首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 484 毫秒
1.
运用连续颗粒物采样仪(URG Model 2000-01J)对贵阳市城区大气颗粒物PM2.5进行了连续3个月(9~11月)的采集与分析,探讨了PM2.5的浓度分布特征、气象条件的影响。结果显示,贵阳市大气颗粒物PM2.5的平均质量浓度为53±27μg/m3,变化范围为3.7~186μg/m3;初步推断大气颗粒物PM2.5的污染来源主要是燃料燃烧、生物质燃烧、汽车尾气等人为源;相对湿度、风速、风向、温度等气象条件是影响大气颗粒物浓度及分布的重要因素。  相似文献   

2.
为了解西安市高新区采暖期大气颗粒物(包括PM1 0和PM2.5)污染状况,于2013年1月1日到2013年3月15日在高新区进行了为期74 d的连续自动采样。结果表明:采样期间高新区PM1 0的小时浓度范围28~1744μg/m3,平均浓度为332μg/m3;PM2.5的小时浓度范围13~946μg/m3,平均浓度为207μg/m3。PM2.5占PM1 0的平均比例为63.8%。颗粒物浓度日变化呈现弱双峰特征,分别在凌晨2:00和上午7:00~8:00左右达到浓度最高值,但是上午的峰值并不明显。颗粒物在15:00~1 6:00之间浓度达到最低值,由于受采暖影响,18:00之后颗粒物浓度明显上升。  相似文献   

3.
为量化秸秆打包政策对防控大气污染的影响,基于吉林省2016年秸秆产量、秸秆打包地亩数、卫星火点数据以及大气污染物浓度的变化,对吉林省秸秆打包产生的大气环境及社会经济效益进行了分析,结果表明:1)吉林省打包秸秆量为220.36×10~4t,约占秸秆年产量的5.5%,假如全部加工成生物质颗粒燃料,2016年至少减少14.54×10~4t污染物排放;2)吉林省秸秆打包政策执行以来,秸秆露天燃烧量及秸秆燃烧主要月份的卫星火点数显著下降;3)随着露天燃烧量的减少,区域大气颗粒物浓度降低,空气质量改善。秸秆燃烧主要月份的PM_(2.5)和PM_(10)浓度从2014年的104.5μg·m~(-3)、164μg·m~(-3)分别下降到2016年的48.5μg·m~(-3)、69·μg·m~(-3)。研究结果可为吉林省有效减少污染物排放、综合利用农作物秸秆、改善大气环境质量等提供科技支撑。  相似文献   

4.
北京市2009年8月大气颗粒物污染特征   总被引:11,自引:1,他引:10       下载免费PDF全文
为研究2008年8月北京奥运会1a之后北京市大气颗粒物的污染特征,于2009年8月对北京市大气颗粒物PM10、PM2.5样品进行采集,测量其质量浓度并对其中的水溶性离子组分进行分析.研究发现2009年8月北京市大气颗粒物PM10、PM2.5质量浓度日均值分别为176.9μg/m3和102.5μg/m3.PM10质量浓度比2008年观测值上升了180%,比2007年降低了10%; PM2.5质量浓度比2008年观测值上升了126%,比2007年上升了31%.水溶性离子是大气颗粒物的重要组分,分别占PM10和PM2.5质量浓度的43%和61%.对比发现,污染天气条件下PM2.5/PM10和NO3-/SO42-比值升高,移动源是北京地区主要的污染物来源.风向风速和降水等天气条件对颗粒物质量浓度有很大影响,其中0.5~1.0m/s的东南风条件下大气颗粒物污染最为严重.  相似文献   

5.
广西北海涠洲岛春季大气颗粒物浓度特征及影响因素   总被引:1,自引:1,他引:0  
高元官  张凯  王体健  陈志明  耿红  孟凡 《环境科学》2017,38(5):1753-1759
为了解我国北部湾区域大气环境特征和可能的跨界输送,于2015年3~4月在涠洲岛开展了对大气颗粒物浓度水平和粒径分布特征的外场观测研究,并结合气象因子和后向轨迹探讨了颗粒物浓度变化原因和来源.结果表明涠洲岛大气PM_1、PM_(2.5)、PM_(10)质量浓度分别为(21±12)、(35±19)、(43±20)μg·m~(-3).PM1、PM_(1~2.5)和PM_(2.5~10)质量浓度分别占PM10的50%、32%、18%.0.5~1、1~2.5和2.5~20μm粒径段颗粒物数浓度分别占总数浓度的93.5%、6.1%和0.4%.颗粒物数浓度与能见度和气压呈弱负相关.后向轨迹模拟分析发现,来自涠洲岛西南方向东南亚一带的气团影响频率最高(45.9%),0.5~1μm、1~2.5μm数浓度和PM_(2.5)浓度最低但NO浓度最高;其次为来自正东方向气团(34.1%),SO2浓度最低但O3浓度最高;来自正南方向的气团(12.5%)NO2、NOx、O3和CO浓度最低;来自东北方向的大陆气团影响频率最低(7.4%),但颗粒物数浓度、质量浓度和气体污染物浓度(除O3和NO)最高.涠洲岛大气细颗粒物和气态污染物主要受大陆和东南亚地区输送影响,来自大陆方向的输送以工业污染为主,来自东南亚方向的输送以港口船舶及航运污染为主.  相似文献   

6.
新疆部分城市可吸入颗粒物的浓度及粒径分布   总被引:2,自引:0,他引:2  
采用TH-β10大气颗粒物浓度监测仪,从2011年4-5月在乌鲁木齐、奎屯、阿克苏、库尔勒、喀什、和田市环境监测站采集大气可吸入颗粒物PM2.5、PM5和PM10样品,分析了不同采样点大气颗粒物的质量浓度变化范围及与TSP的相应比值。结果表明,不论是PM2.5、PM5还是PM10,阿克苏市可吸入颗粒物的质量浓度变化幅度较大,其次是库尔勒市,其余采样点在采样期间的浓度变化幅度不大,并且库尔勒、喀什、奎屯、阿克苏四个城市PM5/TSP和PM2.5/TSP的比例大,除喀什、阿克苏的PM10/TSP的比例接近于1之外,其余可吸入颗粒物的浓度均小于TSP;采用显微镜观测成像技术结合血球计数板方法,利用粒径分布函数分析对六个城市的PM10和5个城市的PM2.5颗粒物在不同粒径的分布进行了分析。结果表明,对于PM10而言,阿克苏在dp<0.5的粒径范围内分布函数高达79%、喀什在dp=0.5~0.6μm之间为44%、和田则在dp=1.2~2.2μm出现20%的最大粒径分布函数。就PM2.5而言,库尔勒在dp<0.5、dp=0.5~0.6、0.6~1.2μm区间内的分布函数均为最大值,其值分为79%、50%、50%,可以说明在采样期间,库尔勒市区的颗粒物在粒径小于1.2μm出现的几率更大些,即颗粒物以积聚模态为主。  相似文献   

7.
采用气体悬浮物粒子监测仪和NanoMoudi-Ⅱ125A型分级采样器对某封闭式博物馆进行颗粒物数浓度监测和颗粒物采样,测定了不同粒径段颗粒物中的主要离子组分。结果表明,监测期间粗颗粒物(粒径≥2.5μm)、细颗粒物(粒径在0.1~2.5μm之间)和超细颗粒物(粒径≤0.1μm)质量浓度分别为20.50~24.38μg/m3、23.39~24.08μg/m3和16.02~17.48μg/m3。颗粒物数浓度集中在粒径≤0.3μm范围,PM1数浓度占PM10数浓度的97%以上,游客扰动和清洁活动使粗颗粒物数浓度增加了8~172倍。SO42-、NO3-、NH4+峰值出现在0.32~0.56μm粒径段,Na+、Cl-分布较平均,K+峰值出现在0.32~0.56μm和3.2~5.6μm粒径段,Mg2+的峰值出现在3.2~5.6μm粒径段,Ca2+峰值出现在1.8~3.2μm粒径段;总有机酸根离子无明显峰值;乙酸根离子浓度为1.238μg/m3,高于甲酸根和乙二酸根。颗粒物的阳/阴离子比均值为2.83,说明阴离子测定可能有缺失,如碳酸盐等。颗粒物中水溶性离子浓度水平和粒径分布受游客影响不明显,受室外空气输送的影响较大。  相似文献   

8.
河北香河亚微米气溶胶组分特性、来源及其演变规律分析   总被引:2,自引:2,他引:0  
江琪  王飞  孙业乐 《环境科学》2018,39(7):3022-3032
霾的形成发展与细颗粒物化学组分变化紧密相关.本文利用颗粒物化学组分监测仪(ACSM)、黑碳仪等对河北香河夏季亚微米气溶胶(PM1)化学组分、来源及其演变规律进行详细分析.结果表明,PM1平均占到PM2.5的约71%,PM1主要分布在20~80μg·m-3间;观测期间有显著的秸秆燃烧事件,秸秆燃烧时段PM1质量浓度显著升高,其中有机物质量分数迅速升高,平均约占到47%;秸秆燃烧使得大气气溶胶由弱碱性转变为弱酸性;整个观测期间,正交矩阵因子分解法(PMF)共识别出4类有机气溶胶,分别为两种一次有机气溶胶(类烃类有机气溶胶和生物质燃烧有机气溶胶)和两种二次有机气溶胶(低挥发、高氧化性的有机气溶胶和低氧化、半挥发性的有机气溶胶),有机气溶胶氧化程度较高.其中二次有机气溶胶的贡献远大于一次有机气溶胶,平均占到有机物的~69%,而去除秸秆燃烧时段后PMF结果中未解析出生物质燃烧有机气溶胶.  相似文献   

9.
2009年8~9月成都市颗粒物污染及其与气象条件的关系   总被引:19,自引:0,他引:19       下载免费PDF全文
对成都市3个不同点位PM2.5和PM10进行了为期30d的连续观测,研究了大气颗粒物浓度的时空分布特征,及其与气象条件的关系.研究表明,观测期间成都市大气颗粒物PM2.5和PM10质量浓度日均值分别为66,94μg/m3,两者浓度变化范围较大,但变化趋势相同.从空间分布来看,大气颗粒物浓度均是熊猫基地>草堂寺>丽都花园,即下风向污染状况最严重,商业繁华地段次之,生活居住区最好;从时间分布来看,大气颗粒物污染最严重出现在9月17~19日,9月5~9日2个时间段,不利的气象因素和污染物的累积是造成该时间段大气颗粒物污染加重的主要原因.PM2.5与PM10质量浓度的相关性为0.93,PM2.5对PM10的贡献较大,两者质量浓度的比值达0.69.气温对大气颗粒物浓度变化没有显著影响;降水以及风速对颗粒物浓度影响较大,主要是对颗粒物的湿清除和促进扩散作用;在一定相对湿度范围内,高湿度条件容易造成大气颗粒物的较重污染.能见度与大气颗粒物浓度呈明显负相关性,且与PM2.5的相关系数大于与PM10的相关系数.  相似文献   

10.
天津秋冬季PM2.5碳组分化学特征与来源分析   总被引:13,自引:2,他引:11       下载免费PDF全文
霍静  李彭辉  韩斌  陆炳  丁潇  白志鹏  王斌 《中国环境科学》2011,31(12):1937-1942
为研究天津大气PM2.5中有机碳和元素碳的特征,于2009年9月4日到2010年2月25日在天津3个监测点位采集PM2.5样品,分析了PM2.5颗粒中元素碳和有机碳的含量特征、与气象条件的相互关系、以及碳组分的来源.结果表明3个监测点位PM2.5的平均质量浓度为123.85μg/m3;TC的平均浓度为18.76μg/m3,其中OC的平均浓度为14.48μg/m3,EC的平均浓度为4.27μg/m3,日均OC和EC浓度分别占PM2.5的11.7%和3.5%.秋季SOC的估算值为5.1μg/m3, 占OC的40.7%、PM2.5的4.3%;冬季SOC的估算值为6.5μg/m3, 占OC的35.7%,PM2.5的4.9%.观测期间EC与温度呈比较好的负相关关系; OC、EC、TC的浓度与风速有较好的负相关性.48h后推气流轨迹结果显示局地盘旋的气流(L)和来自天津北方或西北方区域气流(N/NW)有较高的碳组分浓度;天津大气PM2.5中碳组分受包括生物质燃烧、汽车排放、燃煤和道路扬尘混合来源影响.  相似文献   

11.
应用中流量采样器TSP-PM10-PM2.5对我国肺癌高发区宣威地区6个乡村19家农户进行采样,运用滤膜称重法来分析不同燃料类型室内及相应室外的大气颗粒物质量浓度特征.结果显示,各村庄室内、室外PM10质量浓度比值(I/O)变化范围为1.74~2.87,说明室内PM10污染主要由室内污染源引起;做饭时段室内PM10污染比其他时段严重,尽管烟囱可以将大量的污染物排出室外,但室内颗粒物的质量浓度依然较高.室内PM10质量浓度依燃料类型从高到低依次为块煤用户>型煤用户>燃柴用户>用电用户,室内PM2.5质量浓度依燃料类型从高到低表现为块煤用户>燃柴用户>用电用户;块煤、型煤用户的室内PM10的质量浓度平均值(442.49μg/m3、399.14μg/m3)超过国家室内空气质量标准日均值150μg/m3,污染严重;燃柴和用电用户室内PM10的质量浓度平均值(145.50μg/m3、119.91μg/m3)低于国家室内空气质量标准日均值150μg/m3,污染较轻.块煤用户PM2.5质量浓度日均值(132.58μg/m3)超过2012年2月29日环境保护部发布的环境空气质量标准二级标准75μg/m3,而燃柴和用电户PM2.5的质量浓度(55.24μg/m3、65.02μg/m3)均低于环境空气质量标准二级标准75μg/m3,说明块煤用户室内细颗粒污染较重,用电和燃柴用户室内细颗粒物污染相对较轻.  相似文献   

12.
武汉市洪山区春季PM2.5浓度及多环芳烃组成特征   总被引:2,自引:0,他引:2  
分析了武汉市洪山区2014年春季PM2.5的浓度,并利用气相色谱/质谱(GC/MS)测定了多环芳烃(PAHs)的组成.结果表明,PM2.5的质量浓度为47.99~195.87μg/m3,平均质量浓度为(101.34±32.49)μg/m3,超标天数占总监测天数的81.82%;PM2.5质量浓度与各气象要素间的相关性不显著.PM2.5中PAHs日均浓度变化范围为8.44~34.45ng/m3,平均浓度为21.48±7.03ng/m3,其中4环PAHs的含量最高,达到11.72ng/m3,占总PAHs浓度的54.56%,结合典型污染来源中PAHs的特征比值和数学统计中主成分分析法,判断出其主要污染来源为车辆排放、燃烧源和燃煤源;PAHs日均总毒性当量(∑BaPeq)浓度范围为1.10~5.46ng/m3,平均值为2.99ng/m3,日均超标率达到60.61%.  相似文献   

13.
利用CALPUFF对安徽和河南秸秆焚烧的模拟与研究   总被引:2,自引:1,他引:1  
秸秆焚烧会产生大量的颗粒物(PM)、氮氧化物、有机碳、苯以及多环芳烃等污染物,不仅影响空气质量,危害人体健康,而且大大降低能见度,对交通运输构成威胁. 针对安徽和河南2009年6月严重的秸秆焚烧现象,对CALPUFF模拟系统和FEPS模型进行重新编译与整合,对空气动力学直径小于10 μm的颗粒物(PM10)进行扩散模拟,得到逐时ρ(PM10)的烟羽扩散,并对模拟结果进行分析. 结果表明,秸秆焚烧过程中焚烧点附近的ρ(PM10)较大,研究区域内部分区域的日均ρ(PM10)大于我国二级标准(150 μg/m3)甚至三级标准(350 μg/m3). 如果考虑二次粒子,其影响程度会更加严重.   相似文献   

14.
天津市老年人PM2.5暴露研究   总被引:1,自引:0,他引:1  
为了解老年人PM2.5暴露特征并为流行病学研究提供数据支持,本研究选取天津市某社区101名老年人(平均年龄为67岁),在2011年夏季(6月13日~7月2日)和冬季(11月30日~12月12日)分别对其PM2.5暴露水平进行了监测,并对其时间活动模式进行了记录.结果显示,老年人平均85%以上的时间是在居室内度过的.夏季和冬季老年人PM2.5个体暴露浓度分别为 (124.2±75.2)μg/m3和(170.8±126.6)μg/m3.使用时间加权模型对老年人个体暴露浓度进行预测,夏季和冬季个体暴露实测浓度与预测浓度差值分别为0.6~220.9 μg/m3和0.6~416.8 μg/m3.吸烟活动会导致老年人个体暴露浓度升高.相关性分析表明PM2.5个体暴露浓度与环境浓度的相关性强于其与室内浓度的相关性,这为使用环境浓度替代或预测个体暴露浓度提供了支持.  相似文献   

15.
广州市PM_2.5和PM_1.0质量浓度变化特征   总被引:4,自引:1,他引:3  
文章报道了2005年干季和2006年湿季广州市大气细粒子PM2.5和PM1.0质量浓度的实时监测情况。监测结果表明:干季监测点PM2.5日均质量浓度在11.8~164.0μg/m3之间,总平均值为81.7μg/m3;湿季日均质量浓度在19.9~121.2μg/m3之间,总平均值为57.7μg/m3。干季PM1.0日均质量浓度变化范围为14.9~129.1μg/m3,总平均值为59.4μg/m3;湿季日均质量浓度在11.9~86.7μg/m3之间,总平均值为52.9μg/m3。对比发现,PM1.0总平均质量浓度在干、湿季相差很小,且与湿季PM2.5总平均质量浓度也相差不大,显示PM1.0具有相对固定成因来源且基本不受季节变化影响,而且湿季PM2.5的组成主要由PM1.0大气细粒子构成。干季PM2.5和PM1.0质量浓度日变化特征呈明显夜间高、白天低的特点,质量浓度的最大值都出现在晚上21:00左右;湿季由于雨水频繁,没有明显的日变化特征。气象分析表明,干季大气细粒子质量浓度主要受冷空气影响,而湿季主要受降雨影响。  相似文献   

16.
2014年京津冀地区PM2.5浓度时空分布及来源模拟   总被引:3,自引:0,他引:3  
采用模式(CAMx)模拟与污染物、气象观测资料相结合的方式,分析了2014年京津冀地区PM2.5时空分布及来源特征.结果表明:PM2.5具有较为明显的时间变化规律,呈秋冬高、春夏低的规律和双峰型分布的日变化特征;重污染日PM2.5高浓度(PM2.5>150μg/m3)主要分布在太行山前的华北平原区,特别是北京、保定、石家庄一线,而太行山、燕山等西部及北部山区PM2.5浓度明显低于平原区;重污染日京津冀地区PM2.5平均浓度在150μg/m3以上的面积约占总面积的73%;重污染日北京、天津、石家庄市的PM2.5外来输送率分别为58%、54%、39%;2014年10月6~12日京津冀地区发生的一次重污染过程中污染物由南向北输送,区域输送对于各地区PM2.5浓度有着十分重要的影响.  相似文献   

17.
天津近岸海域大气颗粒物无机组分季节变化及源析   总被引:4,自引:1,他引:3       下载免费PDF全文
2006~2007年在天津近岸海域分4个季节走航采集了不同粒径大气颗粒物样品,分析了其质量浓度以及元素、离子和碳等化学组成,并应用富集因子以及特征化合物比值对其来源进行了探讨.结果表明,天津近岸海域TSP,PM10和PM2.5的质量浓度分别为(294.98±3.95),(279.87±17.53),(205.50±38.13)μg/m3,且呈现出明显的季节变化,秋季颗粒物浓度最高,冬季次之,夏季最低. TSP、PM10和PM2.5中总元素浓度分别为48.76, 47.94,32.08 μg/m3. TSP中含量最高的离子是Na+, PM10和PM2.5中含量最高的离子是Cl-. 3种不同粒径中OC浓度秋、冬两季均明显高于春夏两季. Al/Fe的比值分析结果表明,春季TSP的主要来源为土壤尘,秋、冬季PM10和PM2.5主要受燃煤的影响. Cu、Zn和Pb的富集系数较高,其中Pb在冬季PM10中富集达到最高为741.3. NO3-/SO42-的变化范围为0.28~0.85,春夏季该比值较高于秋冬季,反映了该海域同时受燃煤与机动车污染的影响.OC/EC变化范围为2.13~5.58,表明该海域气溶胶中存在着大量二次有机碳.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号