首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
火焰原子吸收法测定钼的灵敏度较差,低含量的钼需用无火焰原子吸收法,目前有关的报导尚不多,已见于文献的有海水、植物、岩石中钼的测定,海水中钼预先用对氨基纤维素富集,但淋洗较费时,需三小时以上,植物样品用灼烧法驱除有机基体,灼烧时间需五小时,本工作报告用N-苯甲酰-N--苯基羟胺的氯仿溶液从酸性溶液中萃取钼,继用氨水反萃取后,用HGA-72型高温石墨炉原子化器测定,经萃取后钛、铁、铜和镍等金属离子均已分离;加入氟离子后,可消除浓  相似文献   

2.
在比较钼蓝法定磷的多种方法的基础上,研究了以正戊醇萃取技术,硫酸肼为还原剂测定水中微量磷的方法。实验结果表明,与直接光度法相比,萃取光度法简单,易操作,分析结果的准确度和精密度满足地面水的监测要求,适用于水中微量磷的测定。  相似文献   

3.
为排除黄铁矿中砷测定的干扰,解决以往萃取一反萃取劳动强度大、有机试剂污染等问题,经反复试验,采用生成砷化氢与其他干扰元素分离,钼兰比色法测定砷。该方法具有选择性好,测定范围宽,能测定黄铁矿中含量X.00—0.000X%的砷;具有准确度高、操作简单、流程短、减轻劳动强度等优点。  相似文献   

4.
用磷锑钼三元杂多酸比色测定磷已有报导,但灵敏度低(ε=2.4×10~4),在检测ppb级可溶性磷酸盐时必须萃取分离,手续麻烦。近来,有人用磷钼兰或磷钒钼兰与碱性染料形成离子缔合作用比色测定微量磷,灵敏度较高。但用磷锑钼酸——孔雀绿在非离子表面活性剂存在下比色测磷的报导却不多见。我们在前文工作的基础上,利用磷和砷的相似性,在非离子表面活性剂做增溶剂存在下,先以磷锑钼兰作基核,后加孔雀绿发色,可不经萃取分  相似文献   

5.
磷铋钼蓝光度法测定废水中元素磷   总被引:4,自引:0,他引:4  
闫敏  张忠军  闫斌  商连  谢娟 《环境工程》2002,20(1):57-59
用甲苯萃取废水中的剧毒物元素磷 ,再用溴水将其氧化 ,在稀硫酸 (或硝酸 )介质中 ,磷 铋 钼三元络合物可被抗坏血酸还原生成磷铋钼蓝 ,在 70 0nm处进行光度测定。此法比一般钼蓝法灵敏度高 ,干扰元素少 ,常温下即可迅速充分显色 ,对工业废水中元素磷的测定快速准确  相似文献   

6.
用辉钼精矿火法冶炼制备仲钼酸铵产品过程中,产生多种废水、废气和废渣,严重污染周围环境,采用辉钼精矿氧压煮——萃取制备仲钼酸铵产品新工艺,并且建成与之配套的“三废”综合利用设施,可以从根  相似文献   

7.
水中低浓度磷含量的测定——乙酸丁酯萃取比色法   总被引:2,自引:0,他引:2       下载免费PDF全文
本文报道了一种测定水中低浓度磷的方法。检测限小于0.1ppb。含有钼酸根和锑离子的酸性溶液与正磷酸盐反应,生成磷钼酸锑盐络合物。用抗坏■酸还原生成钼■,用乙酸丁酯萃取钼蓝溶液,测定萃取液的吸光度来测定正磷酸盐浓度。此法仅用于测定磷含量于10ppb的样品。只有入于3.0mg/L的硅或砷对测定有干扰。   相似文献   

8.
冯小红  曾维东 《环境》2012,(Z2):33-34
应用环己烷萃取地表水中微量黄磷,用溴水消解处理有机相将黄磷定量转化为磷酸盐,以磷酸盐标准溶液制作校准曲线,用钼/锑/抗分光光度法测定磷酸盐。对方法的空白控制、萃取回收率、氧化转化率、测量精密度等问题进行探讨。实验证明,以磷酸盐标准溶液制作校准曲线测定地表水中的黄磷,方法检测结果准确可靠。  相似文献   

9.
元素磷主要通过废气和废水进入环境,是水源地严格控制其含量的污染物。研究了用环己烷将水中的微量黄磷萃取,再用溴水将黄磷氧化成磷酸盐,之后用钼锑抗显色剂显色,在700nm波长处用分光光度法测定水中黄磷的方法。指出该方法有较好的准确度和精密度、稳定性强、干扰少、操作简便易学,适用于生活饮用水、地下水及水源地水中的黄磷测定。  相似文献   

10.
钨钼废渣中含有相对较高的钨、钼、铜、镍,该钨钼废渣属危险废物,不经过回收处理处置,不仅浪费资源,而且对环境的危险较大.研究回收技术,从钨钼废渣中提取钨、钼、铜、镍,不但可以提高利用量,还可以防止危险废渣污染环境质量.文章研究了从钨钼废渣中提取钨、钼、铜、镍的工艺方法及萃取剂的使用,并对提取的效果及提取后的废渣进行了监测分析,结果表明,采用湿法对钨钼废渣处理提取钨、钼、铜、镍,不仅提取效率高,而且有一定的经济效率,同时经过提取后钨钼废渣由危险废物降为一般工业废物,便于处置,也降低了处置费用.  相似文献   

11.
李佳  林建伟  詹艳慧 《环境科学》2013,34(11):4266-4274
通过实验考察了镧改性沸石对水中磷酸盐和铵的吸附性能,并探讨了低溶解氧情况下镧改性沸石覆盖控制底泥溶解性磷酸盐和铵态氮释放的效率.镧改性沸石对水中磷酸盐和铵的吸附动力学过程满足准二级动力学模型.镧改性沸石对水中磷酸盐的吸附平衡数据可以采用Langmuir等温吸附方程加以描述,对水中铵的吸附平衡数据可以采用Langmuir、Freundlich和Dubinin-Radushkevich(D-R)等温吸附方程加以描述.当pH 7时,镧改性沸石吸附水中磷酸盐的机制包括配位体交换、路易斯酸碱反应和静电吸引,吸附水中铵的机制是阳离子交换.镧改性沸石覆盖不仅可以有效地控制溶解性磷酸盐从底泥向上覆水的释放,而且可以明显降低铵态氮从底泥向上覆水迁移的速率.镧改性沸石覆盖量越多,控制底泥铵态氮释放的效果越好.镧改性沸石覆盖层吸附从底泥中释放出来的溶解性磷酸盐后主要以较为稳定的形态存在,低溶解氧情况下不容易重新释放出来.上述结果表明,镧改性沸石适合作为一种覆盖材料用于控制低溶解氧情况下溶解性磷酸盐和铵态氮从底泥向上覆水的释放.  相似文献   

12.
硫酸盐还原氨氧化体系中基质转化途径   总被引:2,自引:2,他引:0  
NH_4~+与SO_4~(2-)在接种ANAMMOX培养物的条件下发生同步转化的现象得到研究者的关注,并据此认为这是发生了以SO_4~(2-)为电子受体的NH_4~+氧化过程.然而在相关文献报道中存在着一些问题和疑惑.本文利用CFSTR反应器通过接种ANAMMOX微生物研究了NH_4~+与SO_4~(2-)同步转化特征,在进水除氧、非充满的密封条件下,NH_4~+-N平均转化50.8 mg·L~(-1),SO_4~(2-)-S平均转化量达4.5 mg·L~(-1),同时元素分析结果显示观察到的黄色固体不是单质硫而是含铁化合物;而在完全充满的批试反应器中,观察不到NH_4~+的转化,SO_4~(2-)发生明显转化,且转化速率与接种生物量有关.这两种条件下反应器中的ORP有很大的差异.通过分析论证,认为本研究及相关文献观察报道的NH_4~+与SO_4~(2-)同步转化很可能不是ANAMMOX微生物以SO_4~(2-)为电子受体氧化NH_4~+,而是各自独立的反应过程:NH_4~+的氧化是由于反应器运行过程形成的微氧环境所致,而SO_4~(2-)的转化是因微生物衰亡过程释放有机物导致的异养还原.这种转化途径可以澄清和解释相关研究中存在的问题和疑惑.  相似文献   

13.
粉煤灰提铝中间产物合成4A分子筛对氨氮的吸附行为研究   总被引:2,自引:0,他引:2  
采用粉煤灰提铝中间产物合成4A分子筛,利用XRD、SEM、热重分析、化学成分分析、阳离子交换容量对4A分子筛进行表征.考察吸附时间、pH、分子筛投加量、氨氮初始浓度、共存阳离子对其吸附性能的影响,研究其对模拟废水中氨氮的吸附效果,并结合准二级动力学方程、吸附等温线研究吸附性能和机理.结果表明,初始浓度为50 mg·L~(-1)、4A分子筛投加量为5 g·L~(-1)、pH值为6~9、吸附时间为80 min时氨氮去除率可达71.34%;随着氨氮初始浓度升高,其去除率降低,吸附容量增加;共存阳离子Na~+、K~+、Ca~(2+)对NH_4~+有强烈的竞争吸附,Mg~(2+)无明显竞争作用.吸附过程符合准二级动力学方程和Freundlich模型.Langmuir吸附等温线显示最大吸附容量为20 mg·g~(-1).  相似文献   

14.
程丽杰  黄廷林  程亚  张莎莎  阮昭意  卢磊 《环境科学》2019,40(12):5294-5301
在夏秋季较高温条件下,采用3种混凝剂(Fe Cl3、PFC和PAFC)考察其对复合锰氧化膜中试滤柱去除地表水中氨氮和锰的影响.结果表明,Fe Cl3易水解从而降低水体pH且残留大量铁于水体中均不利于氨氮和锰的去除,改变混凝剂Fe Cl3为PFC,可有效恢复滤柱去除氨氮和锰的能力.经PAFC处理后水体中氨氮和锰在滤柱运行期间去除效果稳定且良好.分析滤料结构特性发现,不同混凝剂对滤料的形貌会产生不同的影响.在以Fe Cl3作为混凝剂时,滤料比表面积上升相对缓慢,不利于氨氮和锰的去除.FTIR图谱结果表明,不同混凝剂运行条件下对滤料Fe—OH键的存在有不同影响.本研究为地表水中氨氮和锰去除过程中水质因素的影响研究提供了一定的理论基础.  相似文献   

15.
负载无机铵盐改性活性炭纤维对甲醛去除能力的影响   总被引:2,自引:1,他引:1  
在不同热处理温度(60℃、160℃)和热处理时间(2h、12h)条件下,通过负载不同质量分数的氯化铵、氟化铵、草酸铵、硫酸铵、过硫酸铵等无机铵盐溶液对活性炭纤维(ACF)进行改性实验,并利用扫描电镜(SEM)分析表征改性后的ACF,研究其对甲醛去除率的影响.结果表明,不同无机铵盐对ACF的改性效果良好,甲醛去除率均大于50%.其中,经草酸铵改性后的ACF对甲醛的去除率最高,可达67.7%.SEM观察发现,无机铵盐大多堆积在ACF表面,不能进入其孔径内部,减小了ACF与外界的接触面积,但对其吸附面积影响不大.因此,利用无机铵盐改性ACF来提高甲醛去除率是可行的.  相似文献   

16.
生物炭对水体中铵氮的吸附特征及其动力学研究   总被引:12,自引:0,他引:12  
以生物炭作为吸附剂,通过静态实验研究了生物炭对水体中铵氮的吸附特性,并从动力学角度探讨了其吸附机理。结果表明,生物炭对铵氮的吸附在60min内基本达到吸附平衡,其吸附量随着水溶液中铵氮的增加而增加,Langmuir方程能够更好的描述铵氮在生物炭上的等温吸附行为,最大吸附量为l.24mg/g,铵氮在生物炭上的吸附动力学数...  相似文献   

17.
竞争性阳离子对粉煤灰合成沸石除氨氮的影响   总被引:3,自引:2,他引:1  
研究了四种竞争性阳离子(K+、Na+、Ca2+、Mg2+)对三种改性粉煤灰合成沸石(Na沸石,Ca沸石,Al沸石)除氨氮能力的影响,并测定了合成沸石对四个湖泊水样(太湖、巢湖、洱海、抚仙湖)中氨氮的去除效果。结果表明,与Na+、Ca2+、Mg2+比较,K+对合成沸石除氨氮影响大得多;而前三者的影响大小的顺序为Na+Ca2+Mg2+。在纯水中,或不同竞争性阳离子存在下,或天然湖泊水样中,Al沸石和Ca沸石对氨氮的去除能力均远高于Na沸石。太湖和巢湖主要含Na+和Ca2+;洱海水样主要含Ca2+;抚仙湖水样主要含Ca2+和Mg2+;但四个湖泊水样中K+的浓度均为最低。Al沸石和Ca沸石对四个天然湖泊水样中的氨氮具有良好的去除效果,去除率达77%~90%。  相似文献   

18.
《水和废水分析方法第四版》中,用过硫酸铵氧化硫酸亚铁胺滴定法测定总铬,此方法检出限为大于1 mg/l,远高出了一般工业废水总铬的测定值,不适用于测定一般工业废水总铬(小于0.5 mg/l)高锰酸钾氧化法测定总铬又易生成棕色的二氧化锰沉淀。因此,采用强酸消解废水样,用过硫酸铵氧化三价铬成六价铬,在硝酸银的催化作用下,以硫酸锰做指示剂,酸溶液中,过硫酸铵氧化三价铬,用二苯碳酰二肼光度法测定,有很好的效果。这样大大降低了方法检出限(0.003 mg/l),易操作,方法简单,准确度高,满足了废水监测的需要。  相似文献   

19.
锆改性沸石对水中磷酸盐和铵的吸附特性   总被引:5,自引:0,他引:5       下载免费PDF全文
林建伟  詹艳慧  陆霞 《中国环境科学》2012,32(11):2023-2031
采用锆对天然沸石进行改性,并研究了锆改性沸石对水中磷酸盐和铵的吸附特性.结果表明,锆改性沸石对水中磷酸盐和铵均具有很好的吸附能力.锆改性沸石对水中磷酸盐和铵的吸附动力学过程满足准二级动力学模型.Langmuir、Freundlich和Dubinin–Radushkevich(D–R)等温吸附模型可以很好地描述锆改性沸石对水中磷酸盐的等温吸附行为.Langmuir等温吸附模型可以很好地描述锆改性沸石对水中铵的等温吸附行为.由Langmuir等温吸附模型计算得到锆改性沸石对磷酸盐和铵的最大吸附容量分别达到26.2,7.82 mg/g.热力学参数表明锆改性沸石对水中磷酸盐的吸附是自发的吸热反应过程.锆改性沸石对水中磷酸盐的吸附能力随着pH值的增加而降低.当pH4~8时,锆改性沸石对水中铵的吸附能力较高;当pH低于4或高于8时,对铵的吸附能力下降.水中共存的Cl-、SO42-、HCO3-和NO3-等阴离子对锆改性沸石吸附磷酸盐的影响很小,而共存的SiO32-对磷酸盐的吸附则具有较强的负面影响.水中共存的Ca2+和Mg2+对锆改性沸石吸附铵的影响较小,而共存的K+和Na+对铵的吸附则具有较强的负面影响.锆改性沸石吸附水中磷酸盐的主要机制是阴离子配位体的交换,吸附水中铵的主要机制是与沸石中可交换阳离子的离子交换.  相似文献   

20.
钛酸盐纳米管对水中氨氮的吸附特性   总被引:1,自引:1,他引:0  
以P25和Na OH为原料,采用水热法制备钛酸盐纳米管(TNTs),利用X射线衍射(XRD)、透射电镜(TEM)对材料的组成和形貌进行表征,通过其对水中氨氮的静态吸附实验,考察TNTs对水中氨氮的吸附特性及规律.结果表明碱浓度为10mol·L-1时,可以获得管长约120 nm,管径约为8 nm的钛酸盐纳米管,其对氨氮的平衡吸附量达到10. 67 mg·g-1. p H值介于3~8时,TNTs能有效地吸附水中的氨氮.吸附过程在1 h基本达到平衡,符合准二级动力学方程.颗粒内扩散方程拟合结果发现,TNTs对氨氮的吸附过程由表面吸附和颗粒内扩散共同控制. Temkin方程能较好地描述TNTs对氨氮的吸附行为.热力学实验表明钛酸盐纳米管对氨氮的吸附是自发进行的吸热过程.共存阴阳离子对氨氮的吸附具有抑制作用,分别表现为SO_4~(2-) Cl~- H_2PO_4~-、K~+ Na~+ Ca~(2+).再生的钛酸盐纳米管对氨氮循环吸附5次仍有88. 64%的吸附效果.红外光谱(FT-IR)研究表明钛酸盐纳米管对氨氮的吸附机制是TNTs层间的Na~+与溶液中的NH_4~+之间发生离子交换.钛酸盐纳米管的优良循环使用性能和大吸附容量使得其能有效地去除水中氨氮.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号