首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
崇明东滩芦苇湿地温室气体排放通量及其影响因素   总被引:1,自引:0,他引:1  
通过静态箱-气相色谱法对崇明东滩芦苇群落在生长周期内的3种温室气体——CH4、N2O和CO2的排放、吸收特征进行研究.结果表明:芦苇群落湿地CH4排放通量受温度影响较大,夏季排放通量明显高于其他季节,年均排放通量为74.46μg/(m2·h);N2O年均排放通量为2.22μg/(m2·h),冬季排放通量最大;CO2的吸收率季节变化明显,年均排放通量为-101.93mg/(m2·h).温度、芦苇植株光合作用及呼吸作用是影响CH4产生和排放的主要因素;而沉积物氮素不足和限制,则是促使芦苇群落表现出对N2O吸收的原因;芦苇的光合作用及土壤呼吸作用随温度和季节的变化是控制芦苇湿地CO2的排放和吸收的主要因素.芦苇植株发达的通气组织是CH4和N2O由大气向沉积物扩散的通道,同时分子扩散过程也是沉积物产生的CH4、N2O和CO2扩散到大气中的途径和方式.  相似文献   

2.
水库温室气体排放及其影响因素   总被引:4,自引:14,他引:4  
水库是温室气体的一个重要排放源.探讨水库温室气体排放及其影响因素有利于精确估算水库温室气体排放量、减少水利工程与水电开发过程中水库温室气体排放.本文阐述r水库中温室气体的产生机制.总结了水库温室气体的3个排放途径:水库自然排放、水轮机和溢洪道、大坝下游河流,从水库特征、气候、水体pH值、水库中植被状况等角度深入探讨了水库温室气体排放的影响因素.最后,重点分析了水库温室气体排放的空间异质性以及研究结果不确定性的产生根源,并对今后的研究重点进行了展望.  相似文献   

3.
长江口崇明东滩潮间带温室气体排放初步研究   总被引:5,自引:2,他引:5  
采用原位静态箱法对长江口崇明东滩(CM)湿地3种主要温室气体CO2,CH4和N2O的排放、吸收通量进行现场测定。结果表明,春季(5月)崇明东滩湿地是大气CH4的排放源。中潮滩暗箱(CM-2b)CH4的排放通量为394.22μg/m2.h,明箱(CM-2w)为492.58μg/m2.h;低潮滩暗箱(CM-3b)CH4的排放通量为84.89μg/m2.h,明箱(CM-3w)为76.16μg/m2.h,植被和有机质含量的不同是造成中、低潮滩CH4通量差异的主要因素。中潮滩春季草的光和作用可以降低CO2和N2O的排放,明箱内表现为对CO2(-67.45 mg/m2.h)和N2O(-21.79μg/m2.h)的吸收,同时呼吸作用增加了潮滩-大气界面CO2和N2O的排放(CO2,730.27 mg/m2.h;N2O,109.72μg/m2.h)。而低潮滩(CM-3)表现为CO2和N2O的汇,但吸收的通量值较小。  相似文献   

4.
利用静态箱-气相色谱法对夏季(7月、8月和9月)长江河口湿地芦苇植被CO_2、CH_4和N_2O的叶面通量、茎秆扩散速率以及沉积物通量的日变化进行研究。结果显示,通过芦苇叶片排放的N_2O与CH_4的量分别为2.99μg/(m~2·h)和15.36μg/(m~2·h),CO_2则呈现白天吸收(-120.86 mg/(m~2·h))、夜间排放(69.39 mg/(m~2·h))的特点。芦苇茎秆N_2O、CH_4和CO_2平均扩散速率分别为1.96μg/h、142.45μg/h和10.69 mg/h,沉积物平均排放通量为N_2O 8.18μg/(m~2·h)、CH_41.58 mg/(m~2·h)、CO_2169.66 mg/(m~2·h)。芦苇茎秆和沉积物界面CH_4和CO_2的排放均呈现出明显的"单峰型"昼夜变化规律,其排放峰值集中在日照及温度最高的9:00至15:00。芦苇植株是影响温室气体排放变化的因素之一。芦苇植株在光合作用下吸收CO_2并促进CH_4的排放,而芦苇发达的根系及茎秆是温室气体排放的主要途径。同时,Pearson相关性分析表明温度对芦苇群落CH_4和NO2的排放影响显著,但与CO_2通量的相关性不明显。土壤氧化还原电位对3种气体的排放均有显著影响。  相似文献   

5.
上海城市河流温室气体排放特征及其影响因素   总被引:2,自引:0,他引:2       下载免费PDF全文
为研究城区和郊区河流3种温室气体(N2O、CH4和CO2)排放通量的差异,分别于春季(2013年4月)、夏季(2013年7月)、秋季(2013年10月)和冬季(2014年1月),利用浮箱法和扩散模型法对上海市城区河流(苏州河)和郊区河流(淀浦河)的温室气体排放通量进行了观测;并探讨了人类活动干扰下环境因子对温室气体排放的影响. 结果表明:研究区内2条河流是温室气体的排放源,城区河流N2O和CH4的扩散排放通量和浮箱排放通量年均值均比郊区河流大1~2个量级, CO2两种排放通量在城郊区2条河流的年均值相当. 苏州河N2O、CO2和CH4扩散排放通量年均值分别为15.88、6 748.27和84.98 μmol/(m2·h);淀浦河分别为0.61、2 978.98和9.61 μmol/(m2·h). 苏州河N2O、CO2和CH4浮箱排放通量年均值为15.77、4 041.61和6 721.08 μmol/(m2·h);淀浦河为0.60、1 214.77和59.58 μmol/(m2·h). 城市河流呈现出高氮负荷及缺氧的特征,是影响中心城区河流N2O、CO2和CH4扩散排放通量偏高的重要因素. CH4浮箱排放通量和扩散排放通量的差异显示,城市河流中的富碳氮缺氧环境条件有利于随机气泡排放的发生,增强了温室气体的排放.   相似文献   

6.
崇明东滩芦苇湿地氧化亚氮排放   总被引:3,自引:0,他引:3  
李勇  刘敏  陆敏  侯立军  林啸 《环境科学学报》2010,30(12):2526-2534
采用静态箱-气相色谱法,研究了崇明东滩芦苇带氧化亚氮(N2O)的排放通量.结果表明,在生长季,高潮滩无植被覆盖沉积物与芦苇根际土中NO3--N的含量变化趋势基本一致,而两者的NH4+-N的含量变化趋势则有所不同;芦苇对高潮滩沉积物N2O排放有较强的促进作用,特别是7月份,使高潮滩沉积物的排放量由0.71μg·m-·2h-1增加到566.28μg·m-·2h-1.而在1月份,芦苇根际土N2O的通量也存在小幅排放,由-4.02mg·m-·2h-1增加到67.54μg·m-·2h-1.对于芦苇根际沉积物而言,除NO3--N、NH4+-N、温度和水分以外,植物的生理过程也是控制N2O排放通量的主要因子.  相似文献   

7.
盐城滨海湿地春季温室气体通量及影响因素   总被引:2,自引:0,他引:2  
通过在盐城滨海湿地进行植被调查、气体以及表层沉积物样品的采集与分析,探讨温室气体通量与植被状况、表层沉积物理化性质之间的关系。结果表明:不同植被覆盖下的滨海湿地,温室气体通量表现各异,其中CO2在滨海湿地5月份表现为碳源,且有植被覆盖的互花米草滩和芦苇滩的CO2排放通量明显大于无植被覆盖的光滩,盐蒿滩植被的盖度和密度较低,故排放也较低,光滩、互花米草滩、盐蒿滩以及芦苇滩CO2通量分别为26.99、865.2、100.87和1 942.03 mg(/m2.h);CH4在光滩,互花米草滩,盐蒿滩上则为弱汇,在芦苇滩为弱源,通量值分别为-0.13、-0.14、-0.02和0.55 mg(/m2.h);光滩和芦苇滩是N2O吸收汇,为-12.29,-56.83μg(/m2.h),互花米草滩和盐蒿滩为源,为18.56,25.64μg(/m2.h)。表层沉积物理化性质存在显著的空间差异:其中粒径与容重均是光滩最大,互花米草滩最小,盐蒿滩、芦苇滩居中;TN、TOC、微生物生物量C、微生物生物量N均是光滩最小,互花米草滩最大,盐蒿和芦苇居中;C/N为互花米草滩和芦苇滩较大,而光滩和盐蒿滩则较小。全盐分布表现为互花米草滩>盐蒿滩>光滩>芦苇滩。pH表现为:芦苇>光滩>盐蒿滩>互花米草滩。通过相关分析,回归分析以及主成分分析,得出CO2和CH4通量与箱温、1020 cm沉积物温度以及pH呈显著相关,而N2O则主要与pH、全盐、容重、微生物生物量N的相关性较大。  相似文献   

8.
草坪作为城市绿地的重要组成部分,其温室气体的吸收或排放不容忽视.然而当前对亚热带城市草坪温室气体通量的研究相对匮乏.采用静态箱-气相色谱法,对杭州市城区典型城市草坪的多种温室气体(CO2、CH4、N2O和CO)地气交换通量进行了连续观测研究.结果表明,城市草坪的温室气体月平均通量变化明显,而其日变化特征并不明显.城市草地和土壤(无植被生长的裸土)是大气N2O的源,平均通量分别为(0.66±0.17)μg·(m2·min)-1和(0.58±0.20)μg·(m2·min)-1;是CH4和CO的汇,其中CH4平均通量分别为(-0.21±0.078)μg·(m2·min)-1和(-0.26±0.10)μg·(m2·min)-1,CO分别为(-6.36±1.28)μg·(m2·min)-1和(-6.55±1.69)μg·(m2·min)-1.城市草地和土壤CO2平均通量分别为(5.28±0.75) mg·(m2·min)-1和(4.83±0.91) mg·(m2·min)-1.基于相关性分析研究发现,草地和土壤的CO2和N2O通量均与降水量呈显著的负相关,而CH4和CO通量与降水量呈显著的正相关;除草地CH4通量与土壤温度无显著相关、草地N2O通量与土壤温度呈显著负相关外,其余各温室气体通量与土壤温度均呈显著正相关.另外,城市草坪的草地和土壤CO2R2为0.371和0.314)和N2O (R2为0.371和0.284)通量季节变化受降水量的影响要大于其它温室气体,而土壤温度对CO通量的影响(R2为0.290和0.234)要显著于其它温室气体.  相似文献   

9.
基于规模化人工湿地工程——武河湿地的野外原位监测试验,采用静态箱-气相色谱法研究了人工湿地中温室气体(N2O、CH4和CO2)释放特征与规律. 结果表明,武河湿地工程的N2O和CH4平均释放通量分别为14.35和35.54 mg/(m2·d),表现为N2O、CH4的释放源,但其释放通量低于城市污水处理厂;湿地(主要包括水体和土壤生物呼吸)的CO2平均释放通量为2 889.4 mg/(m2·d). 人工湿地沿程N2O、CH4和CO2释放特征有所不同,平均释放通量呈先升后降规律,在布水渠处N2O释放通量最大,为51.92 mg/(m2·d);而6#溢流堰处CH4释放通量最大,为182.03 mg/(m2·d). 人工湿地中温室气体释放亦具有明显的季节变化规律,表现为春夏季高于秋冬季.   相似文献   

10.
以大型深水水电类水库潘家口水库为例,于2020年春季(5月)、夏季(8月)在研究区设置33个采样点,采用顶空平衡-气相色谱法和经验模型法对水柱温室气体浓度和水-气界面扩散通量进行了观测及估算,并分析了潘家口水库温室气体浓度及通量的主要影响因素.结果表明:春季潘家口水库水-气界面CH4、CO2、N2O平均通量分别为(1.11±1.60)μmol/(m2·h),(1333.31±546.43)μmol/(m2·h),(76.65±19.54)nmol/(m2·h).夏季潘家口水库水-气界面CH4、CO2、N2O平均通量分别为(0.62±1.13)μmol/(m2·h),(746.08±1152.44)μmol/(m2·h),(141.18±256.02)nmol/(m2·h).潘家口水库温室气体排放呈现出大的时空异质性,空间上春季和夏季各温室气体通量均表现为干流大于支流;季节上CH4与CO2扩散通量表现为春季大于夏季,而N2O扩散通量夏季大于春季.统计分析表明CH4扩散通量主要受电导率、风速等环境因子影响,CO2扩散通量受风速、pH及DOC影响,N2O扩散通量主要受水柱NO3--N、NO2--N的影响.  相似文献   

11.
香溪河库湾夏季温室气体通量及影响因素分析   总被引:8,自引:15,他引:8  
采用LGR-密闭式动态通量箱法对三峡水库香溪河库湾夏季水-气界面温室气体(CO2和CH4)通量进行了24 h连续观测.结果表明,观测点处水-气界面CO2和CH4的释放通量具有明显的日变化特征,且二者的日变化过程呈较强的负相关性.监测期间,CO2的吸收和释放过程明显,CH4全天均为释放状态,其全天平均通量分别为0.336 mg.(m2.h)-1和0.088mg.(m2.h)-1.分析发现,水-气界面碳通量与温度、pH、叶绿素a、气压、辐照强度的相关性明显,而Eh对碳通量的影响并不显著,其中,CO2与各环境因子的相关性较CH4更为密切.  相似文献   

12.
采用通量箱-气相色谱法对三峡水库香溪河库湾秋季水-气界面温室气体(CO2、CH4、N2O)交换通量进行了连续24 h昼夜观测.结果表明,水-气界面CO2、CH4、N2O的释放通量具有明显的日变化特征:水体除去下午17:00及凌晨05:00吸收CH4外,其余时刻均向外界大气排放CH4,且在凌晨01:00达到排放高峰.CO2和N2O通量的变化规律一致,两者全天均表现为向大气释放;且CO2和N2O通量的昼夜差异较大.CO2白天释放通量范围在20.1~97.5 mg.(m2.h)-1之间,夜间释放通量范围在32.7~42.5 mg.(m2.h)-1之间.N2O白天释放通量范围在18.4~133.7μg.(m2.h)-1之间,夜间释放通量范围在42.1~102.6μg.(m2.h)-1之间.通过相关性分析,秋季香溪河水-气界面CO2交换通量与风速呈显著正相关,与pH值显著负相关,与Chl-a有一定相关性;CH4交换通量与气压有一定的相关性;N2O交换通量与pH值显著正相关.  相似文献   

13.
太湖藻型湖区CH4、CO2排放特征及其影响因素分析   总被引:2,自引:3,他引:2  
为明确太湖藻型湖区温室气体CH_4、CO_2排放特征及其影响因素,本研究利用便携式温室气体分析仪改进的静态箱法,对太湖梅梁湾春、夏季的CH_4、CO_2通量进行观测,并分析其影响要素.主要结果为:观测地点春、夏季CH_4、CO_2通量具有明显日变化动态.春季,CH_4通量白天大于夜间,夏季夜间大于白天;春、夏季,CO_2吸收通量均白天大于夜间.梅梁湾藻型湖区春、夏季为CH_4源,且CH_4释放通量在夏季明显高于春季,春、夏季的平均通量分别为4.047 nmol·(m~2·s)~(-1)和40.779 nmol·(m~2·s)~(-1);该区域春、夏季为CO_2汇,且春季CO_2吸收大于夏季,春、夏季的平均通量分别为-0.160μmol·(m~2·s)~(-1)和-0.033μmol·(m~2·s)~(-1).在小时尺度上,CH_4释放通量与气温和水温呈显著正相关(r=0.20,P0.01;r=0.34,P0.01),当风速6 m·s-1时,与风速呈显著正相关(r=0.71,P0.01);CO_2吸收通量与气温和风速呈显著正相关(r=0.14,P0.01;r=0.33,P0.05),与气压和太阳辐射呈显著负相关(r=-0.41,P0.01;r=-0.35,P0.01);CO_2释放通量与风速呈显著正相关(r=0.40,P0.05),与太阳辐射呈显著负相关(r=-0.35,P0.01).在日尺度上,CH_4释放通量与水温和气温呈显著正相关(r=0.83,P0.01;r=0.78,P0.01).  相似文献   

14.
农业残留物燃烧温室气体排放清单研究:以江苏省为例   总被引:7,自引:2,他引:7  
刘丽华  蒋静艳  宗良纲 《环境科学》2011,32(5):1242-1248
通过问卷调查确定了江苏省农业残留物在不同时间阶段(1990~1995、1996~2000、2001~2005和2006~2008年)作为生活燃料和田间直接燃烧的比例,利用燃烧炉模拟秸秆燃烧试验确定了6种农业残留物(水稻、小麦、玉米、油菜、棉花和大豆)燃烧产生的CO2、CO、CH4和N2O的排放因子;基于此,结合江苏省不...  相似文献   

15.
崇明东滩湿地降水化学特征及来源解析   总被引:3,自引:4,他引:3       下载免费PDF全文
2009年5月~2010年4月收集了崇明东滩湿地降水,测定了样品的pH值、电导率和主要水溶性离子的浓度,并利用富集因子法和后向轨迹分析对降水中无机离子成分进行源解析.结果表明,崇明东滩整体空气质量良好,大气污染物浓度较低.降水的pH值和电导率的加权均值分别为5.24,17.49μS/cm,为轻度污染的弱酸性水平;SO42?和NO3?是主要的致酸离子,加权浓度分别为52.27,21.39μeq/L;NH4+和Ca2+是主要的碱性离子,加权浓度分别为33.36,27.13μeq/L;离子来源分析表明,Na+和Cl?主要来自于海洋,NH4+的中和作用大于Ca2+和Mg2+,大气颗粒物主要以(NH4)2SO4、NH4HSO4、NH4NO3的形式存在;后向轨迹分析表明降水主要受海洋风向影响,西北、西南方向和长江三角洲地区的人为污染物的中长尺度传输是造成崇明东滩酸雨的重要原因.  相似文献   

16.
重庆铁山坪森林土壤汞释放通量的影响因子研究   总被引:1,自引:1,他引:1  
王琼  罗遥  杜宝玉  叶芝祥  段雷 《环境科学》2014,35(5):1922-1927
对位于重庆铁山坪的马尾松林下的山地黄壤进行表层土壤(0~5 cm)的原状采集,并在实验室中进行控制实验,利用通量箱法测量原状土块表面的汞释放通量,以研究环境因子对土壤汞释放量的影响.结果表明,土壤汞释放量与辐射强度呈显著的正相关,在相同的空气温度和土壤含水量等条件下,土壤汞释放量在光下是遮阳条件下的3~9倍.不过,由于林下土壤常处于背阴状态,可能遮阳条件更能代表白天林下土壤汞的排放情况.土壤汞释放量存在明显的季节变化,夏季>春秋季>冬季,空气温度与土壤汞释放呈正相关.在低温下土壤汞释放量很低,土壤含水量影响较弱,而在高温时土壤含水量增加能明显促进土壤汞释放.枯落物的移除会显著降低土壤汞释放通量,主要原因可能是枯落物的汞含量较高并易于还原.土壤汞释放量在一天内也存在明显的衰减趋势,表明土壤表层的汞含量可能是森林土壤汞释放的重要限制因素.本研究测得森林土壤汞释放通量(白天)为:夏季(14.3±19.6)ng·(m2·h)-1、春秋季(3.50±5.36)ng·(m2·h)-1、冬季(1.48±3.27)ng·(m2·h)-1,以上稳态测试结果可能高估了实际的汞排放量.  相似文献   

17.
北京地区暖温带森林土壤温室气体排放规律   总被引:30,自引:0,他引:30  
本研究利用静态箱法在北京市东灵山暖温带森林生长期选择3种不同类型的森林(阔叶混交林、辽东栎林和油松林)的土壤进行了温室气体(CH4、CO2和N2O)排放规律的野外原位观测.研究结果表明:暖温带主要代表森林类型的土壤作为CH4的汇吸收大气中的CH4,同时作为CO2和N2O的源向大气排放.观测结果显示:不同的森林土壤类型其温室气体排放通量、范围各不相同,阔叶混交林土壤CH4、CO2和N2O通量范围分别是:42~103μg/(m2·h),15~344mg/(m2·h)和-61~101μg/(m2·h);辽东栎林土壤3种气体通量范围分别是:13~182 μg/(m2·h),23~380mg/(m2·h)和-15~183 μg/(m2·h);油松林土壤3种气体通量范围分别是:12~128 μg/(m2·h),15~292mg/(m2·h) 和 -94~153 μg/(m2·h).观测期内阔叶混交林土壤CH4、CO2和N2O平均通量分别是:-66 μg/(m2·h),145mg/(m2·h)和22 μg/(m2·h);辽东栎林土壤3种气体平均通量分别是:-67 μg/(m2·h),146mg/(m2·h)和45μg/(m2·h);油松林土壤3种气体平均通量分别是:-79 μg/(m2·h),150mg/(m2·h)和31μg/(m2·h).本研究估算了不同类型的森林土壤不同的温室气体生长期内的排放总量,阔叶混交林土壤CH4、CO2和N2O排放总量分别是:-5.34kg/(hm2·a),13.9Mg/(hm2·a) 和2.58kg/(hm2·a); 辽东栎林土壤3种气体排放总量分别是:-6.20kg/(hm2·a), 14.07Mg/(hm2·a)和4.19kg/(hm2·a); 油松林土壤3种气体排放总量分别是-6.85kg/(hm2·a), 15.71Mg/(hm2·a)和4.30kg/(hm2·a).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号