首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent evidence suggests that tropical bats may frequently depart from the predominant mammalian male-biased dispersal pattern. So far, two emballonurid bat species that are closely related to our study species (Grey sac-winged bat, Balantiopteryx plicata) have been found to exhibit exceptional female-biased dispersal that is in accordance with father–daughter inbreeding avoidance. In contrast, using a combination of long-term behavioral observations of banded bats and DNA sequencing of the mitochondrial d-loop, our results suggest that B. plicata is the first Neotropical emballonurid with female philopatry and frequent male dispersal. However, just like in the other emballonurids, the age of females at first conception fell below the tenure of males. Thus, philopatric B. plicata females might face a father–daughter inbreeding risk if mating with males from their roosts. Such risk could be circumvented if mating occurs outside the nursing roost, e.g., in male mating aggregations. In contrast to other Neotropical emballonurid bats, the Grey sac-winged bat forms colonies with a greatly male-biased sex ratio (only 5 and 21 % females). Males of such colonies showed high roost fidelity and the sex ratio did not change throughout the year and for up to many years, suggesting an important role in mating. We conclude that studying the diverse mating and dispersal patterns of Neotropical emballonurids shows great potential to enlarge our understanding on how the proposed ultimate causes (i.e., avoidance of inbreeding and local competition between kin) affect the evolution of sex-biased dispersal.  相似文献   

2.
Summary The social organization of the pipistrelle bat (Pipistrellus pipistrellus) was studied by means of bat boxes in southern Sweden. The males set up territories around a roosting site in the beginning of the summer at the same time as the females formed nursing colonies. After breeding, the females joined the single males in their day roosts establishing transient mating harems. Subsequently, immatures arrived at the mating grounds. The immature females, which probably attained sexual maturity during their first autumn, were admitted to the day roosts of the harem males, in contrast to the immature males. The size of the harem was dependent on the total number of females present on the mating grounds. The size, however, was also restricted by some factor, presumably the quantity of food resources in the surroundings of the specific roost site, or the capability of the harem male for mating. The mating system in the pipistrelle bat is best characterized as a resource defence polygyny. Available data on other related temperate species indicate a similar social organization in Pipistrellus nathusii and Nyctalus noctula.  相似文献   

3.
4.
The literature suggests that in familiar laboratory settings, Indian false vampire bats (Megaderma lyra, family Megadermatidae) locate terrestrial prey with and without emitting echolocation calls in the dark and cease echolocating when simulated moonlit conditions presumably allow the use of vision. More recent laboratory-based research suggests that M. lyra uses echolocation throughout attacks but at emission rates much lower than those of other gleaning bats. We present data from wild-caught bats hunting for and capturing prey in unfamiliar conditions mimicking natural situations. By varying light level and substrate complexity we demonstrated that hunting M. lyra always emit echolocation calls and that emission patterns are the same regardless of light/substrate condition and similar to those of other wild-caught gleaning bats. Therefore, echoic information appears necessary for this species when hunting in unfamiliar situations, while, in the context of past research, echolocation may be supplanted by vision, spatial memory or both in familiar spaces.Communicated by T. Czeschlik  相似文献   

5.
Even though social network analysis provides an important tool to characterize and compare societies, no studies have used its analytical applications to characterize patterns of sociality in bats. Here I use social network analysis to characterize and compare patterns of sociality between three populations of the leaf-roosting bat Thyroptera tricolor. Sites differed in the density of furled leaves used by T. tricolor for roosting. Finca had more leaves per hectare (77), followed by Ureña (58), and Esquinas (7). The time period over which the probability of association is halved based on fitted models was 1,086 days for Finca, 714 days for Ureña, and 303 days for Esquinas. Finca and Ureña had very similar network topologies, with several small clusters, high-clustering coefficients, short path lengths, low node betweenness, and high network robustness. Social networks at Esquinas were composed of one large cluster and several small isolated ones. Esquinas also had high-clustering coefficients, but path length and node betweenness were high. Network resilience was lower in Esquinas compared to Finca and Ureña. These results show that, unlike many other forest-dwelling bats that switch roosts regularly, T. tricolor does not exhibit a typical fission–fusion social system, and that resource availability seems to affect social networks in this bat. In addition, this study highlights the importance of emigrating individuals in maintaining social cohesion, establishing network connectedness, and determining network robustness.  相似文献   

6.
7.
We manipulated availability of food and nesting sites in one population of the forest ant Myrmica punctiventris. The manipulations produced significant changes in relatedness structure, reproductive allocation, and response to hierarchical selection. Food availability appeared to have a consistently stronger influence on these aspects of social organization than did availability of nesting sites. We interpret our experimental results in light of observed differences between populations, and discuss implications for kin selection dynamics. Received: 30 July 1998 / Accepted after revision: 31 October 1998  相似文献   

8.
Summary The mating system of the Swallow-tailed Manakin (Chiroxiphia caudata) is a type of non-resource based polygyny in which males aggregate at traditional sites or leks to perform cooperative displays. Each lek and all its contained courts are used communally by a group of 4–6 males. Within the group a linear dominance hierarchy exists. Position in the hierarchy persists within and between years and at all courts and is inherited in linear sequence. The dominant male of the group behaves as a sentinel calling repeatedly from a high perch in an attempt to attract females to a court.When a female arrives, two or three males engage in a cooperative precopulatory dance, the Jump Display. This is followed by a Solo Precopulatory Display performed by a single male who, if successful, will copulate with the female. With rare exception, the dominant male performs all Solo Displays and all copulations.Display sequences that include both a Jump Display and Solo Precopulatory Display are more likely to lead to copulation than those consisting of only one part. Thus, the subordinates who help the dominant perform the dance are expending energy that increases his fitness without receiving any immediate benefit themselves. Several factors that may have contributed to the evolution of the mating system and cooperative displays of this species are considered.  相似文献   

9.
Summary Nest construction, a complex social activity requiring the coordination of 3 tasks (Fig.2), was compared in large (<350 adults) and small (<50 adults) colonies of Polybia occidentalis. The 3 tasks—water foraging, pulp foraging, and building—are performed by 3 separate groups of workers (Fig.4). Of the 8 acts comprising the 3 tasks, 5 regularly involve the transfer of water or pulp from one worker to another on the nest.Small colonies required nearly twice as long (35.4 worker-min) as large colonies (20.1 workermin) to complete a unit amount of construction work. Behavioral acts involving material transfer among workers were responsible for most of the increase in small colonies. In other words, the waiting times experienced by material donors and recipients were greater in small colonies. In small colonies workers switched among the three tasks more frequently than in large colonies (Fig. 4). This was the result of more frequent switching by generalists (workers that performed 2 or 3 of the tasks), rather than by a decrease in the proportion of specialists (workers performing only 1 task type) (Fig. 3).The series-parallel system by which Polybia occidentalis organizes nest construction has a major advantage over the series operation of solitary wasps. Pulp foragers collect and carry loads that are 6.1 times as large as builders can work with at the nest, and water foragers bring in loads that appear to be limited only by crop capacity and that provide all the moisture necessary for the complete processing of 0.74 of a foraged pulp load. As a result P. occidentalis can collect and process a given amount of nest material using 2.6 times fewer foraging trips than would be required by the series system. This in turn means that P. occidentalis not only achieves an energy saving that probably more than offsets the increased costs of material handling at the nest, but it reduces the exposure of its foragers to predators in the field.  相似文献   

10.
Summary In this paper I consider how the costs and benefits of group living in spider monkeys (Ateles geoffroyi) vary between troop members. The results suggest that ecological factors set an upper limit to the number of spider monkeys that can associate and still efficiently exploit the available resources. In addition, the needs of the individual appears to influence the type and size of the subgroup it chooses. Adult males band together, travel over a large area, and are frequently sighted near the community's boundary. In contrast, adult females spend more time solitary than males and have association patterns that are strongly influenced by the presence of a dependent infant. Females with dependent infants tend to travel in small subgroups or alone, avoid the boundaries of the community's home range, and exhibit a restricted pattern of use of their range. The results suggest that males may be attempting to locate females with which they can breed, while mothers attempt to protect their infants by avoiding conspecifics and potentially dangerous situations near territorial boundaries.  相似文献   

11.
12.
13.
We report on the genetic evaluation and behavioral study of social organization in the Asian elephant (Elephas maximus). Although Asian elephants and African elephants (Loxodonta africana) were previously thought to have similar social organizations, our results demonstrate a substantial difference in the complexity and structure of Asian elephant social groupings from that described for African savanna elephants. Photographic cataloging of individuals, radio telemetry, and behavioral observations in Ruhuna National Park, Sri Lanka, enabled us to assign associated females and young to four groups with overlapping ranges. Genetic sampling of individuals from the four groups in Ruhuna National Park and three other groups in surrounding areas, conducted through PCR amplification and sequencing of mitochondrial DNA from dung, supported the matriarchal nature of female groups and the lack of inter-group transfer of females. Behaviorally and genetically, the identified social groups were best described as ”family groups”. We did not find any evidence for the existence of social groups of higher complexity than family groups. Received: 25 March 2000 / Received in revised form: 28 March 2000 / Accepted: 1 April 2000  相似文献   

14.
Compared to terrestrial mammals, little is known of cetacean social systems as they are generally less accessible to behavioral investigations due to their aquatic environment. The present study investigates group structure of the pelagic common dolphin, Delphinus delphis, using genetic markers. Tissue samples from 52 individuals representing a recent live mass-stranding event were compared to 42 single strandings taken from presumably different groups. The mass-stranding event occurred in 2002 on the French coast of the English Channel, whereas the single strandings were collected between 1993 and 2003 along the western coast of France (Bay of Biscay and English Channel). Analysis of mitochondrial DNA control region sequences indicated that genetic variability within the mass-stranded pod was similar to variability observed in single strandings. The mass-stranded group was composed of 41 different mitochondrial haplotypes or matrilines while the single strandings revealed 29 different haplotypes. Analysis of 11 microsatellite loci revealed that average relatedness of the mass-stranded pod was not different from average relatedness among all single strandings suggesting that individuals within the group had no closer kin relationships than animals taken from presumably different groups. These results do not support a matriarchal system and suggest that common dolphins constituting a pod are not necessarily genetically related.  相似文献   

15.
Summary Acorn woodpeckers (Melanerpes formicivorus) were studied during the summers of 1976 and 1977 in the Chiricahua Mountains of Arizona to determine the ecological correlates of variations in unit size, storage behavior, and home range. Unit size varied from two to five adults, acorn storage capacity varied from 0 to 5,000 individual holes per unit, and home range size varied from 5.2 to 51.2 ha.There was a consistent but nonsignificant trend for units inhabiting pine-oak woodland to be larger and to maintain more food storage holes than units in oak-juniper or oak woodland. Pine-oak woodland had the highest oak species number, density, and basal area of any community in the study area, and showed the least annual variation in percent of oaks producing acorns during the study. However, pineoak woodland also had the lowest acorn productivity per hectare.More than four times as many oak trees produced acorns in 1977 than in 1976. Following the poor 1976 crop, unit home range size increased so that the mean number of oaks contained per home range size increased more than three and a half times in 1977. The number of woodpecker units containing nonbreeding adults decreased from 90% in 1976 to 20% in 1977. These data suggest that the size and reliability of acorn crops control the composition of acorn woodpecker social units.A comparison of acorn woodpecker population parameters in the Chiricahua Mountains and at the Hastings Reservation, California, was made, using data of MacRoberts and MacRoberts (1976). The California population was significantly more dense and maintained more storage trees and more individual storage holes per unit, but there was no evidence that more California units contained nonbreeding adults than did Chiricahua units.A model is presented that emphasizes the importance of acorn crop reliability as the major determinant of acorn woodpecker social organization (Fig. 2). Annual crop fluctuations affect the winter survival and dispersion of woodpecker units, and the density of the population in the following spring. Bad acorn years will result in decreased saturation of woodpecker nesting habitat by established groups. The model predicts a corresponding decrease in the frequency of units with helpers, as young adults take advantage of opportunities to breed on their own. Longer-term crop reliability determines the benefitcost ratio for establishing and maintaining food storage facilities. The observed geographic variation in storage behavior between California and Arizona populations is suggested to reflect differences in the long-term return on investment in expensive storage facilities.  相似文献   

16.
17.
Two-way selection for quantities of stored pollen resulted in the production of high and low pollen hoarding strains of honey bees (Apis mellifera L.). Strains differed in areas of stored pollen after a single generation of selection and, by the third generation, the high strain colonies stored an average 6 times more pollen than low strain colonies. Colony-level organizational components that potentially affect pollen stores were identified that varied genetically within and between these strains. Changes occurred in several of these components, in addition to changes in the selected trait. High strain colonies had a significantly higher proportion of foragers returning with loads of pollen, however, high and low strain colonies had equal total numbers of foragers Colony rates of intake of pollen and nectar were not independent. Selection resulted in an increase in the number of pollen collectors and a decrease in the number of nectar collectors in high strain colonies, while the reciprocal relationship occurred in the low strain. High and low strain colonies also demonstrated different diurnal foraging patterns as measured by the changing proportions of returning pollen foragers. High strain colonies of generation 3 contained significantly less brood than did low strain colonies, a consequence of a constraint on colony growth resulting from a fixed nest volume and large quantities of stored pollen. These components represent selectable colony-level traits on which natural selection can act and shape the social organization of honey bee coloniesCommunicated by R.F.A. Moritz  相似文献   

18.
The echolocation and hunting behavior of Daubenton's bat,Myotis daubentoni   总被引:3,自引:0,他引:3  
Summary The echolocation and hunting behavior of Daubenton's bat (Myotis daubentoni) were studied in the field under completely natural conditions using a multiflash photographic system synchronized with high-speed tape recordings. The hunting behavior of M. daubentoni is separated into four stages. In the search flight stage Daubenton's bat flies with an average speed of 3.4±0.6 m/s SD usually within 30 cm over water surfaces searching for insects. After the detection of potential prey, the approach flight stage occurs, during which the bat approaches the target in a goal-directed flight. The stage tail down indicates that M. daubentoni is close to the potential prey (approximately 10–22 cm) and is preparing for the catch. The insects are caught with the interfemoral membrane, the feet, and sometimes with the additional aid of a wing. In the stage head down, the bat seizes the prey during flight. Immediately afterwards, Daubenton's bat returns to search flight. M. daubentoni shows the typical echolocation behavior of a vespertilionid bat, emitting frequency-modulated (FM) echolocation signals. The three behavioral stages search, approach, and terminal phase (Griffin et al. 1960) are used to describe the pulse pattern of foraging M. daubentoni in the field. The terminal phase (or buzz) of Daubenton's bat is separated into two parts: buzz I and buzz II. Buzz II is distinguished from buzz I by the following characteristics: a sharp drop in terminal frequency, a distinct reduction in the bandwidth of the first harmonic, a continuous high repetition rate throughout the phase in the range 155–210 Hz, very short pulses (0,25–0.3 ms) and interpulse intervals (4.5–5.0 ms) at the end of the phase, and a distinct decrease in duty cycle. A pause in echolocation separates the end of the terminal phase from the ongoing search phase. The reduction in sound duration after the detection of a target and during pursuits with successfull or attempted catches is discussed in relation to the actual distance of the bat to the target at each stage. It is likely that Daubenton's bat reduces sound duration during approach and terminal phase in order to prevent an overlap of an outgoing pulse with the returning echo from the target. It is argued that the minimum detection distance can be estimated from the sound duration during search flight. Estimates of detection and reaction distances of M. daubentoni based upon synchronized photos and echolocation sequences are given to corroborate this hypothesis. An average detection distance of 128 cm and an average reaction distance of 112 cm were determined. Each behavioral stage of foraging M. daubentoni is characterized by a distinct pattern of echolocation signals and a distinct stage in hunting behavior. The approach flight in hunting behavior coincides with the approach phase and with buzz I in echolocation behavior. The stage tail down corresponds to buzz II. The stage head down is correlated with a pause in echolocation. Immediately afterwards, the bat returns into search flight and into the search phase, emitting search signals.  相似文献   

19.
20.
Summary In Myotis emarginatus, the patterns of echolocation sounds vary with different foraging habitats: In commuting flights the echolocation sounds are linearly frequency modulated sweeps that start at about 100 kHz, terminate at 40 kHz, and have a duration of 1–3 ms. They consist of a loud first harmonic. The second and third harmonics are at least 15 dB fainter than the first one and often undetectable. A distinctly different type of sound is emitted when the bats search for flying insects in open spaces. The sounds are reduced in bandwidth and elongated by a constant frequency component that follows the initial frequency modulated part. Typically, sounds start at about 94 kHz and terminate in a constant frequency component at about 40–45 kHz. The average duration of the constant frequency tail is 2.8 ms; this approximately doubles the length of the pulse, with the longest recorded sound lasting 7.2 ms. When bats are foraging near and within foliage, and gleaning prey from foliage, echolocation sounds are brief (average 1 ms) frequency modulated pulses with a broad bandwidth. The pulses start at about 105 kHz and sweep down to 25 kHz. During gleaning within a building, the frequency range of the sounds is shifted to higher frequencies and extends from 124 to 52 kHz. When the bats forage for aireal insects in a confined area that creates echo-clutter, they emit sounds similar to those used during gleaning within buildings except that sound durations are extended to about 1.8 ms. In each foraging area, the echolocation sounds emitted during the search for and approach to prey are similar in structure. Sound and pause durations are reduced in the approach phase. Irrespective of foraging style and habitat, immediately before capture the bat emits a rapid and stereotyped sequence of 2-10 echolocation pulses (final buzz). These pulses are brief (0.2–0.5 ms), frequency modulated sounds with a reduced bandwidth. The sounds start at 45 kHz and sweep down to 35–20 kHz. The repetition rate is increased up to 200 pulses/s. Offprint requests to: G. Neuweiler  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号