首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
液膜法自理氨氮废水工艺条件研究   总被引:5,自引:0,他引:5  
采用液膜法处理低浓度氨氮废水,处理后出水中NH3-N为1mg/L以下,SS、PH、COD均达到工业废水排放标准,对液膜组成及用量,膜增强剂选用,外相废水PH选择等工艺条件组合效果进行了试验,结果确定以20%硫酸为内相,6%Span-80+11%液体石蜡+煤油为液膜组成、PH9.0-9.5废水为外相的处理体系,能达到最佳处理效果。  相似文献   

2.
液膜法处理氨氮废水的动力学过程与工艺条件   总被引:12,自引:1,他引:12  
微碱性条件下,废水中的氨氮以NH3形态选择性透过液膜,属I型促进迁移。测定了液膜体系对氨氮分离的反应速度常数,给出了该反应的简化传质速率方程;考察了液膜组成、外相废水pH值、内相解吸剂等因素对传质过程和氨氮去除率的影响。当乳水比Rew=1:10,接触时间5-8min,可使氨氮含量为1000mg/L的废水一级去除率达98%以上,处理后的废水符合排放标准。  相似文献   

3.
乳状液膜法萃取锌的研究   总被引:1,自引:0,他引:1  
陆岗  李盘生 《环境工程》1993,11(3):41-44,25
报道了一种新的液膜配方,载体用量只有5%,且一次处理能使500×10~(-6)以下的含锌废水降至5×10~(-6)以下,使其达到国家排放标准。讨论了锌在液膜中的迁移机理,实验研究了各种因素如内外相酸度、温度、外相起始锌离子浓度以及各种操作条件对锌离子萃取的影响,获得了最佳的操作条件,液膜经多次反复使用后,分离效果不减。  相似文献   

4.
乳浊液膜处理含酚废水   总被引:7,自引:0,他引:7  
本文报道了一种用于分离废水中苯酚的新液膜体系。该体系是以TBP为流动载体,以LMS-2为表面活性剂组成的煤油液膜,在内外相OH-浓度梯度的推动下.苯酚由外相有效地向内相富集,从而达到分离苯酚的目的。该液膜与其它液膜相比,具有稳定性好,选择性高等优点,用此液膜分离苯酚,除酚率可达99%以上。  相似文献   

5.
用span-80表面活性剂制作的乳状液处理垃圾渗滤液中氨氮,考察了表面活性剂span-80用量、膜内相硫酸浓度、膜增强剂用量、油内比、乳水比、外相水pH值因素对氨氮去除率的影响。结果表明,在最佳反应条件下,用乳状液膜分离法预处理垃圾渗滤液中的氨氮,分离速度快,处理效果达到87%以上。  相似文献   

6.
液膜富集火焰原子吸收法测定水中痕量镉   总被引:6,自引:0,他引:6  
研究表面活性剂、流动载体,内相解吸剂、外相酸度、液体石蜡和油内比等因素对分离富集镉的影响,且考察其膜的溶胀程度和破乳难易。确定了Span80-P204-煤油-HCl液膜体系的最佳组成及富集条件。分4批处理料液,富集倍数达80以上.回收率在97%以上,且选择性好。与火焰AAS法组合可测定ppb级的镉。本法灵敏度高准确度好。  相似文献   

7.
液膜富火焰原子吸收法测定水中痕量镉   总被引:1,自引:0,他引:1  
研究表面活性剂、流动载体,内相解吸剂,外相酸度,注入体石卉和油内比等因素对分离富集镉的影响,且考察其膜的溶胀程度和破乳难易。确定Span80-P204-煤油-HC1液膜体系的最佳组成及富集条件。分4批处理料液,富集倍数达80以上,回收率在97%以上,且选择性好。与火焰AAS法组合可测定ppb级的镉。本法灵敏度高准确度好。  相似文献   

8.
研究了pH值、氯化钙投加量、搅拌时间及沉淀时间等因素对酸性高浓度含氟废水处理效果的影响;提出了采用氢氧化钙清液加氯化钙作为新型沉淀剂处理酸性高浓度含氟废水的工艺参数:pH值在8.5-9.5,按照nCa/F=0.7加入5%CaCl2溶液,搅拌45min、沉降90min;采用此工艺参数处理氟离子浓度为2600mg/L、pH值为2.97的废水,能把废水氟离子的浓度降至20mg/L以下,达到国家二级排放标准;采用本工艺取代传统工艺的好处是:沉渣中氟化钙纯度高,有利于废水中氟的回收利用。  相似文献   

9.
探讨了超滤法处理浆纱废水中PVA的工艺。研究了膜的孔径、操作压力、温度、pH值和透水量等对处理效果的影响。结果表明,PVA回收率和COD去除率分别达到90%和85%~90%。  相似文献   

10.
本文研究了在实验室条件下影响液膜法处理邻苯二酚废水的主要因素。应用液膜法处理含邻苯二酚浓度为2000×10-6的废水,得到了良好的处理效果,去除率高达95%~98%,油膜溶液可经高压静电破乳使用达12次以上。邻基二酚在煤油中溶解度较小,选择了氯仿作为传质介质,扩展了液膜法在工业废水处理领域中的应用。  相似文献   

11.
光合细菌两段流化床处理鸡粪粪水的研究   总被引:1,自引:0,他引:1  
光合细菌对高浓度有机废水具有较好的适应性和处理能力,特别是作为一个预处理工艺对后续污水处理可以产生重要的影响。鉴于光合细菌生长时间相对较长,为提高光合细菌对高浓度有机污水的处理效率,本研究利用光合细菌两段流化床反应器对鸡粪粪水进行降解。试验结果表明:经过60 d的启动运行后,反应器进入稳定状态,在进水pH值6.0,COD小于10000mg/L范围内,流化床水力停留时间(HRT)为48 h时,对废水COD去除率为88.10%,TN去除率为68.29%,NH3-N去除率为94.42%,NO3-N去除率为65.43%。  相似文献   

12.
钝顶螺旋藻处理氨氮废水的研究   总被引:3,自引:0,他引:3  
螺旋藻是一种营养丰富的新型保健食品,利用含氮废水为培养基,研究螺旋藻以NH4-N的处理效率,着重探讨利用生活污水培养螺旋藻的可行性,及其对生活污水的处理效果。研究证明,在NH4-N浓度小于40.0mg/L时,其对NH4-N的去除率最大,可达93%左右。在体积百分比生活污水为80%时,添加NaHCO38mg/L,对NH4-N的去除率达91.8%。同时对螺旋藻化学组分及含铁、锌、锰、铜、硒进行分析,生活污水培养螺旋藻,其所含有机物和氮源,可供螺旋藻生长繁殖,使废水资源化,并减少环境污染;藻粉可作为饲料添加剂,是使废水变为蛋白源的有效途径。  相似文献   

13.
好氧颗粒污泥膜生物反应器的运行特性   总被引:6,自引:0,他引:6  
以人工合成模拟废水对好氧颗粒污泥膜生物反应器(MBR)的运行特性和膜污染进行了研究.结果表明:在HRT为6h,溶氧浓度为4~6mg.L-1,COD的容积负荷为7.24kg·(m3·d)-1的条件下,COD的去除率可达96%以上.当NH3-N的容积负荷为0.17kg·(m3·d)-1时,NH3-N的去除率可达60%.COD/N比的变化,对好氧颗粒污泥MBR的COD及NH3-N去除率基本没有影响.稳定运行过程时,MBR中好氧颗粒污泥浓度(MLSS)基本维持在14~16mg·L-1.较高的污泥浓度和颗粒污泥内部缺氧和厌氧环境的存在,使MBR中硝化和反硝化过程能同时存在.同时,比较了2种不同形态的活性污泥(颗粒污泥和絮状污泥)在MBR运行过程中膜通量的变化趋势,结果表明,颗粒污泥MBR膜通量的下降速度明显比絮状污泥MBR的下降速度慢很多,且通过空气反冲或用水清洗即可使通量基本恢复.  相似文献   

14.
采用液膜分离技术从草甘膦生产废水中回收可利用资源草甘膦,并通过实际工业废水进行验证。主要考察了外水相pH值、乳水比及内水相浓度对草甘膦去除的影响。试验结果表明:以航空煤油为溶剂,3%表面活性剂(质量分数),4%载体(体积分数),10%NaOH内水相,油内比Roi为2∶1乳状液膜体系,处理初始浓度为1%的草甘膦工业废水,在pH值为2,乳水比Rew为1∶5的传质条件下,草甘膦去除率可达85%以上。  相似文献   

15.
离子膜辅助电催化氧化法预处理焦化废水的研究   总被引:3,自引:0,他引:3  
焦化废水是属有毒有害、难降解的有机废水,常规的生物处理工艺对其去除效果不甚理想,从而导致出水中难降解污染物含量较高,COD和NH3-N不能达标。论文针对焦化废水的水质特点,采用离子膜电解技术进行预处理。对焦化废水中主要污染物苯酚降解效果的几种因素进行了研究,得出了苯酚降解的最佳工艺条件并在此工艺参数下,对模拟焦化废水电解2.5h,苯酚、COD的去除率分别为84%,45%,氨氮去除率和回收率别为99.5%和96.5%,总能耗27kwh/m3,可以为后续生化处理大大减轻负担,采用该方法作为焦化废水的预处理手段比较经济合理。  相似文献   

16.
文章对一体式平板膜-生物反应器处理超市废水的特性进行了小试试验研究,结果表明,反应器对COD的平均去除率为91%,NH3-N平均去除率为86%。平板膜-生物反应器膜污染阻力构成为泥饼阻力占85%,孔隙堵塞阻力占13%,膜本身阻力只占2%,可忽略不计。  相似文献   

17.
研究混凝-MBR组合技术净化洗车废水,首先对该技术净化CODcr、UV254、NH3 -N和浊度的效果进行了考察,实验结果表明,当废水温度大于22℃时、溶解氧浓度大于4.8 mg/L时、pH值在6到8之间的条件下,该组合技术对CODcr、NH3 -N和浊度的净化效果较好,平均净化率分别达到90.2%、96.4%和98%以上,高于传统MBR技术和常规技术,出水CODcr约为20 mg/L,NH3 -N基本在0.7 mg/L以下,浊度也小于0.5NTU,水质优于中国建设部生活杂用水水质标准( CJ25.1-89).  相似文献   

18.
铜酞菁颜料废水处理试验研究   总被引:1,自引:0,他引:1  
通过试验研究 ,提出了一种物化—生化法处理铜酞菁颜料废水的新工艺。该工艺研究了铜氨络离子、PH值、水温、SO42 - 、生化条件等因素对Cu2 +和NH3 N去除效果的影响。  相似文献   

19.
采用SAF-化学絮凝-微滤分离膜组合工艺对高浓度生活污水进行处理.SAF处理系统对污染物的去除效果良好,CODCr,BOD5,SS和NH4 -N的去除率分别为92%,93%,90%和98%.SAF生物处理系统的出水再经化学絮凝和微滤分离膜深度处理后,CODCr,BOD5,NH4 -N,PO43--P的浓度分别低于40 mg/L,10mg/L,4mg/L,0.3mg/L;浊度小于0.5NTU,色度小于10度.试验结果表明该组合工艺处理后的污水水质优良,可满足生活杂用和市政杂用.  相似文献   

20.
A laboratory scale test was conducted in a combined membrane process (CMP) with a capacity of 2.91 m3/d for 240 d to treat the mixed wastewater of humidity condensate, hygiene wastewater and urine in submarine cabin during prolonged voyage. Removal performance of chemical oxygen demand (COD), ammonia nitrogen (NH4 +-N), turbidity and anionic surfactants (LAS) was investigated under di erent conditions. It was observed that the e uent COD, NH4 +-N, turbidity and LAS flocculated in ranges of 0.19–0.85 mg/L, 0.03–0.18 mg/L, 0.0–0.15 NTU and 0.0–0.05 mg/L, respectively in spite of considerable fluctuation in corresponding influent of 2120–5350 mg/L, 79.5–129.3 mg/L, 110–181.1NTU and 4.9–5.4 mg/L. The e uent quality of the CMP could meet the requirements of mechanical water and hygiene water according to the class I water quality standards in China (GB3838-2002). The removal rates of COD, NH4 +-N, turbidity and LAS removed in the MBR were more than 90%, which indicated that biodegradation is indispensable and plays a major role in the wastewater treatment and reuse. A model, built on the back propagation neural network (BPNN) theory, was developed for the simulation of CMP and produced high reliability. The average error of COD and NH4 +-N was 5.14% and 6.20%, respectively, and the root mean squared error of turbidity and LAS was 2.76% and 1.41%, respectively. The results indicated that the model well fitted the laboratory data, and was able to simulate the removal of COD, NH4 +-N, turbidity and LAS. It also suggested that the model proposed could reflect and manage the operation of CMP for the treatment of the mixed wastewaters in submarine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号