with measured concentrations for the air and soil compartments. In SimpleBox, the spatial concentration variances and patterns were calculated subsequently for each separate grid cell surrounded by a regional and a continental shell with homogeneous, averaged circumstances. Average European PCB-153 concentrations calculated by LOTOS-EUROS and SimpleBox for the period 1981-2000 agree well for the air and soil compartments. Moreover, the predicted concentrations of both models are in line with the measured PCB-153 concentrations in Europe during that period. For PCB-153, the prediction of spatial concentration variances with the nested multimedia fate model SimpleBox performs adequately in most cases, except for the lower concentration boundary in the air compartment. It is concluded that SimpleBox can be used to predict the spatial maximum and average concentrations of PCB-153 in the air and soil compartments. The proposed method has to be tested systematically for different types of compounds, emission scenarios, environmental compartments and spatial scales in order to allow conclusions about the general applicability of the method. 相似文献
4.
Development of continental scale multimedia contaminant fate models: integrating GIS 总被引:2,自引:1,他引:2
Woodfine DG MacLeod M Mackay D Brimacombe JR 《Environmental science and pollution research international》2001,8(3):164-172
The incentives and approaches for modelling chemical fate at a continental scale are discussed and reviewed. It is suggested that a multi-media model consisting of some 20-30 regions, each of which contains typically seven environmental compartments represents a reasonable compromise between the issues of the need for detailed resolution, avoidance of excessive data demands and inherent complexity and transparency. Strategies adopted in compiling the Berkley-Trent (BETR) model for North America are discussed and used to illustrate the issues of selecting appropriate number and nature of segments, treatment of air and water flows and the acquisition of environmental data. It is suggested that GIS software can play a valuable role in gathering and processing such data and in the display and interpretation of the results of the model assessment. The BETR model will be a useful tool for describing the nature of persistence and long-range transport of chemicals of concern in the North American environment. 相似文献
5.
A number of empirical (statistical, regression oriented) and mechanistic (process oriented) models are presently available to examine the relationship between air pollution stress and plant response. These models have their strengths and weaknesses. In all these models, a major concern is the numerical definition of the pollutant exposure kinetics (dose). At present there are no numerical definitions of dose which make satisfactory biological sense. A key issue is the existence of a biological time clock where plants respond differently to the pollutant stress at different stages of their growth. On the other hand, policy makers and regulatory personnel prefer a simple approach which would facilitate implementation and administration of ambient air quality standards. Long-term air pollutant averaging techniques create artifacts due to the non-normal distribution of ambient concentrations. A more appropriate approach may be the use of 'median' and 'percentiles' computed from short duration pollutant concentrations. Such an approach would be free of the influence of the non-normal distribution, but would require the development of appropriate exposure-response models. Any transfer of results from unit level models to regional level leads to 'scaling error'. There is no general agreement among researchers on how to deal with the scale problem. While this situation persists, any policy formulated on regional impact assessment must acknowledge the uncertainty. 相似文献
6.
A design of two simple models to predict PCDD/F concentrations in vegetation and soils 总被引:4,自引:0,他引:4
The vegetation and soil levels of the 17 polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/F) toxic congeners were calculated by means of a vegetation and a soil model, respectively. Both models predicted the levels of the 17 PCDD/F congeners in quite good agreement with the observed results although the soil model was more accurate than the vegetation model. Four different pathways of contribution to the vegetation concentrations were taken into account: vapour-phase absorption, dry particle deposition, wet particle deposition and uptake by root. The most important pathway was the vapour-phase absorption and the less was the uptake by root. In the soils model four pathways were considered: background soil concentration, dry particle deposition, wet particle deposition and uptake by root. After the background concentration, the most important pathway was the wet deposition. 相似文献
7.
The European critical levels (CLs) to protect vegetation are expressed as an accumulative exposure over a threshold of 40 ppb (nl l(-1)). In view of the fact that these chamber-derived CLs are based on ozone (O(3)) concentrations at the top of the canopy the correct application to ambient conditions presupposes the application of Soil-Vegetation-Atmosphere-Transfer (SVAT) models for quantifying trace gas exchange between phytosphere and atmosphere. Especially in the context of establishing control strategies based on flux-oriented dose-response relationships, O(3) flux measurements and O(3) exchange simulations are needed for representative ecosystems. During the last decades several micrometeorological methods for quantifying energy and trace gas exchange were developed, as well as models for the simulation of the exchange of trace gases between phytosphere and atmosphere near the ground. This paper is a synthesis of observational and modeling techniques which discusses measurement methods, assumptions, and limitations and current modeling approaches. Because stomatal resistance for trace gas exchange is parameterized as a function of water vapor or carbon dioxide (CO(2)) exchange, the most important micrometeorological techniques especially for quantifying O(3), water vapor and CO(2) flux densities are discussed. A comparison of simulated and measured O(3) flux densities shows good agreement in the mean. 相似文献
8.
Fenner K Scheringer M Hungerbühler K 《Environmental pollution (Barking, Essex : 1987)》2004,128(1-2):189-204
The hazard indicators persistence (P) and long-range transport potential (LRTP) are used in chemicals assessment to characterize chemicals with regard to the temporal and spatial extent of their environmental exposure. They are often calculated based on the results of multimedia fate models. The environmental and substance-specific input parameters of such models are subject to a range of methodological uncertainties and also influenced by natural variability. We employed probabilistic uncertainty analysis to quantify variance in P and LRTP predictions for chemicals with different partitioning and transport behavior. Variance found in the results is so large that it prevents a clear distinction between chemicals. Additionally, only small improvements are observed when evaluating the results relative to a benchmark chemical. This can be explained by the dominance of substance-specific parameters and the only small direct influence of environmental parameters on P and LRTP as model outcomes. The findings underline the importance of learning how environmental conditions cause variability in substance behavior for improved substance ranking and classification. 相似文献
9.
Virve Ravolainen Eeva M. Soininen Ingibjrg Svala Jnsdttir Isabell Eischeid Mads Forchhammer Ren van der Wal shild . Pedersen 《Ambio》2020,49(3):666-677
Vegetation change has consequences for terrestrial ecosystem structure and functioning and may involve climate feedbacks. Hence, when monitoring ecosystem states and changes thereof, the vegetation is often a primary monitoring target. Here, we summarize current understanding of vegetation change in the High Arctic—the World’s most rapidly warming region—in the context of ecosystem monitoring. To foster development of deployable monitoring strategies, we categorize different kinds of drivers (disturbances or stresses) of vegetation change either as pulse (i.e. drivers that occur as sudden and short events, though their effects may be long lasting) or press (i.e. drivers where change in conditions remains in place for a prolonged period, or slowly increases in pressure). To account for the great heterogeneity in vegetation responses to climate change and other drivers, we stress the need for increased use of ecosystem-specific conceptual models to guide monitoring and ecological studies in the Arctic. We discuss a conceptual model with three hypothesized alternative vegetation states characterized by mosses, herbaceous plants, and bare ground patches, respectively. We use moss-graminoid tundra of Svalbard as a case study to discuss the documented and potential impacts of different drivers on the possible transitions between those states. Our current understanding points to likely additive effects of herbivores and a warming climate, driving this ecosystem from a moss-dominated state with cool soils, shallow active layer and slow nutrient cycling to an ecosystem with warmer soil, deeper permafrost thaw, and faster nutrient cycling. Herbaceous-dominated vegetation and (patchy) bare ground would present two states in response to those drivers. Conceptual models are an operational tool to focus monitoring efforts towards management needs and identify the most pressing scientific questions. We promote greater use of conceptual models in conjunction with a state-and-transition framework in monitoring to ensure fit for purpose approaches. Defined expectations of the focal systems’ responses to different drivers also facilitate linking local and regional monitoring efforts to international initiatives, such as the Circumpolar Biodiversity Monitoring Program. 相似文献
10.
Critical levels for ozone effects on vegetation in Europe 总被引:36,自引:0,他引:36
The evidence of detrimental effects of ozone on vegetation in Europe, and the need to develop international control policies to reduce ozone exposures which are based on the effects of the pollutant, has led to attempts to define so-called critical levels of ozone above which adverse effects on trees, crops and natural vegetation may occur. This review is a critical assessment of the scientific basis of the concepts used to define critical levels for ozone and identifies the key limitations and uncertainties involved. The review focuses on the Level I critical level approach, which provides an environmental standard or threshold to minimise the effects of ozone on sensitive receptors, but does not seek to quantify the impacts of exceeding the critical level under field conditions. The concept of using the AOT (accumulated exposure over a threshold) to define long-term ozone exposure is demonstrated to be appropriate for several economically important species. The use of 40 ppb (giving the AOT40 index) as a threshold concentration gives a good linear fit to experimental data from open-top chambers for arable crops, but it is less certain that it provides the best fit to data for trees or semi-natural communities. Major uncertainties in defining critical level values relate to the choice of response parameter and species; the absence of data for many receptors, especially those of Mediterranean areas; and extrapolation to field conditions from relatively short-term open-top chamber experiments. The derivation of critical levels for long-lived organisms, such as forest trees, may require the use of modelling techniques based on physiological data from experimental studies. The exposure-response data which have been applied to derive critical levels should not be used to estimate the impacts of ozone over large areas, because of the uncertainties associated with extrapolation from the open-top chamber method, especially for forest trees, and because of spatial variation in atmospheric and environmental conditions, which may alter ozone uptake. 相似文献
11.
Air quality standards for fluoride vegetation effects 总被引:1,自引:0,他引:1
A C Hill 《Journal of the Air Pollution Control Association》1969,19(5):331-336
12.
The European Union System for Evaluation of Substances (EUSES) and the ChemCAN chemical fate model are applied to describe the fate of 68 chemicals on two spatial scales in Japan. Emission information on the chemicals has been obtained from Japan's Pollutant Release and Transfer Registry and available monitoring data gathered from government reports. Environmental concentrations calculated by the two models for the four primary environmental media of air, water, soil and sediment agree within a factor of 3 for over 70% of the data, and within a factor of 10 for over 87% of the data. Reasons for certain large discrepancies are discussed. Concentrations calculated by the models are generally consistent with the lower range of concentrations that are observed in the environment. Agreement between modeled and observed concentrations is considerably improved by including an estimate of the advective input of chemicals in air from outside Japan. The agreement between the EUSES and ChemCAN models suggests that results of individual chemical assessments are not likely to be significantly affected by the choice of chemical fate model. Primary sources of discrepancy between modeled and observed concentrations are believed to be uncertainties in emission rates, degradation half-lives, and the lack of data on advective inflow of contaminants in air. 相似文献
13.
14.
Liu G Cai Y Philippi T Kalla P Scheidt D Richards J Scinto L Appleby C 《Environmental pollution (Barking, Essex : 1987)》2008,153(2):257-265
We analyzed Hg species distribution patterns among ecosystem compartments in the Everglades at the landscape level in order to explore the implications of Hg distribution for Hg bioaccumulation and to investigate major biogeochemical processes that are pertinent to the observed Hg distribution patterns. At an Everglade-wide scale, THg concentrations were significantly increased in the following order: periphyton相似文献
15.
Karlsson PE Tang L Sundberg J Chen D Lindskog A Pleijel H 《Environmental pollution (Barking, Essex : 1987)》2007,150(1):96-106
Trends were found for increasing surface ozone concentrations during April-September in northern Sweden over the period 1990-2006 as well as for an earlier onset of vegetation growing season. The highest ozone concentrations in northern Sweden occurred in April and the ozone concentrations in April showed a strong increasing trend. A model simulation of ozone flux for Norway spruce indicated that the provisional ozone flux based critical level for forests in Europe is exceeded in northern Sweden. Future climate change would have counteracting effects on the stomatal conductance and needle ozone uptake, mediated on the one hand by direct effect of increasing air temperatures and on the other through increasing water vapour pressure difference between the needles and air. Thus, there is a substantial and increasing risk for negative impacts of ozone on vegetation in northern Sweden, related mainly to increasing ozone concentrations and an earlier onset of the growing season. 相似文献
16.
We analysed concentrations of Cu, Cd and Pb in above and belowground tissues of the halophyte species Halimione portulacoides and Spartina maritima, as well as in sediments and pore water between the roots in a Tagus estuary salt marsh (Portugal). From these results we calculated the pools of metals in the compartments mentioned above. Relative percentages of accumulation in each pool were also determined. Our aim was to determine how the type of vegetation in the salt marsh affects overall metal retention capacity of the system. It was concluded that areas colonised by H. portulacoides are potential sources of Cu, Cd and Pb to the marsh ecosystem, whereas areas colonised by S. maritima are more effective sinks at least for Cu and Cd. Consequently, S. maritima seems to contribute more effectively to the stabilisation of metals in salt marsh sediments, reducing their availability to the estuarine system. 相似文献
17.
We report on total mercury (THg) concentrations in the principal components of food webs of selected Northern Patagonia Andean Range ultraoligotrophic lakes, Argentina. The THg contents were determined using Instrumental Neutron Activation Analysis in muscle and liver of four fish species occupying the higher trophic positions (the introduced Salmo trutta, Oncorhynchus mykiss and Salvelinus fontinalis, and the native Percichthys trucha) accounted for eight lakes belonging to Nahuel Huapi and Los Alerces National Parks. We studied the food web components of both the West and East branches of Lake Moreno, including benthic primary producers such as biofilm, mosses, and macrophytes, three plankton fractions, fish, riparian tree leaves, and benthic invertebrates, namely decapods, molluscs, insect larvae, leeches, oligochaetes, and amphipods.Mercury concentrations in fish muscle varied in a wide range, from less than 0.05 to 4 μg g−1 dry weight (DW), without a distribution pattern among species but showing higher values for P. trucha and S. fontinalis, particularly in Lake Moreno.The THg contents of the food web components of Lake Moreno varied within 4 orders of magnitude, with the lower values ranging from 0.01 to 0.5 μg g−1 DW in tree leaves, some macrophytes, juvenile salmonids or benthic macroinvertebrates, and reaching concentrations over 200 μg g−1 DW in the plankton. Juvenile Galaxias maculatus caught in the pelagic area presented the highest THg contents of all fish sampled, reaching 10 μg g−1 DW, contents that could be associated with the high THg concentrations in plankton since it is their main food source. Although Lake Moreno is a system without local point sources of contamination, situated in a protected area, some benthic organisms presented high THg contents when compared with those from polluted ecosystems. 相似文献
18.
《Atmospheric environment(England)》1980,14(7):841-844
This paper describes a non-linear model for blood COHb fraction as a function of a subject's activity level, individual physiological parameters, and individual time-variable exposure to carbon monoxide. The computer solution of the model fits data on smokers and non-smokers. The simpler models of Ott and Mage (1978) and Venkatram and Louch (1979) are shown to have the correct form in low-stress environments, but the simpler models do not allow assessment of health effects for sensitive or high-risk subpopulations. Their postulated constant time-scale of 2.49 h may lead to substantial underestimation of COHb buildup. 相似文献
19.
This study concerns a chronic copper release in an aquatic ecosystem: Mirgenbach reservoir; which is characterized by high salinity, conductivity and hardness, a eutrophic state and a high temperature. To study the bioavailability of copper in the biotic compartments, the sampling covered the entire food chain (phyto- and zooplankton, macroalgae, aquatic plants, crustaceans, mollusks, and fish). Of the organisms present, the filter feeder Dreissena polymorpha, the detritivorous Bithynia tentaculata and Orconectes limosus were most contaminated by copper. The level of copper found in fish was the lowest. Body copper concentrations recorded in the present study show large variability between species even in some that are closely related. In most cases, however, the metal handling strategy, feeding habits, morphology and ecology can, at least partially, explain the metal content recorded. Pollution factors have been used to assess the state of contamination of the food chain. This study showed finally that the copper in the lake is bioavailable and bioaccumulated by organisms up to high levels and some effects of long-term toxicity of copper on benthic community and planktonic biomass were pointed out. 相似文献
20.
Annette Fliedner Heinz Rüdel Burkhard Knopf Karlheinz Weinfurtner Martin Paulus Mathias Ricking Jan Koschorreck 《Environmental science and pollution research international》2014,21(8):5521-5536
Cadmium, lead, mercury, copper, nickel, zinc, and arsenic were analyzed in suspended particulate matter (SPM), zebra mussels, and bream sampled yearly under the program of the German Environmental Specimen Bank (ESB) in the rivers Rhine, Elbe, Danube, Saar, Mulde, and Saale and in Lake Belau. Temporal and spatial trends were analyzed, correlations between metal levels in different specimen types assessed, and sampling sites ranked according to their metal levels by calculating a Multi-Metal Index (MMI) for every specimen type and site. SPM: Highest metal loads were detected in Mulde, Saale, and Elbe right downstream of the Saale confluence. In the Elbe, metal loads in SPM were mostly highest in the upper and middle section of the river while in Rhine and Saar concentrations increased downstream. Temporal trends since 2005 were detected only at three sites. Zebra mussel: MMIs were highest in the tidal section of the Elbe and the lower Rhine and lowest in Lake Belau and the upper Danube. Different temporal trends were detected since the early 1990s depending on site and metal. Bream: As, Pb, Cu, and Hg were analyzed in muscle tissue and Pb, Cd, Cu, and Zn in liver. For both tissues, MMIs were highest in Mulde and Saale and the lower and middle Elbe. Since the early 1990s, Hg, Pb, and Cu decreased in bream muscle at many sites while As increased at 6 of the 17 sites. The findings indicate that Hg, Pb, and Cu have obviously decreased in many freshwater ecosystems in recent years, whereas As and Ni levels have increased at several sites. Metal levels and temporal trends mostly differed between the specimen types under investigation and only few correlations between specimen types were detected. This underlines the importance of including different components of an ecosystem when assessing its environmental quality. 相似文献