首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 363 毫秒
1.
This study characterises the sediment dredged from a lagooning system composed of a settling pond and three lagoons that receive leachates from a municipal solid waste (MSW) landfill in France. Organic carbon, carbonate, iron oxyhydroxides, copper (Cu) and zinc (Zn) concentrations were measured in the sediment collected from upstream to downstream in the lagooning system. In order to complete our investigation of sedimentation mechanisms, leachates were sampled in both dry (spring) and wet (winter) seasonal conditions. Precipitation of calcite and amorphous Fe-oxyhydroxides and sedimentation of organic matter occurred in the settling pond. Since different distributions of Zn and Cu concentrations are measured in sediment samples collected downstream in the lagooning system, it is suggested that these elements were not distributed in a similar way in the leachate fractions during the first stage of treatment in the settling pond, so that their sedimentation dynamics in the lagooning system differ. In the lagoons, it was found that organic carbon plays a major role in Cu and Zn mobility and trapping. The presence of macrophytes along the edges provided an input of organic matter that enhanced Cu and Zn scavenging. This edge effect resulted in a two-fold increase in Cu and Zn concentrations in the sediment deposited near the banks of the lagoons, thus confirming the importance of vegetation for the retention of Cu and Zn in lagooning systems.  相似文献   

2.
Dredging operations are necessary to maintain harbour activities, to prevent floods, and to restore ecosystem. These sediments after dredging are considered as waste, and their management is a complex problem. In the context of sustainable development, traditional solutions, such as dumping, will be more and more regulated. More than ever with the shortage of aggregates from quarries, dredged sediment could constitute a new granular material source for Civil Engineering domain. The principal objective of this works is to use dredged river sediments in the road construction. This study consists to determine the physical–chemical, geotechnical, and environmental impact characteristics of raw river sediments. To improve the mechanical performance of this river material be used in road construction, a treatment by the hydraulic binder in combination with granular corrector has been proposed. The impacts of the treated material on the environment have been evaluated. The last part of this study focuses on the realization of an experimental road with the designed mixes in the laboratory. The validation of mechanical characteristics and the study of the environmental impacts have been made on core samples from the experimental road. The monitoring of the quality of the percolating water and runoff water has been explored. The obtained results in laboratory and in situ are promising for potential use of river sediments in foundation layer of the road construction.  相似文献   

3.
A benthic in situ flume and a 1D biogeochemical sediment model to evaluate solute fluxes across the sediment–water interface have been developed. The flume was successfully used to determine oxygen and nutrient fluxes at various locations of the Neckar River in Germany. The experimental results were linked with vertical pore water concentration profiles and independently verified with the model. By combining experimental and model results we assessed the influence of dissolved oxygen concentrations in the water column and the availability of degradable organic matter on sediment oxygen demand. The results and the derived relations can be used to parameterize the sediment module of large scale water quality models, allowing one to assess the influence of sediment–water interactions on various aspects of river water quality. Moreover, the biogeochemical sediment model can help to improve the general understanding of the processes governing solute concentrations and fluxes in sediments and across their interfaces.  相似文献   

4.
The potential colloids release from a large panel of 25 solid industrial and municipal waste leachates, contaminated soil, contaminated sediments and landfill leachates was studied. Standardized leaching, cascade filtrations and measurement of element concentrations in the microfiltrate (MF) and ultrafiltrate (UF) fraction were used to easily detect colloids potentially released by waste. Precautions against CO2 capture by alkaline leachates, or bacterial re-growth in leachates from wastes containing organic matter should be taken. Most of the colloidal particles were visible by transmission electron microscopy with energy dispersion spectrometry (TEM–EDS) if their elemental MF concentration is greater than 200 μg l?1. If the samples are dried during the preparation for microscopy, neoformation of particles can occur from the soluble part of the element. Size distribution analysis measured by photon correlation spectroscopy (PCS) were frequently unvalid, particularly due to polydispersity and/or too low concentrations in the leachates. A low sensitivity device is required, and further improvement is desirable in that field. For some waste leachates, particles had a zeta potential strong enough to remain in suspension. Mn, As, Co, Pb, Sn, Zn had always a colloidal form (MF concentration/UF concentration > 1.5) and total organic carbon (TOC), Fe, P, Ba, Cr, Cu, Ni are partly colloidal for more than half of the samples). Nearly all the micro-pollutants (As, Ba, Co, Cr, Cu, Mo, Ni, Pb, Sb, Sn, V and Zn) were found at least once in colloidal form greater than 100 μg l?1. In particular, the colloidal forms of Zn were always by far more concentrated than its dissolved form. The TEM–EDS method showed various particles, including manufactured nanoparticles (organic polymer, TiO2, particles with Sr, La, Ce, Nd). All the waste had at least one element detected as colloidal. The solid waste leachates contained significant amount of colloids different in elemental composition from natural ones. The majority of the elements were in colloidal form for wastes of packaging (3), a steel slag, a sludge from hydrometallurgy, composts (2), a dredged sediment (#18), an As contaminated soil and two active landfill leachates.These results showed that cascade filtration and ICP elemental analysis seems valid methods in this field, and that electronic microscopy with elemental detection allows to identify particles. Particles can be formed from dissolved elements during TEM sample preparation and cross-checking with MF and UF composition by ICP is useful. The colloidal fraction of leachate of waste seems to be a significant source term, and should be taken into account in studies of emission and transfer of contaminants in the environment. Standardized cross-filtration method could be amended for the presence of colloids in waste leachates.  相似文献   

5.
Marine dredged sediments as new materials resource for road construction   总被引:3,自引:0,他引:3  
Large volumes of sediments are dredged each year in Europe in order to maintain harbour activities. With the new European Union directives, harbour managers are encouraged to find environmentally sound solutions for these materials. This paper investigates the potential uses of Dunkirk marine dredged sediment as a new material resource for road building. The mineralogical composition of sediments is evaluated using X-ray diffraction and microscopy analysis. Since sediments contain a high amount of water, a dewatering treatment has been used. Different suitable mixtures, checking specific geotechnical criteria as required in French standards, are identified. The mixtures are then optimized for an economical reuse. The mechanical tests conducted on these mixtures are compaction, bearing capacity, compression and tensile tests. The experimental results show the feasibility of the beneficial use of Dunkirk marine dredged sand and sediments as a new material for the construction of foundation and base layers for roads. Further research is now needed to prove the resistance of this new material to various environmental impacts (e.g., frost damage).  相似文献   

6.
Obtaining lines of evidence indicating that contamination in sediment environments is degrading and being transformed to less toxic forms is an important component of building support for a monitored natural recovery remedy for contaminated sediments. This project was a field demonstration of manufactured gas plant contaminant degradation in river sediments using metabolic gas flux and was performed in an urban area section of a river in northeastern Indiana. CO2 sorbent traps were deployed to measure CO2 flux from the river sediments. Sediment samples were collected and analyzed for polycyclic aromatic hydrocarbon (PAH) concentrations and for microbial community composition using molecular techniques. The results showed that the deployment was successful, measuring CO2 flux at all sediment locations and demonstrating that microbial contaminant degrading activity was occurring in the sediments. Radio carbon dating showed a significant portion of the CO2 being generated (approximately 19–27 percent) was the result of fossil fuel degradation. Molecular results showed that the microbial community consisted of phylotypes known to be associated with monocyclic aromatic and PAH degradation. ©2017 Wiley Periodicals, Inc.  相似文献   

7.
A 50 ha known contaminated site in Bayonne, New Jersey, U.S.A. is permitted to receive up to 3 × 106 m3 of sediment dredged from navigation channels in the New York/New Jersey Harbor. Much of the sediment is expected to contain low to moderate concentrations of industrial and agricultural chemicals, including Polychlorinated Biphenyls (PCBs). The dredged material brought to the site is stabilized with cement and then placed as a capping and grading layer. The flux of PCBs from drying stabilized dredged material has been estimated from measurements of PCB air concentrations at two heights above the ground along with micrometeorological observations. A statistically significant gradient in PCB concentrations has been consistently measured in the first 3 m above the ground. Observed PCB fluxes were highest over freshly placed stabilized dredged sediment and decreased as it cured. The highest flux observed in this study was 7214 ng/m2/h, but during subsequent sampling intervals at the same site, the flux estimates decreased by an order of magnitude over a 5-day interval.  相似文献   

8.
A volume of 600.000 m3 harbour sediments is annually dredged out of the harbour basin of Bremen to maintain a certain water depth. Because of its perpetual availability, homogeneity and mineralogical, petrographic and chemical composition, the sediment is regarded as a suitable raw material for brick production. A pilot experiment was conducted at a full-scale industrial brickworks. During production, the environmental standards concerning waste-water treatment and the quality of exhausted gas were sufficiently fulfilled. Bricks specified as "building bricks" were produced according to German industrial standards. The parameters pH-value and grain size were varied in leaching tests performed on the bricks as both parameters are likely to change in the course of the brick's life cycle. The leaching data showed that As was stabilised and heavy metals were immobilised in a way that the bricks were not (hazardous to soil or groundwater) neither by their use, for example, in masonry, nor afterwards, when they will be deposited as mineral demolition mass.  相似文献   

9.
The use of marine sediments as a pavement base material   总被引:1,自引:0,他引:1  
The management of marine sediments after dredging has become increasingly complex. In the context of sustainable development, traditional solutions such as immersion will be increasingly regulated. More than ever, with the shortage of aggregates from quarries, dredged material could constitute a new source of materials. In this study of the potential of using dredged marine sediments in road construction, the first objective is to determine the physical and mechanical characteristics of fine sediments dredged from a harbour in the north of France. The impacts of these materials on the environment are also explored. In the second stage, the characteristics of the fine sediment are enhanced for use as a road material. At this stage, the treatment used is compatible with industrial constraints. To decrease the water content of the fine sediments, natural decantation is employed; in addition, dredged sand is added to enhance the granular distribution and to reinforce the granular skeleton. Finally, the characteristics of the mix are enhanced by incorporating binders (cement and/or lime). The mechanical characteristics measured on the mixes are compatible with their use as a base course material. Moreover, the obtained results demonstrate the effectiveness of lime in the mixes. In terms of environmental impacts, on the basis of leaching tests and according to available thresholds developed for the use of municipal solid waste incineration (MSWI) bottom ash in road construction, the designed dredged mixes satisfy the prescribed thresholds.  相似文献   

10.
Sediment dredge disposal options were reviewed to improve cost‐effectiveness and environmental safety for dredging of coastal sediments at the Department of Fisheries and Oceans Small Craft Harbours (DFO‐SCH) program in Canada. Historically, contaminated dredge sediments exceeding federal guidelines were disposed of in nearby landfills. Recent federal regulatory changes in sediment quality guidelines adopted by provincial regulators in Canada has resulted in updates to guidelines for disposal of contaminated solids in landfills. Updates now require specific and general disposal options for contaminated dredge material destined for land‐based disposal, resulting in more expensive disposal in containment cells (if contaminated sediments exceed federal guidelines). However, as part of this study, a leachate testing method was applied to contaminated sediments to simulate migration of potential contaminants in groundwater. Using this approach, leachate quality was compared to federal freshwater criteria and drinking water quality guidelines for compliance with new regulations. Leachate testing performed on the highest sediment contaminant concentrations triggered less than 2 percent potable water exceedances, meaning that most dredge spoils could be disposed of in privately owned or provincially operated landfill sites, providing less expensive disposal options compared to containment cell disposal. Current dredge disposal practices were reviewed at 35 harbor sites across Nova Scotia and their limitations identified in a gap analysis. Improved site management was developed following this review and consultation with interested marine stakeholders. New disposal options and chemical analyses were proposed, along with improvements to cost efficiencies for management of dredged marine sediments in Atlantic Canada. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
The aim of this study was to provide a comprehensive risk assessment for medical waste incineration fly ash from another aspect through various leaching methods. The differences and connections between leaching concentrations achieved via the toxicity characteristic leaching procedure (TCLP), the physiologically based extraction test (PBET) and the sequential extraction procedure were also described. Heavy metal contents of the used medical waste incineration fly ash were 1.7–31 times higher than that from Japan, indicating poor medical waste management in China. The fly ash leaching concentration in the TCLP test exceeded the regulation value and can be characterized as hazardous waste under current regulations. However, the PBET concentrations were only 1/10 of the TCLP value or even lower, and the calculated ingested contents of all heavy metals were lower than tolerable daily intake, demonstrating that TCLP might have overestimated the environment risk to some degree. The leaching metal content of TCLP ranged from exchangeable to residual forms, and the leaching percentage varied from 7.75 to 92.55 %, while the content for PBET was equal to or lower than the exchangeable form.  相似文献   

12.
The sediment associated with the reconstruction of a bridge pier was classifiable as hazardous by the Toxicity Characteristic Leaching Procedure (TCLP), due to elevated concentrations of lead. However, RCRA regulations do not classify the sediment as hazardous unless it is moved. RMT designed an in-situ, underwater treatment process to render the sediment nonhazardous, using phosphate-based chemistry before dredging. Subsequent sediment management was conducted without the additional regulatory requirements and costs associated with managing hazardous waste.  相似文献   

13.
Demolition wastes may be used in different civil engineering applications as road constructions, concrete, and embankments or landfill. Regardless its application, leaching tests of the waste should be carried out to assess concentrations of pollutants. Concrete, brick and mixture of concrete, bricks, tiles and ceramics wastes were subject to percolation test—CEN/TS 14405, and batch test—SR EN 12457. The leachates were analyzed with respect to concentration of inorganic elements—arsenic, barium, cadmium, chromium, copper, mercury, molybdenum, nickel, lead, selenium, zinc, fluoride, chloride and sulfate, and organic compounds (phenol index). The concentrations of elements in leachates were compared with the limit values of European regulation for the acceptance of inert wastes at landfills. Generally, the releases of inorganic species in leachates were below limits values. Some waste leachates obtained by percolation and batch test had high values for phenol index.  相似文献   

14.
Changes in the toxicity levels of beach sediment, nearshore water, and bottom sediment samples were monitored with the Microtox® Test to evaluate the two in situ oil spill treatment options of natural attenuation (natural recovery--no treatment) and sediment relocation (surf washing). During a series of field trials, IF-30 fuel oil was intentionally sprayed onto the surface of three mixed sediment (pebble and sand) beaches on the island of Spitsbergen, Svalbard, Norway (78°56 N, 16°45 E). At a low wave-energy site (Site 1 with a 3-km wind fetch), where oil was stranded within the zone of normal wave action, residual oil concentrations and beach sediment toxicity levels were significantly reduced by both options in less than five days. At Site 3, a higher wave-energy site with a 40-km wind fetch, oil was intentionally stranded on the beach face in the upper intertidal/supratidal zones, above the level of normal wave activity. At this site under these experimental conditions, sediment relocation was effective in accelerating the removal of the oil from the sediments and reducing the Microtox® Test toxicity response to background levels. In the untreated (natural attenuation) plot at this site, the fraction of residual oil remaining within the beach sediments after one year (70%) continued to generate a toxic response. Chemical and toxicological analyses of nearshore sediment and sediment-trap samples at both sites confirmed that oil and suspended mineral fines were effectively dispersed into the surrounding environment by the in situ treatments. In terms of secondary potential detrimental effects from the release of stranded oil from the beaches, the toxicity level (Microtox® Test) of adjacent nearshore sediment samples did not exceed the Canadian regulatory limit for dredged spoils destined for ocean disposal.  相似文献   

15.
A preliminary laboratory study was conducted to investigate the impact of different residual types and sediment surface roughness on copper contaminant fluxes to the water column. Sediments from Torch Lake, Michigan served as the test samples. These sediments are mining by‐products with elevated Cu levels. Six experiments were run during which the sediments were conditioned to simulate different forms of residuals. During these experiments, the water column above the sediments was circulated via peristaltic pumping or orbital shaking and the total and dissolved Cu levels were monitored periodically for 15 days. Dissolved Cu levels indicated that during the first 48 hr the water column concentrations approached equilibrium for all six cases. Total Cu levels increased with time and did reach equilibrium but were more susceptible to fluctuations in water column suspended solids levels. Analysis of the resulting dissolved Cu data indicated that the resulting water column Cu concentrations differed with sediment surface and residual type. The highest dissolved Cu water column concentrations were observed for a roughened surface with a larger surface area. The lowest water column dissolved Cu levels were observed for the case with sediment slurry placed over clean sand. The dissolved Cu levels in the water column for all six simulated conditions were several orders higher than the USEPA ambient water quality criteria for protection of aquatic life. © 2014 Wiley Periodicals, Inc.*  相似文献   

16.
Composting was applied as a bioremediation methodology for the reclamation of dredged sediments of Isnapur, Khazipally and Gandigudem lakes polluted with industrial wastes. The present study is an attempt to elaborate upon organic matter transformations and define the parameters for product maturity adapting chemical and spectroscopic methods during composting. The stability and maturity of sediments were evaluated by assessing parameters like C/N ratio, nitrification index (NH(4)-N/NO(3)-N), water-soluble organic carbon concentration, CO(2) evolution rate, cation exchange capacity and indices such as humification index, E4/E6 ratio, compost mineralization index (ash content/oxidizable carbon), germination index, dehydrogenase, polyphenoloxidase activities and FTIR spectroscopy. The results showed that the changes in the above chemical and biological parameters can be employed as reliable indicators of stability and maturity. The FTIR spectra revealed enrichment in the aromatic groups and a degradation of the aliphatic groups indicating stabilization of the final compost.  相似文献   

17.
Cohesive sediments besides their typical heterogeneity are characterised by structural discontinuity. Particularly, organic consolidated muds are a good example of sediments that consist of vast aggregates, pore water and gaseous products. The texture of a cohesive sediment bed is a result of a number of mutually affecting factors, such as deposition history, mineral and organic composition, kind of biota and oxygen uptake. The presented work attempts to quantify the effect of sediment physical properties and sediments structure on the sediment erosion potential, considering incipient motion and erosion rate. This quantification is made on the basis of comparative testing of both unremoulded and remoulded samples of a river mud. Due attention is paid to sediment handling to preserve the delicate structure of the sediment for the laboratory experiments. Mud with two degrees of consolidation has been examined in a tilting flume under different flow situations. The test results show a typical increase of erosion strength with dry matter concentration of the mud. It has also been found that the structural properties increase the erosion strength for the less consolidated mud. An opposite effect has been recorded for a more consolidated deposit. As a consequence, due to the sediment structure, the original beds differ much less in erosion resistance in relation to the dry mass concentration than their disturbed analogues. Finally, the erosion resistance of the examined mud is compared with data from the literature.  相似文献   

18.
As a result of nuclear processing activities started back in the 1950s, the environment in the vicinity of the Y‐12 National Security Complex (Y‐12 NSC) in Oak Ridge, Tennessee, and surrounding watersheds has been contaminated by nearly 1,000 tons of elementary mercury. To comply with the state and federal surface water quality standards, a significant reduction in mercury concentration to parts‐per‐trillion levels has been proposed. In order to analyze the mercury cycle in the environment and provide forecasting capabilities for the flow and transport of mercury within the Upper East Fork Poplar Creek (UEFPC) watershed, an integrated surface and subsurface flow and transport model has been developed using the hydrodynamic and transport numerical package, MIKE, developed by the Danish Hydraulic Institute. The model has been constructed and calibrated using an extensive collection of historical records (i.e., hydrological data, and mercury concentration measurements in groundwater, soil, and sediment) obtained from the Oak Ridge Environmental Information System database. Daily fluctuations in stream flow, as a result of scattered rainfall, flooding, and flow augmentation, resuspend the contaminated streambed sediments and/or erode the polluted streambank soil and provide a secondary source of mercury to the creek. In order to investigate the significance of sediment‐mercury interactions on the fate and transport of mercury within the UEFPC study domain, simulations were performed for two different cases (i.e., with and without consideration of sediment‐mercury interactions). Computed total suspended solids and mercury concentrations at the integration point of the creek are compared with the corresponding historical records in both cases. As confirmed by the numerical simulations, a substantial portion of the mercury detected in the river is likely in the form of sediment particle–bound mercury (i.e., mercury particulates). © 2012 Wiley Periodicals, Inc.  相似文献   

19.
There are important functional relationships between river basins and coastal areas and one may influence the other. The two systems are linked through natural processes (water flow, sediment transport, energy) and human activities (urban development, rural activities, technical infrastructures, waste and pollution). Coastal areas are extremely valuable as they concentrate a rich diversity of natural habitat areas and a large variety of natural resources. River basins are also important areas from the point of view of natural ecosystems particularly on the basis of the presence of water and its support for the flora and fauna in the area. Coastal areas and river basin, at the same time provide opportunities for development of a wide range of human activities. The coastal zone is an essential part of a river basin. Both, river basin and coastal problems require a multi-sectoral approach. In some cases the two systems require a common framework of management. The goals, general objectives and principles of integrated river basin and coastal zone management are discussed.  相似文献   

20.
A decision analysis based model (DAPS 1.0, Decision Analysis of Polluted Sites) has been developed to evaluate risks that polluted sites might pose to human health. Pollutants present in soils and sediments can potentially migrate from source to receptor(s), via different pathways. In the developed model, pathways are simulated via transport models (i.e. groundwater transport model, runoff-erosion model, air diffusion model, and sediment diffusion, and resuspension model in water bodies). Humans can be affected by pollutant migration through land and water use. Health risks can arise from ingestion of and dermal contact with polluted water and soil, as well as through inhalation of polluted air. Quantitative estimates of risks are calculated for both carcinogenic and non-carcinogenic pollutants. Being very heterogeneous, soil and sediment systems are characterized by uncertain parameters. Concepts of fuzzy set theory have been adopted to account for uncertainty in the input parameters which are represented by fuzzy numbers. An inference model using fuzzy logic has been constructed for reasoning in the decision analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号