首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Spruce saplings were grown under different nitrogen fertilization regimes in eight chamberless fumigation systems, which were fumigated with either charcoal-filtered (F) or ambient air (O3). After the third growing season trees were harvested for biomass and non-structural carbohydrate analysis. Nitrogen had an overall positive effect on the investigated plant parameters, resulting in increased shoot elongation, biomass production, fine root soluble carbohydrate concentrations, and also slightly increased starch concentrations of stems and roots. Only needle starch concentrations and fine root sugar alcohol concentrations were decreased. Ozone fumigation resulted in needle discolorations and affected most parameters negatively, including decreased shoot elongation and decreased starch concentrations in roots, stems, and needles. In fine roots, however, soluble carbohydrate concentrations remained unaffected or increased by ozone fumigation. The only significant interaction was an antagonistic effect on root starch concentrations, where higher nitrogen levels alleviated the negative impact of ozone.  相似文献   

2.
Three-year-old clonal spruce trees, kept in growth chambers, were treated with ozone and acid mist during a period of 14 months. One half of the trees were grown on an acidic sandy soil, the other half on a calcareous soil rich in carbonate. At the end of the fumigation period, carbohydrates (glucose, fructose, sucrose, raffinose, starch, glucose-1-phosphate and fructose-6-phosphate) and parameters of the energy status (ATP-, AdN-(ATP + ADP + AMP)- levels, ATP/ADP-ratios and adenylate-energy-charge-(AEC)-values) were determined in the current-year's needles. The results indicate that the metabolic status of a plant tissue is not only influenced by the nature of the air pollutants. Soil factors play an important role in metabolic changes within the plant and are thus of relevance in the manifestation of damage symptoms.  相似文献   

3.
The effects of prolonged simulated acid rain on the biochemistry of Scots pine needles were studied in Finnish Lapland. Pine trees were exposed by spraying the foliage and soil with either clean water or simulated acid rain (SAR; both sulphuric and nitric acids) over the period 1985-1991. The concentrations of carbohydrates (starch, glucose, fructose, sucrose) in one-year-old pine needles were not affected by SAR-treatments. The SAR-treatments did not have significant effects on protein bound amino acids, which was true also for most of the free amino acids. However, the citrulline concentration was over three-fold greater in the foliage of pines exposed to SAR of pH 3 compared to irrigated controls. The concentrations of total phenolics, individual low molecular weight phenolics and soluble proanthocyanidins were not affected by the treatments, but insoluble proanthocyanidins had increased in acid-treated trees. Some of the studied biochemical compounds showed significant differences between two sub-areas (similar treatments) only 120 m apart.  相似文献   

4.
CO(2) assimilation rate, stomatal conductance and chlorophyll content of current and previous years' needles of Norway spruce were measured in May 1988, 205 days after the cessation of ozone fumigation during the summer of 1987. Rates of assimilation were consistently higher for both needle year age classes for ozone fumigated trees in comparison to control trees, although only statistically significant for part of the day for current year's needles. A 26% and 48% stimulation, overall, in mean daily rates of assimilation for current and previous years' needles of ozone fumigated trees was observed. This was due to an enhanced apparent quantum yield and light saturated rate of assimilation of ozone fumigated trees. The temperature response regression of assimilation versus temperature was also greater, such that at any given temperature, assimilation was higher for ozone treated trees than control trees. Stomatal conductance was greater for ozone fumigated trees than the controls, but this was only marginally statistically significant. Moreover, there was a consistent increase in chlorophyll content in both year classes in ozone-treated trees. These results are discussed in relation to a possible long term effect of ozone fumigation upon the processes of conifer winter hardening and spring de-hardening.  相似文献   

5.
Four-year-old, seed-grown trees of Norway spruce (Picea abies (L.) Karst.) were exposed in open-top chambers to charcoal-filtered air (8 h daily mean 54 microg O(3) m(-3)) over three consecutive summers (1986-1988). In mid-May 1988, before the third season of fumigation and more than 7 months after exposure to ozone the previous summer had terminated, daily rates of transpiration from intact shoots and water loss from excised needles were measured together with the amount of wax on the needle surface. In mid-July, 92 days after the beginning of the third year of exposure, the wettability of needles was assessed by measuring the contact angle of water droplets on the surface of needles. Exposure to 156 microg O(3) m(-3) resulted in a 16% increase in daily transpiration in current year's needles and a 28% increase in 1-year old needles. These effects were associated with slower stomatal closure in response to increasing water deficit in the needles previously exposed to 156 microg m(-3) ozone. The long-lasting nature of such ozone-induced effects could predispose trees to drought and winter desiccation. No significant effects of ozone were found on the amount of wax covering the needle surface, but a marked increase in the wettability of needles exposed to ozone was observed. The far reaching physiological consequences of these effects in the field and the possibility that similar disturbances may contribute to the decline of high-altitude forests of Norway spruce in Europe are discussed.  相似文献   

6.
Light and electron microscopic studies of four clones of 5-year-old Picea abies trees subjected to ozone and acid mist treatment showed, that: (1) Clones respond differently to the treatment, with clone 14 the most sensitive clone. (2) Main effects were observed in the mesophyll; the vascular strand showed minor cellular changes. (3) Needle shape and ratio of intercellular area to cross section was clone- age-dependent, with a clear increase in intercellular space associated with the treatment (clone 14 and 11 only). (4) Accumulation of tannins in vacuoles was clone-specific. (5) Strong starch formation was found in all samples; in clones 14 and 133 this formation was enhanced by the treatment in older needles, if number of starch grains per cell was calculated. (6) The accumulation of plastoglobules in plastids depended on clone and age, with the older needles containing more globules. In clones 11 and 133, the treatment led to an increase in the number of plastoglobules. (7) Grana stacking in all clones and both needle ages subjected to ozone and acid mist was significantly reduced. The observed changes in the ultrastructure of needle tissue are comparable to those found in field investigations with similar conditions, or phytotron studies evaluating pollution effects on spruce trees.  相似文献   

7.
Seedlings of fir (Abies alba Mill.) and spruce (Picea abies L. Karst.) were fumigated with SO(2), O(3) and SO(2) + O(3) in open-top chambers (OTCs) for almost 5 vegetation periods. As background stress, simulated rain of pH 4.0 was applied. Nutrient content of soil, soil solutions, and trees was investigated and balanced. In the upper partition of the soil high concentrations of exchangeable Ca(2+) were found in all chambers. The SO(2) and SO(2) + O(3) treatments led to increased Ca(2+), Mg(2+) and Mn(2+) concentrations in soil solution and the pool of exchangeable protons increased. This response was most evident in the SO(2) and SO(2) + O(3) chambers and less clear in the filtered pH 5.0 control chamber. In the SO(2) treatment increased Mn and S levels were found in the needles. Ca content in the needles showed a decreasing trend. O(3) alone had no consistent effect on needle nutrient content.  相似文献   

8.
Enzymatic activity (peroxidase, glutamate dehydrogenase, glutamine synthetase), foliage buffering capacity, soluble protein and nitrogen content were measured in current and previous year needles from young spruce (Picea abies) and fir (Abies alba). The trees were exposed to low levels of SO(2) and/or O(3) and simulated acidic precipitation (pH 4.0) in open-top chambers from 1983 through 1988. Needle samples were taken during March 1988 at the end of the five-year fumigation period. Exposure to SO(2) substantially increased sulphur content in both needle age classes of spruce and fir, and concomitantly reduced the foliage buffering capacity index (BCI), whereas the combined fumigation with SO(2) and O(3) had no effect on BCI. Peroxidase activity was markedly higher in year-old needles compared to current-year needles. However, trees from the SO(2) and SO(2) + O(3) treatments exhibited statistically significant stimulated peroxidase activities. Similarly, changes in the activities of the nitrogen-metabolizing enzymes indicated an altered cellular function of the trees after the long-term pollution stress. Levels of activity of both glutamate dehydrogenase and glutamine synthetase were increased by exposure to SO(2), especially in spruce. Although glutamate dehydrogenase in spruce was affected by all treatments, such changes in activity were found in fir only with the SO(2) treatment. The highest activity of glutamine synthetase, however, occurred in the older needles of trees exposed to SO(2) + O(3). Total nitrogen concentration was either unaffected by the pollutant treatments or decreased in spruce compared to the controls. No statistically significant changes due to the fumigation were found in soluble protein concentrations. Results indicated that chronic exposure to air pollutants lead to alterations in metabolic processes in conifer needles, detectable either by changes in typical stress indicating values or by increases in ammonium assimilation capacity.  相似文献   

9.
Four-year-old clonal Picea abies (L.) Karst. plants were treated with ozone (100 microm(-3) plus peaks of 130 to 360 microm(-3)) and acid mist (pH 3.0) during two vegetation periods. Pulse labelling experiments on shoots were performed with [(35)S]methionine in the second year of exposure. Extraction of soluble needle proteins in citric acid buffer of pH 2.8 revealed protein patterns on SDS polyacrylamide gels that differed from those of control needles fumigated with ambient levels of ozone (50 microg m(-3)) and mist of pH 5.6. New proteins of MW 16000 and 32000 were synthesized only in ozone-exposed needles and could not be detected in the controls.  相似文献   

10.
Clone spruce trees (Picea abies L. Karst.) were exposed in the Hohenheim open-top chambers to low levels of O(3) and SO(2), singly and in combination, and to simulated precipitation of two pH treatments (Seufert et al., this volume). At the end of five years of continuous exposure, needles from the 13-year-old trees were sampled and analysed for pigments content by means of HPLC (high pressure liquid chromatography). The pigment content was determined for three needle age classes. Chlorophyll a content, measured on a dry weight basis, was similar for all needle age classes in the control chambers receiving only the simulated rain treatments at pH 5.0 or 4.0, and the chamber receiving O(3) and the rain treatment at pH 4.0. Also, no differences were noted in one-year-old needles in the chambers with SO(2) and simulated precipitation at pH 4.0 and SO(2) + O(3) and simulated precipitation at pH 4.0. Reductions of approximately 10 and 35% were measured in two-year-old needles from the chambers with SO(2) and precipitation at pH 4.0, and SO(2) + O(3) and precipitation at pH 4.0. The three-year-old needles from these chambers had 40% lower chlorophyll a content compared to the control chambers. No treatment effects were seen on the molar ratios of chlorophyll b, the carotenes, lutein, neoxanthin, and the sum of carotenoids involved in the xanthophyll cycle, violaxanthin + antheraxanthin + zeaxanthin, to chlorophyll [Formula: see text]. The xanthophyll cycle, assayed in one-year-old needles under defined light conditions (520 microE m(-2) s(-1), while light) was active in all samples. Needles from the control chambers and the chambers with SO(2) and with O(3) behaved similarly and differed from the SO(2) + O(3) treated needles by a 50% higher zeaxanthin content reached under light.  相似文献   

11.
Studies were done on the effects of elevated soil concentrations of copper (Cu) and (Ni) on foliar carbohydrates and phenolics in Scots pine (Pinus sylvestris L.). Four year-old seedlings were planted in pots filled with metal-treated mineral forest soil in early June. The experimental design included all combinations of four levels of Cu (0, 25, 40 and 50 mg kg(-1) soil dw) and Ni (0, 5, 15 and 25 mg kg(-1) soil dw). Current year needles were sampled for soluble sugar, starch and phenolics at the end of September. Ni increased sucrose concentration in the needles, indicating disturbances in carbohydrate metabolism. Trees exposed to Ni had higher concentrations of condensed tannins compared with controls. In contrast, concentrations of several other phenolic compounds decreased when seedlings were exposed to high levels of Cu or to a combination of Ni and Cu. The results suggest that concentrations of phenolics in Scots pine needles vary in their responses to Ni and Cu in the forest soil.  相似文献   

12.
Four-year-old spruce clones (Picea abies (L.) Karst.) cultivated in sand and provided with a complete nutrient solution, or a solution deficient in magnesium and calcium, were exposed to the pollutant mixtures SO(2)/NO(2), O(3)/NO(2), and O(3)/SO(2)/NO(2), at realistic concentrations for 32 weeks. Fumigation caused a slight increase of total N contents in current year needles, whereas in one-year-old needles N concentrations did not change. The response of nitrate reductase activity to pollutant stress depended on needle age and nutrient supply, respectively. In one-year-old needles fumigation resulted in a significant inhibition of enzyme activity, particularly in Mg and Ca deficient trees. The combination of all three components proved to be most effective in causing a decrease by 60% compared to the control. In contrast, nitrate reductase activity was stimulated in current year needles, especially by O(3)/NO(2) and O(3)/SO(2)/NO(2). Changes in the activity of nitrate and nitrite reductases are considered as a factor contributing to the high phytotoxic potential of pollutant combinations with NO(2).  相似文献   

13.
Seedlings of Pinus ponderosa (ponderosa pine) and Abies concolor (white fir) were exposed to acidic fog (pH 2.0, 3.0 or 4.0) in open-field plots for six weeks. The two species exhibited dissimilar injury responses; neither current year nor previous year needles of ponderosa pine were injured by pH 2.0 fog, but current year needles exhibited higher membrane permeability responses (i.e. needle extract conductivity, K+ concentration). In comparison, both needle age classes in white fir were significantly injured by pH 2.0 fog, but no significant effects on membrane permeability were observed. For both species, whole-study average rates of net photosynthesis in previous year needles were lower in plants exposed to pH 2.0 fog than in plants treated with pH 4.0 fog. While decreased process rates coincided with leaf necrosis in white fir, stomatal closure appeared to be the mechanism of inhibition in ponderosa pine with pH 2.0 fog (i.e. no visible injury). The findings of the present study provide evidence that frequent applications of highly acidic fog (i.e. pH 2.0-3.0) can cause temporal alterations in membrane permeability and gas exchange rates in western conifer seedlings, in the presence or absence of visible injury. However, because incipient effects on other measures of foliage health were species-specific (i.e. concentrations of starch, photosynthetic pigments, inorganic nutrients), a general mechanism of phytotoxicity could not be identified.  相似文献   

14.
The effect of ozone (< 10, 200 or 400 microg m(-3) on hexane- and dichloromethane-soluble components of Picea abies needles was determined by fumigating potted grafts from mature trees. The trees (>55 and 125 years, 2.5 m high), representing six clones of Norway spruce, were fumigated in open-top chambers at two locations in Norway for one growth season. The needles were extracted with hexane and dichloromethane; 142 compounds from the hexane extract and 164 silylated compounds from the dichloromethane extract were analysed by gas chromatography although no identifications were made. The concentration of four of the compounds from the hexane extract changed with ozone dose in a way that made them promising as indicators, but the present analytical method could not verify this possibility. None of the other 302 compounds qualified as a general indicator of ozone stress in Norway spruce, as none changed its concentration with ozone dose consistently in all romets of all clones. Most of the variation in the experiment is mainly attributable to genetic variation and to climate.  相似文献   

15.
Ozone (O(3)) flux into Norway spruce (Picea abies) and cembran pine (Pinus cembra) needles was estimated under ambient conditions at six rural sites between 580 and 1950 m a.s.l. We also assessed age-related differences in O(3) flux by examining changes in leaf conductance across the life span of Norway spruce. At the leaf level O(3) flux into the needles was effectively controlled by stomatal conductance and, hence by factors such as temperature, irradiance and humidity, which control stomatal conductance. Seasonal variations in O(3) flux were mainly attributed to the course of the prevailing temperature. During the growing season, however, data have emphasised leaf-air vapour pressure difference as the environmental factor most likely to control stomatal conductance and O(3) flux into the needles. In the sun crown stomatal conductance averaged over the growing season decreased with increasing tree age from 42.0+/-3.5 mmol O(3) m(-2) s(-1) in 17-year-old trees to 7.1+/-1.0 mmol O(3) m(-2) s(-1) in 216-year-old trees, indicating that O(3) concentration in the substomatal cavities is higher in young than in old trees. Independent from tree age stomatal conductance and O(3) flux were approximately 50% lower in shade needles as compared to sun-exposed needles. Stomatal conductance was also greater in the current flush (24+/-5.6 mmol O(3) m(-2) s(-1)) and in 1-year old needles (16+/-4 mmol O(3) m(-2) s(-1)) than in older needle age classes (12+/-1 mmol O(3) m(-2) s(-1), averaged across the four older needle age classes). In trees similar in age (60-65 years old) average O(3) flux into sun needles increased from 0.55+/-0.36 nmol m(-2) s(-1) at the valley floor to 0.9 nmol m(-2) s(-1) in 1950 m a.s.l. Cumulative O(3) uptake during the vegetation period increased from 11.4+/-1.7 mol m(-2) in the valley to 14 mol m(-2) at the alpine timberline. Although stomatal conductance provides the principal limiting factor for O(3) flux, additional field research is necessary in order to improve our understanding concerning the quantitative 'physiological threshold dose' which internally can be active and can have adverse effects of O(3) on forest trees.  相似文献   

16.
The effect of climatic warming on the dehardening potential of bilberry (Vaccinium myrtillus L.) in a northern boreal environment (65 degrees N) was studied. Natural stands of bilberry were heated artificially in winter. No reference point for the heating was set, since the purpose was to follow the fluctuations in ambient air temperatures. These were 2-3 degrees C higher in the heated plots than in the control plots from October to May. Frost resistance (LT50) and the pH of cell effusate were monitored throughout. Bud phenology was assessed in May and related to various biochemical analyses, including glucose, fructose, sucrose, starch and total and reduced glutathione. Frost resistance started to decrease earlier in the heated plants, as did the pH of the cell effusate. Bud phenology was in accordance with the LT50 and pH results, since new growth had emerged in the heated plants by the beginning of May, when the controls still displayed dormancy. Concentrations of glucose, fructose and sucrose were significantly lower in the heated bilberries while concentrations of starch were higher. The heated plants also exhibited the lowest glutathione concentrations, but the difference was only marginal. The redox state of glutathione showed no difference between the treatments. The results suggest that a small elevation in air temperature can accelerate dehardening in the bilberry. It is thus concluded that climatic warming may entail a real risk of early dehardening and further frost damage for the bilberry.  相似文献   

17.
Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) seedlings were transported to five forest sites at increasing distances from a pulp mill emitting mainly SO(2). Levels of compounds which may have nutritional or defensive value for aphids on pine and spruce seedlings were studied. Glucose and fructose concentrations were significantly increased in pine and spruce needles near the pulp mill. There were no changes in sucrose and starch concentrations. In pine shoots, total free amino acid concentration and the concentrations of ornithine, lysine, histidine and arginine were significantly negatively correlated with the distance from the pulp mill, while in spruce only the individual amino acids glycine, ornithine, lysine and histidine showed a significant negative correlation with distance. There were no changes in total phenolic, catechin, total monoterpene and total resin acid concentrations. However, in pine seedlings monoterpenes beta-pinene and sabinene and in spruce seedlings resin acid palustric acid were significantly correlated with the distance from the pulp mill. The results indicate that SO(2) disturbs carbohydrate metabolism in spruce and pine seedlings. The elevated concentrations of arginine may be the result of the combinations of SO(2), NO(3) and NH(3) emissions of the pulp mill. The emissions did not have any impact on total amounts of defensive substances in trees. Thus, the possible susceptibility of conifers to herbivores appears to be due to changes in nutritive value rather than to reduced chemical resistance.  相似文献   

18.
Previous experiments with conifers fumigated with O(3), produced by air-operated electric discharge ozonators, have provided evidence that O(3) increases the leaching of NO(3)(-), NH(4)(+), K(+), Ca(2+), Mg(2+) and some other cations from needles, when the trees are treated with acid mist. This evidence has provided the foundation of the ozone-acid mist hypothesis of spruce decline. We report experiments with Norway spruce saplings fumigated with purified and unpurified O(3). The results show that the accumulation of NO(3)(-) in the needles arises from the rapid deposition of N(2)O(5) and HNO(3) formed from N(2) in the ozonator. An increase in removal of NH(4)(+), Na(+), Ca(2+), Mg(2+), Zn(2+) and Mn(2+) from the needles during soaking in H(2)SO(4), pH3, was also observed, which was related to the increase in NO(3)(-) but was independent of O(3) concentration. It is concluded that results of previous experiments cited in support of the ozone-acid mist hypothesis arose from effects which were at least partly caused by N(2)O(5) produced as a contaminant, and were incorrectly attributed to ozone. Other effects, such as growth stimulations, visible symptons, enhanced frost sensitivity, and infestation by pests or pathogens, which have been attributed to O(3) generated by electric discharge in air, should be interpreted with caution. Future experiments with ozone must eliminate this problem by either using O(2)-driven ozonators, or by purifying the output from air-driven ozonators using cold and/or water traps.  相似文献   

19.
Ozone induces characteristic symptoms in the chloroplasts of the needles of several coniferous species. Chloroplasts are (1) reduced in size and (2) the stroma is electron dense. Moreover, (3) these chloroplast alterations are more pronounced in the outer mesophyll cell layers and in the upper side of the needle compared to the inner layers and lower side. The syndrome, including the three symptoms (1)-(3), is found in the green needles of Scots pine and Norway spruce not only in the experimental fumigations, but also in mature trees in the field, and has potential for diagnosis of ozone stress. For sound ozone diagnostics all three symptoms must be present in the samples studied. The symptoms in relation to needle anatomy and physiology is discussed, and recommendations for sampling and analysis are given.  相似文献   

20.
Three-year-old Douglas firs (Pseudotsuga menziesii) were fumigated with 180 microg m(-3) NH3 or clean (charcoal-filtered) air. During these fumigations the plants received 15 mm artificial rain weekly, supplemented with 20, 500 or 2500 micromol litre(-1) (NH4)2SO4. Exposure to NH3 and NH4+ for 14 weeks resulted in a change of the nutrient status of the needles. The most remarkable effect was the increase in the N/K ratio, due to both uptake of N and leaching of K. The action of NH3 was stronger than that of NH4+. Both NH3 and (NH4)2SO4 affected the epicuticular wax layer and decreased mycorhiza frequency. Following fumigation and artificial rain treatments, needles were incubated for 8 h in a medium containing 0, 50, 250, 500 and 2500 micromol litre(-1) (NH4)2SO4. Almost no exchange of Ca, Mg and K for NH4+ was found. Therefore this ion exchange probably explains only a minor part of the changes in nutrient status of the whole trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号