首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
燃用甲醇燃料的发动机尾气排放   总被引:12,自引:1,他引:12  
本文主要报导了在二冲程、四冲程汽油机及柴油机上燃用甲醇-汽油混合燃料、M_(100)甲醇燃料的发动机尾气排放方面所做的研究,并与燃用汽油、柴油的尾气排放进行了对照。结果表明,无论是甲醇-汽油混合燃料,还是M_(100)甲醇燃料尾气排放,都较汽油、柴油尾气排放的常规污染物,均有不同程度的减少。因此,应用甲醇燃料对改善环境是有益的。  相似文献   

2.
The effects of a diesel oxidation catalytic (DOC) converter on diesel engine emissions were investigated on a diesel bench at various loads for two steady-state speeds using diesel fuel and B20. The DOC was very effective in hydrocarbon (HC) and CO oxidation. Approximately 90%–95% reduction in CO and 36%–70% reduction in HC were realized using the DOC. Special attention was focused on the effects of the DOC on elemental carbon (EC) and organic carbon (OC) fractions in fine particles (PM2.5) emitted from the diesel engine. The carbonaceous compositions of PM2.5 were analyzed by the method of thermal/optical reflectance (TOR). The results showed that total carbon (TC), OC and EC emissions for PM2.5 from diesel fuel were generally reduced by the DOC. For diesel fuel, TC emissions decreased 22%–32% after the DOC depending on operating modes. The decrease in TC was attributed to 35%–97% decrease in OC and 3%–65% decrease in EC emissions. At low load, a significant increase in the OC/EC ratio of PM2.5 was observed after the DOC. The effect of the DOC on the carbonaceous compositions in PM2.5 from B20 showed different trends compared to diesel fuel. At low load, a slight increase in EC emissions and a significant decrease in OC/EC ratio of PM2.5 after DOC were observed for B20.  相似文献   

3.
Polynuclear aromatic compounds (PAC) were characterized in diesel fuel, kerosene fuel and unmodified sunflower oil as well as in their respective engine exhaust particulates. Diesel fuel was found to contain high amounts of different PAC, up to a total concentration of 14,740?ppm, including carbazole and dibenzothiophene, which are known carcinogens. Kerosene fuel was also found to contain high amounts of different PAC, up to a total concentration of 10,930?ppm, consisting mainly of lower molecular weight (MW) naphthalene and its alkyl derivatives, but no PAC component peaks were detected in the unmodified sunflower oil. Engine exhaust particulates sampled from a modified one-cylinder diesel engine running on diesel, kerosene and unmodified sunflower oil, respectively, were found to contain significantly high concentrations of different PAC, including many of the carcinogenic ones, in the soluble organic fraction (SOF). PAC concentrations detected at the exhaust outlet indicated that most of the PAC that were present in diesel and kerosene fuels before the test runs got completely burnt out during combustion in the engine whereas some new ones were also formed. The difference between the character and composition of PAC present in the fuels and those emitted in the exhaust particulates indicated that exhaust PAC were predominantly combustion generated. High amounts of PAC, up to totals of 52,900 and 4830?µg?m?3 of burnt fuel, in diesel and kerosene exhaust particulates, respectively, were detected in the dilution tunnel when the exhaust emissions were mixed with atmospheric air. Significant amounts of PAC were also emitted when the engine was run on unmodified sunflower oil with a total concentration of 17,070?µg?m?3 of burnt fuel detected in the dilution tunnel. High proportions of the combustion-generated PAC determined when the engine was run on diesel, kerosene and unmodified sunflower, respectively, consisted of nitrogen-containing PAC (PANH) and sulphur-containing PAC (PASH).  相似文献   

4.
Utilizing oil extracted from waste engine oil and waste plastics, by pyrolysis, as a fuel for internal combustion engines has been demonstrated to be one of the best available waste management methods. Separate blends of fuel from waste engine oil and waste plastic oil was prepared by mixing with diesel and experimental investigation is conducted to study engine performance, combustion and exhaust emissions. It is observed that carbon monoxide (CO) emission increases by 50% for 50% waste plastic oil (50WPO:50D) and by 58% for 50% waste engine oil (50WEO:50D) at full load as compared to diesel. Unburnt hydrocarbon (HC) emission increases by 16% for 50WPO:50D and by 32% for 50WEO:50D as compared to diesel at maximum load. Smoke is found to decrease at all loading conditions for 50WPO:50D operation, but it is comparatively higher for 50WEO:50D operation. 50WPO:50D operation shows higher brake thermal efficiency for all loads as compared to 50WEO:50D and diesel fuel operation. Exhaust gas temperature is higher at all loads for 50WPO:50D and 50WEO:50D as compared to diesel fuel operation.
  相似文献   

5.
The aim of this study was to investigate the potential mutagenic activity of diesel engine exhaust in the Ames/Salmonella assay using a direct aerosol exposure system. So, TA 98 and TA 100 strains, with or without added S9 mix, were exposed to diesel emissions after varying degrees of filtration. Variants of these two strains, deficient in nitroreductase (TA 98NR and TA 100NR) or over-expressing O-Acetyl Transferase (YG 1024 and YG 1029), were also exposed to total (unfiltered) diesel exhaust to highlight the putative mutagenicity of any nitro-PAHs present in these emissions. Mutagenic activity of the diesel exhaust was demonstrated on Salmonella typhimurium, strains TA 100 and variants TA 100 NR and YG1029. The use of a particle filter did not modify the genotoxicity of the diesel emissions, indicating a major contribution of the gas phase to the mutagenicity of these diesel emissions. The prominent role of the particulate-associated nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) claimed by some authors working on diesel exhaust organic extracts was not confirmed by our results with native diesel exhaust exposure. Our results show that the gas phase is potentially more mutagenic than the particles alone.  相似文献   

6.
In recent years, much attention has been given to the desulphurization of fuels like diesel oil and gasoline, since exhaust gases containing SOx cause air pollution and acid rain. Moreover, a lower sulphur content of fuels would allow the use of new engines and catalytic systems for the reduction of CO, particle and NOx-emissions, and a more efficient fuel consumption. The S-level in fuels is presently limited in Germany for gasoline and diesel oll to 150 ppm and 350 ppm, respectively. In 2005 the level will be decreased Europe-wide for all vehicle-fuels down to 50 ppm; in some countries, fuels are or will be on the market with even less sulphur. The current technology of hydrodesulphurization (heterogeneous, catalyzed hydrorreating of organic sulphur compounds) can desulphurize quite adequately down to today’s S-level. The process, however, is limited for the production of ultra-low sulphur fuels, and the expenses (pressure, reactor size, investment costs, energy consumption, specific active catalysts) are high to meet future requirements. alternative processes, which are not limited to hydrotreating, are therefore desirable. Beside an overview about hydrotreating, this paper presents two quite different alternatives: Extraction of sulphur compounds by ionic liquids and the synthetic production of S-free fuels from natural gas by Fischer-Tropsch-synthesis. Ionic liquids (ILs) are low melting (<100°C) salts which represent a new class of non-molecular, ionic solvents. In the experiments presented, extraction of model diesel oils (dibenzothiophene and dodecanthiol in n-dodecane) as well as of a real predesulphurized diesel oil (with about 400 ppm S) were investigated. The results show the excellent and selective extraction properties of ILs for organic sulphur compounds, especially with regard to those compounds which are very difficult to remove by common hydrodesulphurization. As expected, the desulphurization by extraction is much more complicated in case of real diesel oil (compared to a model oil) due to its complex chemical composition including many different sulphur compounds and other impurities like organic nitrogen and metal-compounds. Nevertheless, the results with pre-desulphurized diesel oil are also very promising. So, extraction of sulphur components by ILs is a new approach for deep desulphurization of diesel oil. The application of very mild process conditions (low pressure and temperature) in comparison to traditional hydrotreating is an additional advantage of this new concept. An alternative to today’s fuels based on crude oil is the production of gasoline and diesel oil from natural gas (or other fossil fuels like coal) by Fischer-Tropsch-synthesis (FTS). The products like diesel oil are completely free of sulphur and other impurities like nitrogen and metal compounds. Although several FTS-processes have been investigated and developed, and some processes are already running on a technical scale, a real breakthrough was not obtained up to now. The production costs of these capital-intensive processes are probably above the breakeven point, at least at today’s oil price. In this paper, a ‘lowcost’ process is discussed, which is based on nitrogen-rich syngas. In contrast to classical FTS-processes with nitrogen-free syngas, the investment costs are probably lower: The syngas is produced by partial oxidation with ait, which eliminates the need of an air separation plant, while a process with nitrogen-rich syngas does not utilize a recycle loop and a recycle compressor.  相似文献   

7.
We estimate a model of vehicle choice and kilometers driven to analyze the long-run impacts of fuel conservation policies in the Indian car market. We simulate the effects of petrol and diesel fuel taxes and a diesel car tax, taking into account their interactions with the pre-existing petrol fuel tax and car sales taxes. At levels sufficient to reduce total fuel consumption by 7%, the increased diesel and petrol fuel taxes both yield deadweight losses (net of externalities) of about 4 (2010) Rs./L. However, at levels sufficient to reduce total fuel consumption by 2%, the increased petrol fuel tax results in a deadweight loss per liter of fuel conserved that is greater than that caused by the diesel fuel tax. This reflects both the high pre-existing tax on petrol fuel and the high own-price elasticities of fuel demand in India. A tax on diesel cars that results in the same diesel market share as the large diesel fuel tax actually has a negative deadweight loss per liter of fuel conserved. The welfare effects of all three policy instruments are positive, once the external benefits of reducing fuel consumption are added to the excess burden of taxation.  相似文献   

8.
This work investigates the effect of adding pentanol with biodiesel derived from cashew nut shell on its emissions characteristics is conducted in stationery diesel engine. The main purpose of this work is intended to reduce the emissions by fuelling biodiesel derived from cashew nut shell and the pentanol blends. Cashew nut shell biodiesel is prepared by transesterification process. Oxygenated additive used in the work is Pentanol. The experiment is conducted using four test fuels such as, biodiesel derived from cashew nut shell (CNSBD), a fuel containing 90% cashew nut shell biodiesel and 10% pentanol (CNSBD90P10), a fuel containing 80% cashew nut shell biodiesel and 20% pentanol (CNSBD80P20) and neat diesel. Experimental work concluded that by adding 10% of pentanol to cashew nut shell biodiesel 10.1%, 2.6%, 5.1%and 2.1%reduction in CO, HC, NO x and Smoke emissions were observed respectively. Further by fueling with these blends, no modifications in engines were required.
  相似文献   

9.
The exhaust emissions from two heavy duty diesel vehicles running on eight different fuel compositions were investigated regarding their content of high molecular weight (≥ C12) aliphatic/ olefinic hydrocarbons. It was concluded that the emitted amount of semi‐volatile associated aliphatic hydrocarbons (range C12‐C22) depend on the fuel used in the engines and that these emissions mainly consisted of uncombusted fuel components. It was also found that uncombusted engine lubrication oil was the main constituent of the emitted particulate associated aliphatic hydrocarbons (C17‐C40). These constituted between 58% and 95% of the total emissions of the high molecular weight aliphatic compounds. Emission factors for the total of high molecular aliphatic hydrocarbons (C12‐C40) were demonstrated to be in the range of 15–100 mg/km. Some individual aliphatic hydrocarbons with cocarcinogenic effects were identified and quantified in both particulate and semi‐volatile phases of the exhaust. Multivariate data analysis was used to investigate the relationship between fuel parameters and emission of semi‐volatile aliphatic emission.  相似文献   

10.
Energy is a vital and growing need for human activities such as transport, agriculture and industry. The transport and agriculture sectors are major consumers of fossil fuel. However, availability of fossil fuels is limited. The use of fossil fuels is of increasing environmental concerns because it produces toxic airborne particulates and greenhouse gases such as CO2. The increasing industrialization and motorization of the world led to a steep rise for the demand of petroleum-based fuels. Hence, it is necessary to seek alternative fuels, which can be produced from resources available locally within the country such as alcohol, biodiesel and vegetable oils. Biodiesel is defined as the mono alkyl esters of vegetable oils or animal fats. Biodiesel is the best candidate for diesel fuels in the diesel engines. The advantage of biodiesel over gasoline and petroleum/diesel is its eco-friendly nature. This article reviews the production, characterization and current status of biofuels mainly biodiesel along with the environmental impacts of particulate matter, greenhouse gas emissions originated from biodiesel.  相似文献   

11.

Aim and Scope

This study was aimed at representing current aerosol trends measured at the GAW global station and their relevance for the present fine dust discussion and a possible impact on climate.

Results and Discussion

1) The intensive GAW measuring program at Hohenpeissenberg covers numerous parameters for the characterization of the physical, optical and chemical characteristics of the atmospheric aerosol. The time series of the number concentration of ultra fine particles with diameters of about 0.004 to 3 μm shows an increase of about 50% since 1995. 2) The introduction of soot particle filters would lower the dust mass only slightly since soot particles from diesel cars only about 8–10% contribute to the dust mass, but about 90% to the number concentration of particles. 3) The single scattering albedo (SSA) is a key parameter determining whether the existing aerosol mixture causes a cooling (negative radiative forcing) or a warming (positive radiative forcing) in the atmosphere. At Hohenpeißenberg the SSA changed from 0.85 to 0.91 in the time period 1999 to 2005, i.e. the regional aerosol as a whole is dominated by scattering rather than absorbing particles.

Conclusion and Perspective

From current aerosol trends at the GAW global station Hohenpeißenberg it was possible to analyze their relevance for air pollution control and possible influences on climate. Dust mass is not a suitable parameter for accessing the contribution of diesel engined vehicles. Measuring the number concentration of particles much more reflects the influence of diesel engined vehicles and also shows, as expected, an upward trend due to a strong increase of the fraction of diesel vehicles in comparison to the total number of cars. Aerosol particles scatter and absorb solar radiation and thus cause a cooling or warming in the atmosphere. Calculated values of the single scattering albedo at Hohenpeissenberg show, that in the initial years the aerosol did not diminish the temperature rise, but rather caused it to increase. Only a data comparison from a global network like GAW can demonstrate, if the results are even representative for the large scale situation.  相似文献   

12.
The Energy Policy Act of 1992 motivated transit agencies to utilize alternative-fuel transit buses in addition to their popular diesel buses. Transit agencies have planned to add a significant number of alternative-fuel buses to their current transit fleets. This study is to inform policy makers who may allocate public funds for alternative-fuel bus projects to make a smarter decision in this regard. For each of the eight alternative-fuel buses, technologies introduced by the ACT, fuel efficiency, life-cycle cost (LCC) and emission are estimated and compared with the available information for the ultralow-sulfur diesel (ULSD) fuel buses. A case study in the State of Delaware is presented to demonstrate how the proposed approaches can be employed to evaluate the relative importance of the most viable alternative-fuel transit buses according to the predefined set of criteria. The results show that buses propelled by hybrid-diesel engine have the least LCC and emissions and are the most suitable alternative for the ULSD buses in the short- and midterm.  相似文献   

13.
通过车载实验,怠速法检测、简易工况法检测数据评价分析等方法,研究了重庆市在用CNG车辆排放情况,比较了CNG车与同类型汽油、柴油车尾气污染物排放情况。研究发现,目前CNG在用车并非绝对的环保汽车,其中在NOx的排放上,CNG车排放高于同类型汽油、柴油车0.03—14倍;在CO、THC的排放上,不同测试工况下CNG汽车表...  相似文献   

14.
When petroleum hydrocarbons contaminate soil, the carbon:nitrogen (C:N) ratio of the soil is altered. The added carbon stimulates microbial numbers but causes an imbalance in the C:N ratio which may result in immobilization of soil nitrogen by the microbial biomass, leaving none available for plant growth. As members of Leguminosae fix atmospheric nitrogen to produce their own nitrogen for growth, they may prove more successful at growing on petroleum hydrocarbon contaminated sites. During a wider study on phytoremediation of diesel fuel contaminated soil, particular attention was given to the performance of legumes versus other plant species. During harvesting of pot experiments containing leguminous plants, a recurring difference in the number and formation of root nodules present on control and contaminated Common vetch (Vicia sativa L.) plants was observed. The total number of nodules per plant was significantly reduced in contaminated plants compared to control plants but nodules on contaminated plants were more developed than corresponding nodules on control plants. Plant performance of Common vetch and Westerwold's ryegrass (Lolium multiflorum L.) was compared to illustrate any difference between the ability of legumes and grasses to grow on diesel fuel contaminated soil. Common vetch was less affected by diesel fuel and performed better in low levels of diesel fuel contaminated soil than Westerwolds ryegrass. The total amount of diesel fuel remaining after 4 months in Common vetch planted soil was slightly less than in Westerwolds ryegrass planted soil.  相似文献   

15.
Simulation models are used to examine the possible effects of discrete fuel distributions and of several fire-spread mechanisms on fire shapes. Two postulated fire spread mechanisms —heat accumulation and flame contact—are shown to yield near-ellipses in continuous fuels, but a wide range of shapes in discrete and very patchy fuels. The alternative shapes include ovoids, “tear-drop” (with the ignition point at varying positions on the major axis), and straight lines. Simulated fires in discrete, patchy fuels are less regular in shape than in uniform and continuous fuels and show little or no backburning. The results may explain certain observed differences between wildfire shapes that occur in different environments and at different burning intensities.  相似文献   

16.
• Emissions from 53 in-use diesel-fueled off-road equipment were measured. • There exists a large off-road equipment variability in emissions. • Engine operations have significant impacts on real-world tailpipe emissions. • Emission inventory development should take into account job duties and operations. The objective of this paper is to quantify the variability in emissions of off-road equipment using a portable emission measurement system. A total of 53 commonly used equipment for agriculture, base construction, paving construction, and material handling were selected. Time-based and fuel-based emissions were quantified by different duty and engine modes. Three duty modes (idling, moving, and working) were used. Ten engine modes were defined based on normalized engine revolutions-per-minute and manifold absolute pressure, respectively. Composite emission factors taking into account both duty modes and its corresponding time percentage during a typical duty cycle were estimated. Results showed that there existed a large off-road equipment variability in emissions. Depending on duty and engine modes, time-based NO emissions ranged from 3.1 to 237.9, 29.1‒1475.6, 83.2‒681.6, and 3.2‒385.2 g/h for agriculture, base construction, paving construction and material handling equipment, respectively while for fuel-based NO emissions these ranges were 5.3‒52.0, 11.7‒69.0, 4.8‒30.8, and 11.0‒54.6 g/kg, respectively. Furthermore, emission factors derived from this study exhibited a much larger variability compared to those used in NONROAD by US EPA and National Guideline for Off-road Equipment of China. This implied that localized measurements of emissions are needed for improvement of accuracy of emission inventory. Furthermore, both equipment types and operations should be considered for development of emission inventory and control strategy.  相似文献   

17.
Road transport produces significant amounts of emissions by using crude oil as the primary energy source. A reduction of emissions can be achieved by implementing alternative fuel chains. The objective of this study is to carry out an economic, environmental and energy (EEE) life cycle study on natural gas-based automotive fuels with conventional gasoline in an abundant region of China. A set of indices of four fuels/vehicle systems on the basis of life cycle are assessed in terms of impact of EEE, in which natural gas produces compressed natural gas (CNG), methanol, dimethylether (DME) and Fischer Tropsch diesel (FTD). The study included fuel production, vehicle production, vehicle operation, infrastructure and vehicle end of life as a system for each fuel/vehicle system. A generic gasoline fueled car is used as a baseline. Data have been reviewed and modified based on the best knowledge available to Chongqing local sources. Results indicated that when we could not change electric and hydrogen fuel cell vehicles into commercial vehicles on a large scale, direct use of CNG in a dedicated or bi-fuel vehicle is an economical choice for the region which is most energy efficient and more environmental friendly. The study can be used to support decisions on how natural gas resources can best be utilized as a fuel/energy resource for automobiles, and what issues need to be resolved in Chongqing. The models and approaches for this study can be applied to other regions of China as long as all the assumptions are well defined and modified to find a substitute automotive energy source and establish an energy policy in a specific region.  相似文献   

18.
• Fuel consumption (FC) from LDPVs is measured using on-board diagnostic method (OBD). • The FC of the OBD is 7.1% lower than that of the carbon balance results. • The discrepancy between the approved FC and real-world FC is 13%±18%. • There is a strong relationship (R2=0.984) between the average speed and relative FC. An increasing discrepancy between real-world and type-approval fuel consumption for light-duty passenger vehicles (LDPVs) has been reported by several studies. Normally, real-world fuel consumption is measured primarily by a portable emission measurement system. The on-board diagnostic (OBD) approach, which is flexible and offers high-resolution data collection, is a promising fuel consumption monitoring method. Three LDPVs were tested with a laboratory dynamometer based on a type-approval cycle, the New European Driving Cycle (NEDC). Fuel consumption was measured by the OBD and constant-volume sampling system (CVS, a regulatory method) to verify the accuracy of the OBD values. The results of the OBD method and the regulatory carbon balance method exhibited a strong linear correlation (e.g., R2 = 0.906-0.977). Compared with the carbon balance results, the fuel consumption results using the OBD were 7.1%±4.3% lower on average. Furthermore, the real-world fuel consumption of six LDPVs was tested in Beijing using the OBD. The results showed that the normalized NEDC real-world fuel consumption of the tested vehicles was 13%±17% higher than the type-approval-based fuel consumption. Because the OBD values are lower than the actual fuel consumption, using a carbon balance method may result in a larger discrepancy between real-word and type-approval fuel consumption. By means of the operating mode binning and micro trip methods, a strong relationship (R2 = 0.984) was established between the average speed and relative fuel consumption. For congested roads (average vehicle speed less than 25 km/h), the fuel consumption of LDPVs is highly sensitive to changes in average speed.  相似文献   

19.
Bioenergy cropping systems could help offset greenhouse gas emissions, but quantifying that offset is complex. Bioenergy crops offset carbon dioxide emissions by converting atmospheric CO2 to organic C in crop biomass and soil, but they also emit nitrous oxide and vary in their effects on soil oxidation of methane. Growing the crops requires energy (e.g., to operate farm machinery, produce inputs such as fertilizer) and so does converting the harvested product to usable fuels (feedstock conversion efficiency). The objective of this study was to quantify all these factors to determine the net effect of several bioenergy cropping systems on greenhouse-gas (GHG) emissions. We used the DAYCENT biogeochemistry model to assess soil GHG fluxes and biomass yields for corn, soybean, alfalfa, hybrid poplar, reed canarygrass, and switchgrass as bioenergy crops in Pennsylvania, USA. DAYCENT results were combined with estimates of fossil fuels used to provide farm inputs and operate agricultural machinery and fossil-fuel offsets from biomass yields to calculate net GHG fluxes for each cropping system considered. Displaced fossil fuel was the largest GHG sink, followed by soil carbon sequestration. N20 emissions were the largest GHG source. All cropping systems considered provided net GHG sinks, even when soil C was assumed to reach a new steady state and C sequestration in soil was not counted. Hybrid poplar and switchgrass provided the largest net GHG sinks, >200 g CO2e-C x m(-2) x yr(-1) for biomass conversion to ethanol, and >400 g CO2e-C x m(-2) x yr(-1) for biomass gasification for electricity generation. Compared with the life cycle of gasoline and diesel, ethanol and biodiesel from corn rotations reduced GHG emissions by approximately 40%, reed canarygrass by approximately 85%, and switchgrass and hybrid poplar by approximately 115%.  相似文献   

20.
• Emissions from two sedans were tested with gasoline, E10 and M15 at 30°C and -7°C. • As the temperature decreased, the PM, PN and BC emissions increased with all fuels. • Particulate emissions with E10 and M15 were more sensitive to the temperature. • The PN and BC generated during cold start-up dominated those over the WLTC. Ambient temperature has substantial impacts on vehicle emissions, but the impacts may differ between traditional and alcohol gasolines. The objective of this study was to investigate the effects of temperature on gaseous and particulate emissions with both traditional and alcohol gasoline. Regulated gaseous, particle mass (PM), particle number (PN) and black carbon (BC) emissions from typical passenger vehicles were separately quantified with gasoline, E10 (10% ethanol and 90% gasoline by volume) and M15 (15% methanol and 85% gasoline by volume) at both 30°C and -7°C. The particulate emissions with all fuels increased significantly with decreased temperature. The PM emissions with E10 were only 48.0%–50.7% of those with gasoline at 30°C but increased to 59.2%-79.4% at -7°C. The PM emissions with M15 were comparable to those with gasoline at 30°C, but at -7°C, the average PM emissions were higher than those with gasoline. The variation trend of PN emissions was similar to that of PM emissions with changes in the fuel and temperature. At 30°C, the BC emissions were lower with E10 and M15 than with gasoline in most cases, but E10 and M15 might emit more BC than gasoline at -7°C, especially M15. The results of the transient PN and BC emission rates show that particulate emissions were dominated mainly by those emitted during the cold-start moment. Overall, the particulate emissions with E10 and M15 were more easily affected by ambient temperature, and the advantages of E10 and M15 in controlling particulate emissions declined as the ambient temperature decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号