首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We studied the effect of a developing Skeletonema marinoi/Phaeocystis spp. bloom on Calanus finmarchicus hatching success, early naupliar survival and metabolism. Our focus was (1) on the development of reproductive rates during a bloom initiation, peak and decline in relation to the production of potentially toxic algal metabolites and (2) on the proportional importance of female nutrition versus naupliar food environment for the production of viable nauplii. Despite polyunsaturated aldehyde (PUA) production by both S. marinoi and Phaeocystis sp., we did not observe any harmful effects on hatching success or naupliar survival and condition in any stages of the short-term (<1 week) algal bloom. Hatching success appeared to be controlled by egg lipid composition, while the beneficial effect of a high food concentration was reflected in naupliar RNA:DNA ratio, protein content and total production of viable nauplii. The egg lipids reflected seston lipids, indicating that the egg fatty acid composition was not modified by the females. Our results suggest that unselective feeding and/or retention of specific lipids can induce qualitative food limitation, although recruitment during the S. marinoi/Phaeocystis sp. bloom was high.  相似文献   

2.
In the flat fish Limanda limanda L., feeding rate and conversion efficiency were studied as functions of body weight, sex, temperature and food quality. When offered herring meat at 13 °C (series I), females (live weights 1 to 150 g) consume more food than males; the magnitude of this difference is body weight-dependent. With increasing wieght, both females and males consume less food per unit body weight per day. Variations in daily ration are considerable; the range of deviation from mean feeding rate is about 60% for males and 40% for females. The range of deviation does not vary significantly among females and males of different body weights. At the same temperature level (13 °C; series II), females consume almost the same, or even less, cod meat than males. Among individuals of series I and II, there is a little difference in the feeding rate; however, herring-fed individuals obtain about 2 times more energy than cod-fed individuals. Each gram wet weight of herring meat yields 2001, each gram cod meat 1137, calories. Small individuals completely cease to feed at 3°C; they feed little at 8 °C. Larger females consume maximum amounts at 8 °C. Small individuals consume maximum amounts at higher temperatures. Thus, with increasing body weight (age), the temperature for maximum feeding shifts downwards. Feeding with cod or herring meat results in considerable changes in composition and calorific content of L. Limanda. The magnitude of these changes depends both on temperature and food quality. Food conversion efficiency values of herring-fed individuals are about 1 1/2 times higher than of cod-fed individuals. In series I and II, females are more efficient converters than males. In individuals weighing more than 50 g, conversion efficiency decreases in the order: 8°, 13°, 18° C; in smaller individuals this order is 13°, 18°, 8 °C. Conversion rate is about 2 to 5 times faster in individuals fed herring meat than those receiving cod meat. Conversion rate decreases in the order 13°, 8°, 18 °C in males, and in the order 18°, 13°, 8 °C in females; females of more than 80 g are exceptional in that they reach the maximum at 8 °C. From the data on food intake and food conversion, the biologically useful energy available for metabolism has been calculated for each test individual kept at 13° and 18 °C. At these temperature levels, the weight exponents are about 0.6; the a value or metabolic level for the 18 °C series is about 2 times higher than that at 13 °C. Thus, temperature affects metabolic rate but not the exponential value. The exponential value for the body weight-metabolism relation at 13 °C is for dab fed herring meat 0.9; the a value amounts to about half that for dab fed cod meat. Food quality, unlike temperature, alters not only the exponential value but also metabolic rate.  相似文献   

3.
Egg production and development rates of Centropages typicus (Krøyer) were studied in the laboratory under carying food and temperature conditions. Egg production rates in the laboratory ranged from 0 to 124 eggs female-1 d-1 and increased with food concentration up to a critical food concentration (Pc) above which egg production was constant. Egg production rates were influenced by temperature, with more eggs being produced at 15°C than at 10°C. Thalassiosira weisflogii and Prorocentrum micans were determined to be equally capable of supporting egg production at concentrations above Pc at 15°C. Rate of egg production was independent of adult female size when food and temperature were constant. Egg production rates of freshly captured females ranged from 0 to 188 eggs female-1 d-1 and were higher in April and May than in June or July. Hatching rates of eggs increased with increased temperature; 95% of the eggs at 15°C hatched within 48 h, while only 8% of the eggs at 10°C hatched within 48 h. Development rates, determined at 10°C in excess concentrations of T. weisflogii, were 23.0 d from egg release to copepodid state I, 27.0 d to stage II, 29.5 d to stage III, 32.2 d to stage IV, 38.5 d to stage V and 49 d to adulthood based on the average time required for 50% of the organisms in an experiment to attain a given stage. Adult males were usually observed 2 to 4 d before adult females, and therefore have a slightly faster rate of development. The effects of temperature, food type and food concentration on egg production and the seasonal appearances of diatoms in the New York Bight may account for the observed seasonal cycles in abundance of C. typicus in these coastal waters.  相似文献   

4.
Eggs from laboratory spawnings of the coralreef fish Siganus randalli Woodland were incubated at two temperatures (27 and 30 °C). Eggs and larvae were sampled until larval starvation, while changes in oxygen consumption, growth, yolk utilization, and development were monitored. Oxygen consumption, which peaked at hatching, was higher for embryos incubated at 30 °C than at 27 °C. Rates of oxygen consumption (nl h-1 individual-1) at hatching were similar to those for other temperate and tropical species. Rates of oxygen consumption by yolk-sac larvae were highly variable, and these data suggest that larval oxygen consumption prior to yolk-sac absorption may not be significantly influenced by temperature. Rates of yolk depletion were higher for larvae at the higher temperature. After an initial rapid increase in length, length of larvae at 30 °C decreased with age. Egg size, egg weight, and maximum notochord length of larvae differed significantly between spawns. Age-specific oxygen consumption rates by the embryos varied between spawns, but regressions describing oxygen consumption as a function of age did not differ significantly. The initiation and completion of eye pigmentation were used as developmental markers to calculate the amount of yolk remaining for larvae at the different temperatures. Larvae maintained at 30 °C completed eye pigmentation approximately 3 h sooner than those maintained at 27 °C, but had less endogenous reserves. This finding indicates a trade-off between rapid development and efficient utilization of the endogenous reserves. The completion of eye pigmentation in larvae incubated at the higher temperature occurred at midnight and, depending on the amount of time that the larvae have to initiate feeding prior to the point-of-no-return, the timing of completion of eye pigmentation could influence larval survival.  相似文献   

5.
Temperature is one of the most critical environmental factors for fish ontogeny, affecting the developmental rate, survival and phenotypic plasticity in both a species- and stage-specific way. In the present paper we studied the egg and yolk-sac larval development of Pagellus erythrinus under different water temperature conditions, 15°C, 18°C and 21°C for the egg stage and 16°C, 18°C and 21°C for the yolk-sac larval stage. The temperature-independent thermal sum of development was estimated as 555.6 degree-hours above the threshold temperature (the temperature below which development is arrested), i.e. 7°C for the egg and 12.1°C for the yolk-sac larval stage. Higher hatching and survival rates occurred at 18–21°C. At the end of the yolk-sac larval stage, body morphometry differed significantly (p<0.05) between the temperatures tested. The growth rate of the total length increased as temperature rose from 16°C to 18°C, while in the range of 18–21°C it stabilized and was independent of water temperature. The estimated Gompertz growth curve for the yolk-sac larvae of P. erythrinus was (r2=0.992) for the 16°C, (r2=0.991) for the 18°C and (r2=0.981) for the 21°C treatment. The efficiency of vitelline utilization during the yolk-sac larval stage was higher at 18°C.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

6.
The effects of food availability, female size, and social interactions on the quality of Pomacentrus amboinensis larvae at hatching were examined using two field-based experiments. In Experiment 1, food availability and female size significantly influenced size, eye diameter and levels of yolk reserves of larvae at hatching. Small females (47 to 52 mm standard length, SL) whose diets were not supplemented, produced the longest larvae (3.0 ± 0.01 mm total length, TL) with the least yolk reserves (50.1 ± 1.04 μm2). Irrespective of female size, those that received additional food produced larvae with the largest yolk-sacs (large females: 87.60 ± 1.53 μm2; small females: 80.14 ± 1.24 μm2). In Experiment 2, interactions with conspecifics had a greater affect on the somatic development of larvae at hatching than food availability. Increased social interactions resulted in larvae that were ⋍3% longer, with 2% greater head depth, than larvae from females that spawned in isolation on the experimental reefs. Fed females produced larvae with ⋍20% more yolk than larvae from females whose diets were not supplemented. All three factors (food availability, female size, and intensity of social interactions) tested within these experiments vary spatially and temporally among reefs. There is the potential, therefore, for larvae at the onset of the planktonic stage to vary in quality, level of development, and probability of survival. Received: 12 August 1996 / Accepted: 26 August 1996  相似文献   

7.
Individual specimens of Euterpina acutifrons (Copepoda: Harpacticoida) taken from the mass cultures of the C.N.E.N.-EURATOM Laboratory at Fiascherino, Italy, were reared in new culture media prepared with suspensions of several species of algae in filtered and sterilized sea water. All the experiments were carried out at a temperature of 18°C±1 C°. The influence of food concentrations on adult life-span and reproductive activity of E. acutifrons was analyzed. A good correlation was found between concentration of algal suspension and egg production. Maximum life-span was observed at intermediate values of food concentration. Other experiments were carried out to determine egg fertility and duration of the various embryonic and postembryonic development stages. Embryonic development time was calculated as approximately 2 days; the adult females appeared 10 to 12 days after hatching of Nauplius I. Production of nauplii by 6 females reared under conditions of excess food supply was also studied. These conditions were achieved by supplying high concentrations of a mixture of 4 different algal species and by completely renewing the culture medium at frequent intervals. Under these conditions, each female laid an average of 12.5 sacs and produced an average of 294.3 nauplii. An average production of 355.5 eggs per female was estimated. An analysis was made of growth in size and weight of the females: the average daily egg production in terms of dry weight corresponded to about 32% of the biomass of the adult female. Birch's (1948) method was used to calculate net reproduction rate (R o=70.89), intrinsic rate of increase (r m=0.161) and mean generation time (T=26.5 days).This study was performed at: Laboratorio per lo Studio della Contaminazione Radioattiva del Mare, C.N.E.N.-EURATOM, Fiascherino, I-19030 La Spezia, Italy.  相似文献   

8.
The difference in morphology between zoeae of Cancer magister Dana from Alaskan and Californian waters was documented to determine if the morphological variation is attributable to environmental influences. First-stage zoeae from Alaska have significantly longer carapace spines than zoeae from central California. The dorsal, rostral and lateral carapace spines were 14, 14 and 29% longer, respectively, in the Alaskan zoeae. The effect of temperature was tested on zoeal morphology as it is an obvious environmental difference between Alaskan and Californian waters. Ovigerous female crabs collected in southeastern Alaska in 1984 were held at 1°, 5°, 10° and 15° C until hatching occurred. Eggs were sampled seven times during the incubation period, and relative mortality, egg diameter and development stage were measured. All of the crabs and eggs at 1° C died before hatching occurred. Egg mortality averaged less than 2% in the other temperature treatments. Egg diameter increased significantly over the incubation period for all temperatures. Developmental rate of the embryos was inversely related to temperature. Hatching first occurred in 42 d at 15° C, 60 at 10° C and 160 d at 5° C. Newly hatched zoeae were collected and body length, dorsal, rostral and lateral carapace spines were measured. Significant differences existed between all temperatures for all spine lengths, with longer spines occurring at lower temperatures. Zoeal body lengths were also significantly different between the three temperatures. The results of this study question the use of spine lengths to distinguish similar larval species.  相似文献   

9.
R. Gaudy  M. Pagano 《Marine Biology》1987,94(3):335-345
The reproduction of Eurytemora velox, a brackish copepod from temporary lakes of the south of France, was studied in winter and spring 1978, under various temperature and salinity conditions, using Chlorella sp. and Amphidinium sp. as food. Maximum numbers of successive eggs sacs (9), eggs per sac (39.3) and total egg production per female (311) were recorded for the witner generation, only 4.8, 34.8 and 109, respectively, for the spring generation. In contrast, the number of eggs per female per day was highest (11.3) in the spring generation, which displayed a more rapid reproductive cycle. Despite strong individual variations in the rhythm of egg sac production and in abundance of eggs per sac, egg production was generally higher during the first third of adult life, attaining a maximum after production of the second or the third egg sac. The continuous presence of the males was necessary to assure complete fertilization of eggs throughout the whole life of adult females. Hatching rate displayed high individual variability, in particular for the spring generation, which had lower average hatching rates (between 0 and 26%, depending on salinity or temperature) than the winter generation (14 to 64%). These differences may be related to the ability of E. velox to produce resting eggs during spring, allowing the species to maintain itself in a temporary water milieu. Temperature significantly affected longevity and daily egg production of females; presence or absence of males did not affect these parameters. An increase in salinity from 20 to 30%. reduced longevity, number of egg sacs, and daily egg production in the winter generation, but not in the spring generation. The specific daily production of females during their adult life was calculated from the egg production:biomass ratio of females, in carbon units. In the winter generation, this ratio increased between 10° and 15°C compared to ratios between 15° and 20°C; the opposite was observed for the spring generation. The seasonal differences in the effects of temperature and salinity on reproduction could indicate an adaptation mechanism to the strongly thermal and haline seasonal fluctuations which characterize the habitat of Ex. velox (brackish waters, drying-up in summer). Larval mortality was high, except at 20%. S for the spring generation. The sex-ratio of the offspring was unaffected by variations in breeding conditions. Hatching time and development time of larvae could be described by two Blehrádek equations displaying close b and () coefficients. We calculated the energy balance of adult females from data obtained in a previous study on feeding and respiration in E. velox, and this is discussed in context with the egg production results. Net growth efficiency varied with algal concentration according to an asymptotic curve, reaching a maximum of 0.43 with Tetraselmis maculata as food or 0.53 with Amphidinium sp. Actual egg production rate obtained in the present study was in good agreement with that calculated by the difference between assimilated food and respiration expenses.  相似文献   

10.
This paper provides basic early life-history information on milkfish (Chanos chanos), seabass (Lates calcarifer) and rabbitfish (Siganus guttatus) which may explain in part the observed differences in their survival performance in the hatchery. Egg size, larval size, amount of yolk and oil reserves and mouth size are all greater in milkfish than in seabass, and greater in the latter than in rabbitfish. During the first 24 h after hatching, rabbitfish larvae grow much faster than milkfish and seabass larvae at similar ambient temperatures (range 26°–30°C, mean about 28°C). The eyes become fully pigmented and the mouths open earlier in seabass and rabbitfish (32–36 h from hatching) than in milkfish (54 h). Seabass larvae learn to feed the earliest. Yolk is completely resorbed at 120 h from hatching in milkfish, and yolk plus oil at 120 h in seabass and 72 h in rabbitfish at 26° to 30°C. Milkfish and seabass larvae have more time than rabbitfish to initiate external feeding before the endogenous reserves are completely resorbed. Delayed feeding experiments showed that 50% of unfed milkfish larvae die at 78 h and all die at 150 h from hatching. Milkfish larvae fed within 54 to 78 h after hatching had improved survival times: 50% mortality occurred at 96 to 120 h, and 10 to 13% survived beyond 150 h. Unfed seabass larvae all died at 144 h, while 6 to 13% of those fed within 32 to 56 h after hatching survived beyond 144 h and well into the subsequent weeks. Unfed rabbitfish larvae all died at 88 h, while 7 to 12% of those fed within 32 to 56 h after hatching survived beyond 88 h. A delay in initial feeding of more than 24 h after eye pigmentation and opening of the mouth may be fatal for all three species.Contribution No. 167 from the SEAFDEC Aquaculture Department  相似文献   

11.
T. W. Snell 《Marine Biology》1986,92(2):157-162
The reproductive response of sexual and asexual female Brachionus plicatilis (Muller) was examined over temperatures ranging from 20° to 40°C, salinities from 5 to 40 S, and food levels from 0.25 to 20 g Chlorella vulgaris dry-weight per ml. Reduced food levels, as well as temperature and salinity extremes, reduced reproduction of both sexual and asexual females, but did so differentially. Reproduction by sexual females was reduced to a greater extent at environmental extremes than asexual females. The broad, flat reproductive response curve of asexual females extended beyond the limits of the narrower, more sharply peaked curve of sexual females. Thus zones of exclusively asexual reproduction exist at environmental extremes where sexual reproduction is physiologically restricted. These results are corroborated by a comparison of the lifetime fecundity of individual sexual and asexual females over a 20°C temperature range. No differences in lifetime fecundity occurred between sexual and asexual females at 18° and 28°C. At 38°C, however, asexual female fecundity reached its highest level, while sexual female fecundity declined 15%. The appearance of sexual females in rotifer populations in the result of both inducible and repressible factors.  相似文献   

12.
In some bird species, mothers can advantage the offspring of one sex either by elevating them in the laying order to promote earlier hatching or by allocating greater resources to eggs of the preferred sex. In size dimorphic species, the predictions as to which sex should benefit most from such pre-laying adjustments are ambiguous. The smaller sex would benefit from an initial size advantage to help compensate for the faster growth rate of the larger sex. However, an early advantage to offspring of the larger sex might have a greater effect on their lifetime reproductive success than an equivalent advantage to offspring of the smaller sex. We investigated these hypotheses in the polygynous brown songlark, Cinclorhamphus cruralis, which is one of the most sexually size dimorphic birds known. We conducted within-clutch comparisons and found that females hatched from larger eggs and were initially heavier (but not structurally larger) than their brothers. This may afford females an early competitive advantage, as egg volume remained correlated with chick mass until at least 5 days of age. Similarly, we found that hatch order was still positively associated with nestling mass and size when the brood was 10 days of age, but there was no clear relationship between offspring sex and hatching order. During this study, food was plentiful and there were few obvious cases of nestling starvation. When food is limited, we suggest that the greater nutrient reserves of female hatchlings could not only help compensate for their slower growth, but could also give them a survival advantage over their brothers early in the nestling period. Consequently, egg size dimorphism may be an adaptation that facilitates an early shift in brood sex-ratio towards cheaper daughters in conditions of low food availability.  相似文献   

13.
The berried females of the Caribbean king crab Mithrax spinosissimus (Lamarck) used in this study were collected from canals on Big Pine Key, Sugarloaf Key and Lower Matecumbe Key (south Florida, USA) on 9 August, 8 October and 15 November 1986. Viable spawns hatched as first zoeae and molted to second zoeae within ca. 10 to 12 h. Most of the larvae reached the megalopa stage 1 d later, and molted to first crab 4 to 8 d after hatching (water temperature: 27.2° to 28.8°C). Low water temperature and/or early lack of food had a negative effect not only on stage duration, but also on the size of the early crab stages. Successful molt to first crabs occurred, however, in the absence of food. The growth rate (carapace length) between molts in early crab stages varied between ca. 20 and 30%. When provided with good water exchange, stocking density could be very high (>22 500 individuals m-2), with no increase in mortality. The highest mortality rate was recorded when the larvae molted to first crab, and the highest rates of survival were always recorded when feeding was not initiated until after 5 to 8 d after hatching. No cannibalism was observed among larvae, and cannibalism was low in early crab stages. The study indicates that to achieve viable hatches and high larval survival in rearing M. spinosissimus, a continuous and adequate supply of high-quality seawater is a prerequisite both in larviculture and in maintaining brooding females.Contribution No. 93, Department of Oceanography and Ocean Engineering, Florida Institute of Technology  相似文献   

14.
Feeding by larvae of the sea bream Archosargus rhomboidalis (Linnaeus) was investigated from late September, 1972 to early May, 1973 using laboratory-reared larvae. Fertilized eggs were collected from plankton tows in Biscayne Bay, and the larvae were reared on zooplankton also collected in plankton nets. Techniques were developed to estimate feeding rate, food selection, gross growth efficiency, and daily ration. Daily estimates of these were obtained through 16 days after hatching at rearing temperatures of 23°, 26°, and 29°C. Feeding rate increased exponentially as the larvae grew, and increased as temperature was raised. At 23°C larvae began feeding on Day 3, at 26° and 29°C larvae began feeding on Day 2. Feeding rates at initiation of feeding and on Day 16 were, respectively: 23°C, 7.16 food organisms per larva per hour (flh) and 53.78 flh; 26°C, 7.90 flh and 168.80 flh; 29°C, 17.62 flh and 142.07 flh. Sea bream larvae selected food organisms by size. At initiation of feeding they selected organisms less than 100 m in width. As larvae grew they selected larger organisms and rejected smaller ones. The major food (more than85% of the organisms ingested) was copepod nauplii, copepodites, and copepod adults. Minor food items were barnacle nauplii, tintinnids, invertebrate eggs, and polychaete larvae. Mean values for gross growth efficiency of sea bream larvae ranged from 30.6% at 23°C to 23.9% at 29°C. Mean values for daily ration, expressed as a percentage of larval weight, ranged from 84% at 23°C to 151% at 29°C and tended to decline as the larvae grew.This paper is a contribution from the Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA  相似文献   

15.
B. Niehoff 《Marine Biology》2003,143(4):759-768
Gonad maturation processes were studied in Pseudocalanus spp. females from Georges Bank and Cape Cod Bay (northwest Atlantic) using a combination of morphological analysis and experiments. For light microscopy of the oocytes, females of different maturation stages were preserved immediately after capture. The maturation processes during the spawning cycle were described from observations of live females which were exposed to feeding and starvation at two temperatures, 8 and 15°C, for 12 days. The gonad morphology of these females was examined in 24 h intervals, and spawning events were recorded. Both light microscopy and whole animal observation revealed that oocytes during maturation change in shape and size, in the morphology of the nucleus, and in the appearance of the ooplasm. Due to these modifications of oocyte morphology and due to oocyte migration, the morphology of the gonads changed distinctly during a spawning cycle. Five oocyte development stages were identified by light microscopy and related to a macroscopic system of four gonad development stages, that can be applied to whole animals and allows the identification of females ready to spawn. The experiment showed that food and temperature had strong effects on gonad maturation processes. High proportions of mature females were found when food was available, whereas the proportion of immature females increased shortly after exposure to starvation. Compared to 15°C, gonad maturation at 8°C was prolonged and thus spawning frequency was lower. The final maturation processes at food saturated conditions were slower than the embryonic development, and no indication was found that mature oocytes are stored in the diverticula waiting to be released. The duration of the interspawning interval would thus be determined by the duration of final oocyte maturation which is dependent on both temperature and food supply.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

16.
Previous feeding studies on herbivorous marine snails rarely have focused on temperature effects on food intake. If temperature affects food intake, ectothermic snails may experience difficulty obtaining sufficient nutritional resources, limiting their ability to sustain populations at suboptimal temperatures. We hypothesized that the feeding responses of Tegula species would correspond with temperatures characteristic of their geographic distributions. We determined activity, consumption rates, and gut passage times at 11°C, 15°C, 19°C, and 23°C for three Tegula species with distinct thermal distributions: T. brunnea (cold water), T. aureotincta (warm water), and individuals from warm- and cold-water populations of T. funebralis, a broadly distributed species. Activity and consumption rates of T. aureotincta increased with increasing temperature, but were highest for T. brunnea at 19°C, a temperature rarely achieved in habitats occupied by this species, and lowest at 11°C. Warm-water T. funebralis showed significantly lower activity and consumption rates at 11°C, whereas cold-water T. funebralis consumed food fastest at 15°C and were most active at 23°C. Temperature affected gut passage time only in T. aureotincta. These data suggest that temperature might influence the northern limit of T. aureotincta by affecting activity and food consumption rates. T. brunneas activity and ability to consume food were not hindered by warmer temperatures despite the present day restriction of this species to colder waters. Also, widely separated (>300 km) T. funebralis populations may be adapted to regional conditions based on the different temperature responses of northern and southern snails.Communicated by P.W. Sammarco, Chauvin  相似文献   

17.
The use of the egg production rate of herbivorous copepods as an important parameter for understanding population dynamics and as an index of secondary production requires knowledge of the regulatory mechanisms involved and of the response to changes in food concentrations and temperature. Furthermore, the effects of season and generation on egg production have to be studied. In this context data are presented for Calanus finmarchicus from the northern North Atlantic. Prefed and prestarved females were exposed to different concentrations of the diatom Thalassiosira antarctica over 1 to 2 wk at 0 or 5 °C, and egg deposition was controlled daily. Egg production increased with higher food concentrations, but much less when prestarved. The effect of temperatures between −1.5 and 8 °C on egg production was studied in females maintained at optimum feeding conditions. Egg production rate increased exponentially over the whole temperature range by a factor of 5.2, from 14.2 to 73.4 eggs female−1 d−1, and carbon-specific egg production by 4, from 2.1 to 8.5% body C d−1. The response to starvation was also temperature dependent. In both the temperature and feeding experiments egg production rate was regulated mainly by changes of the spawning interval, while changes of clutch size were independent of experimental conditions. Different responses to optimum feeding conditions were observed in females collected in monthly intervals on three occasions between March and May. The March females deposited more clutches than the April and May females. In May, >50% of the females did not spawn at all. Maximum egg production rates were never >25% of the rate expected at 5 °C, indicating endogenous control of egg production in addition to food and temperature effects. Received: 4 August 1996 / Accepted: 11 September 1996  相似文献   

18.
Eggs from spring spawning stocks of herring (Clupea harengus L.) were fertilized and reared at either 5, 8 or 12°C in 1991 and 1992. The differentiation of myotomal muscle fibres was investigated in relation to the development of other organs and tissues using light and electron microscopy. The gut, notochord, eyes and haemocoel appeared at the same relative point in development between fertilization and hatching at all temperatures. In contrast, the formation of the spinal cord, pronephros, pectoral fin buds and muscle fibres was relatively retarded at 5°C compared with 8 and 12°C. Myogenesis in the presumptive inner muscle mass occurred after 12 to 16 d at 5°C, 7 to 10 d at 8°C and 3.5 to 6 d at 12°C. Myoblasts aligned in orderly rows running from myosept to myosept prior to fusion to form myotubes. Actin and myosin filaments were synthesised throughout the cytoplasm in associated with presumptive Z-lines at the periphery of myotubes and immature muscle fibres. Differentiation of the superficial and inner muscle fibres types of larvae occurred at around the same time. Following this initial period of myogenesis, the number of myotomal muscle fibres remained constant until after hatching, so that increases in muscle bulk in the late embryo were entirely due to fibre hypertrophy. At hatching, the number of superficial muscle fibres present in myotomes just posterior to the yolk-sac was significantly less at 5°C (108±12) than at either 8°C (132±10) or 12°C (140±10) (mean±SD, 12 fish/temperature). In contrast, there were around 280 inner muscle fibres/myotome, comprising 90% of the trunk cross-sectional area, at all three temperatures. Myofibrillargenesis occurred relatively slowly at low temperatures, so that the volume density of myofibrils in the inner muscle fibres of larvae at hatching was significantly less at 5°C (39.2±9.0) than at either 8°C (49.6±8.8) or 12°C (50.2±9.8) (mean ±SD, 20 fibres/temperature from total of 5 fish). Undifferentiated myoblasts remained at hatching to form a population of presumptive myosatellite cells. The number of presumptive myosatellite cells per mm2 cross-sectional area of muscle fibre was more than two times higher at 8°C (1493±335) than at either 5°C (478±102) or 12°C (924±233) (mean±SD, 5 fish/temperature). The results suggest that temperature can influence the commitment of myoblasts to differentiation at a critical stage in embryogenesis, thereby providing a potential mechanism for influencing future growth characteristics. Correspondence to: I.A. Johnston at Gatty Marine Laboratory  相似文献   

19.
Androgen hormones of maternal origin contained in the eggs of avian species are considered to have positive effects on offspring characteristics and performance. However, negative consequences have also been reported, suggesting that mothers may experience a trade-off between beneficial and detrimental effects of egg androgens to offspring fitness. We studied the effects of elevated yolk testosterone (T) concentration on survival, development and phenotype of male and female yellow-legged gull (Larus michahellis) chicks by injecting egg yolks with physiological doses of the hormone. Elevated yolk T resulted in a male-biased post-hatching sex ratio, T-treated clutches producing a greater proportion of males compared to control ones at day 4 post-hatching, likely resulting from a reduction of female embryonic survival, whereas no effect of hormone treatment on hatching success or short-term chick survival was observed. In addition, T depressed post-hatching body mass in both sexes but had no effects on the intensity of the cell-mediated immune response or skeletal growth. No sex differences in egg characteristics or chick phenotype were detected. Time to hatching was not affected by T, but females originating from first laid eggs hatched earlier than males of the same laying order, independently of hormone treatment. However, the implications of sex differences in hatching times are unclear in the study species. Taken together, our results suggest that female yellow-legged gulls may be constrained in transferring androgens to their eggs by negative consequences on the viability of female offspring and growth of chicks of the two sexes.  相似文献   

20.
Laboratory culture of 40 Octopus bimaculoides from April 1982 to August 1983 through the full life cycle at 18°C vs 23°C provided information on the growth, reproductive biology and life span of this California littoral octopus. At 18°C, the cephalopods grew from a hatchling size of 0.07 g to a mean of 619 g in 404 d; the largest individual was 872 g. Octopuses cultured at 23°C reached their highest mean weight of 597 g in 370 d; the largest individual grown at this temperature was 848 g after 404 d. Growth data revealed a two-phase growth pattern: a 5 mo exponential phase followed by a slower logarithmic (power function) phase until spawning. At 5 mo octopuses grown at 23°C were over three times larger than their 18°C siblings. However, beyond 6.5 mo, growth rates were no higher at 23°C than at 18°C. At 13.5 mo, the mean weight of the 18°C group surpassed that of the 23°C group. The slope of the length/weight (L/W) relationship was significantly different for the two temperature regimes, with the 23°C octopuses weighing 18% less than their 18°C siblings at a mantle length of 100 mm. Females weighed more than males at any given mantle length. Males grew slightly larger and matured before females. The L/W relationship indicated isometric body growth throughout the life cycle. Higher temperature accelerated all aspects of reproductive biology and shortened life span by as much as 20% (from approximately 16 to 13 mo). O. bimaculoides has one of the longest life cycles among species with large eggs and benthic hatchlings. Extrapolations to field growth are made, and the possible effects of temperature anomalies such as El Niño are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号