首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uptake of uranium and thorium by native and cultivated plants   总被引:2,自引:0,他引:2  
Large part of available literature on biogeochemistry of uranium and thorium refers to the studies performed either in highly contaminated areas or in nutrient solutions that have been artificially ‘spiked’ with radionuclides. Effects of background levels of natural radioactivity on soil-grown plants have not been studied to the same extent. In this paper, we summarised results of greenhouse and field experiments performed by the author from 2000 to 2006. We examined some of the factors affecting transfer of U and Th from soil to plants, differences in uptake of these radionuclides by different plants, relationships between U and Th in soil and in plants, and temporal variations of U and Th in different plant species. Concentrations of radionuclides (critical point for experimental studies on biogeochemistry of U and Th - rare trace elements in non-contaminated regions) and essential plant nutrients and trace elements were determined by instrumental neutron activation analysis.  相似文献   

2.
This study aims to screen plant species native to Taiwan that could be used to eliminate (137)Cs radionuclides from contaminated soil. Four kinds of vegetables and two kinds of plants known as green manures were used for the screening. The test plants were cultivated in (137)Cs-contaminated soil and amended soil which is a mixture of the contaminated one with a horticultural soil. The plant with the highest (137)Cs transfer factor was used for further examination on the effects of K addition on the transfer of (137)Cs from the soils to the plant. Experimental results revealed that plants cultivated in the amended soil produced more biomass than those in the contaminated soil. Rape exhibited the highest production of aboveground parts, and had the highest (137)Cs transfer factor among all the tested plants. The transfer of (137)Cs to the rape grown in the soil to which 100 ppm KCl commonly used in local fertilizers had been added, were restrained. Results of this study indicated that rape, a popular green manure in Taiwan, could remedy (137)Cs-contaminated soil.  相似文献   

3.
Specific structural features of absorbing roots have been studied in Acer negundo (an invasive species in the southern Cisural region), compared to native Acer platanoides and A. tataricum. A comparative analysis of the diameter of fine roots, stele and bark volumes, and the frequencies of roots with retained primary bark, root hairs, arbuscular mycorrhiza, and dark septate endophytes has been performed in the invasive and native species from four habitats (by two habitats in the forest–steppe and steppe zones). The roots of A. negundo have been additionally studied in trees from two monospecific stands. It has been found that the structure of fine roots significantly differs between the invasive and native species: the roots of A. negundo are larger, with relatively poorly developed root hairs and low occurrence of dark septate endophytes. In monospecific stands, the frequency of mycorrhiza in A. negundo roots is very low, with arbuscules and dark septate endophytes being totally absent. It is concluded that specific structural features of the belowground absorbing apparatus in A. negundo are accounted for mainly by traits autonomously formed in a plant, rather than by characteristics of symbiotic relationships, and that they are not consistent with the assumption that the invasive species can utilize soil resources more effectively or more rapidly than taxonomically close native species.  相似文献   

4.
Distribution of 238U and 226Ra in soils and plants of an industrially polluted area are considered. The dependence between the biological uptake coefficients (BUCs) for the plant species studied and the radionuclide concentrations in soil can be approximated by a decreasing power function. Species differences in radionuclide uptake are demonstrated.  相似文献   

5.
Uptake of 137Cs and 40K was studied in seven native plant species of the Marshall Islands. Plant and soil samples were obtained across a broad range of soil 137Cs concentrations (0.08-3900 Bq/kg) and a narrower range of 40K soil concentrations (2.3-55 Bq/kg), but with no systematic variation of 40K relative to 137Cs. Potassium-40 concentrations in plants varied little within the range of 40K soil concentrations observed. Unlike the case for 40K, 137Cs concentrations increased in plants with increasing 137Cs soil concentrations though not precisely in a proportionate manner. The best-fit relationship between soil and plant concentrations was P = aSb where a and b are regression coefficients and P and S are plant and soil concentrations, respectively. The exponent b for 40K was zero, implying plant concentrations were a single value, while b for 137Cs varied between 0.51 and 0.82, depending on the species. For both 40K and 137Cs, we observed a decreasing concentration ratio (where concentration ratio=plant concentration/soil concentration) with increasing soil concentrations. For the CR values, the best-fit relationship was of the form CR = aSb/S = aSb(-1). For the 40K CR functions, the exponent b - 1 was close to - 1 for all species. For the 137Cs CR functions, the exponent b - 1 varied from -0.19 to -0.48. The findings presented here, aswell as those by other investigators, collectively argue against the usefulness of simplistic ratio models to accurately predict uptake of either 40K or 137Cs in plants over wide ranges of soil concentration.  相似文献   

6.
Inductively coupled plasma mass spectrometry (ICP-MS) has been used for the determination of (232)Th and (238)U in urine of unexposed Jordanian subjects living in six cities. The range of (232)Th excretion in all subjects was found to be 1.4-640 microBq d(-1) with an average of 34.8 microBq d(-1) (geometric mean 15.8 microBq d(-1)). Results showed no statistically significant correlation with age and residential area. The average value obtained is in agreement with levels considered normal in some recent publications. The average value of (238)U in all samples was found to be 3955 microBq d(-1) (geometric mean 1107 microBq d(-1)), which is higher than reported figures from Germany and India, but in agreement with those figures given in ICRP publication, number 23. The mean values of the different groups were found to be proportional to age up to 60 years. A noticeable drop is observed for subjects greater than 60 years old.  相似文献   

7.
The area of the town of Mailuu Suu, Kyrgyzstan, is polluted by radionuclides and heavy metals from tailing dumps and heaps resulting from the historic exploitation of uranium mines. In the frame of a European Commission-TACIS funded project, radiological assessment was performed for critical group members living in the city of Mailuu Suu, located downstream the tailings, or in the village of Kara Agach, partially located on a uranium mine waste dump. The actual external exposure is around 1.2 mSv a(-1) at both locations and exposure from radon is around 3 mSv a(-1) at Mailuu Suu and around 10 mSv a(-1) at Kara Agach. Ingestion dose was negligible for a critical group member living at Mailuu Suu. At Kara Agach, however, under the hypothesis that all food and fodder is cultivated locally, exposure from ingestion is much higher ( approximately 10-30 mSv a(-1)). In case of an accidental scenario [(part of) Tailing 3 content thrust to river], estimated additional maximum doses result in 45 and 77 mSv for an adult and a child, respectively.  相似文献   

8.
Environment, Development and Sustainability - Cyanobacteria are a group of diverse prokaryotes that are capable of oxygenic photosynthesis. They are ubiquitous in nature and have been reported to...  相似文献   

9.
The understanding and evaluation of the possible interactions of various naturally occurring radionuclides in the world's third largest man-made dam, Nagarjuna Sagar located in Andhra Pradesh, India and built on river Krishna assumed significance with the finding of uranium deposits in locations near the dam. For the present work, surface soil samples from the mineralized area of Lambapur, Mallapuram, Peddagattu and sediment core samples from the Nagarjuna Sagar dam were analyzed for naturally occurring radionuclides namely uranium and thorium using gamma spectrometric technique. Also toxic elements lead and chromium were analysed by the Energy Dispersive X-ray Fluorescence Spectrometer (EDXRF) technique. Surface soil samples show a variation from 25 to 291 Bq/kg (2.02–23.5 mg/kg) for 238U and 32–311 Bq/kg (7.9–76.9 mg/kg) for 232Th. U/Th concentration ratio in surface soil samples ranged from 0.19 to 0.31 and was found comparable with the nation wise average of 0.26. The study of sediment core samples reflected higher U/Th concentration ratio of 0.30–0.33 in the bottom section of the core as compared to 0.22–0.25 in the upper section. The concentration ratio in the upper section of the core was similar to the ratio 0.23 found in the western Deccan Basalt region through which the river originates. A higher concentration of lead and chromium was observed in the upper section of the core compared to bottom section indicating the impact of river input on the geochemical character of dam sediment.  相似文献   

10.
The ARGOS decision support system is currently being extended to enable estimation of the consequences of terror attacks involving chemical, biological, nuclear and radiological substances. This paper presents elements of the framework that will be applied in ARGOS to calculate the dose contributions from contaminants dispersed in the atmosphere after a ‘dirty bomb’ explosion. Conceptual methodologies are presented which describe the various dose components on the basis of knowledge of time-integrated contaminant air concentrations. Also the aerosolisation and atmospheric dispersion in a city of different types of conceivable contaminants from a ‘dirty bomb’ are discussed.  相似文献   

11.
Arsenic (As), cited as the most hazardous substance by the U.S. Agency for Toxic Substance and Disease Registry (ATSDR, 2005), is an ubiquitous metalloid which when ingested for prolonged periods cause extensive health effects leading to ultimate untimely death. Plants and microbes can help mitigate soil and groundwater As problem since they have evolved elaborate detoxification machineries against this toxic metalloid as a result of their coexistence with this since the origin of life on earth. Utilization of the phytoremediation and bioremediation potential of the plants and microbes, respectively, is now regarded as two innovative tools that encompass biology, geology, biotechnology and allied sciences with cutting edge applications for sustainable mitigation of As epidemic. Discovery of As hyperaccumulating plants that uptake and concentrate large amounts of this toxic metalloid in their shoots or roots offered new hope to As phytoremediation, solar power based nature's own green remediation. This review focuses on how phytoremediation and bioremediation can be merged together to form an integrated phytobial remediation which could synergistically achieve the goal of large scale removal of As from soil, sediment and groundwater and overcome the drawbacks of the either processes alone. The review also points to the feasibility of the introduction of transgenic plants and microbes that bring new hope for more efficient treatment of As. The review identifies one critical research gap on the importance of remediation of As contaminated groundwater not only for drinking purpose but also for irrigation purpose and stresses that more research should be conducted on the use of constructed wetland, one of the most suitable areas of application of phytobial remediation. Finally the review has narrowed down on different phytoinvestigation and phytodisposal methods, which constitute the most essential and the most difficult part of pilot scale and field scale applications of phytoremediation programs.  相似文献   

12.
Polar fractions of a sediment extract of the industrial area of Bitterfeld, Germany, have been subjected for effect-directed identification of mutagens using the Ames fluctuation assay with TA98. Mutagenicity could be well recovered in several secondary and tertiary fractions. Dinitropyrenes and 3-nitrobenzanthrone could be confirmed to contribute great shares of the observed mutagenicity. In addition, a multitude of polar polycyclic aromatic compounds has been tentatively identified in mutagenic fractions including nitro-PAHs, azaarenes, ketones, quinones, hydroxy-compounds, lactones and carboxylic acids although their contribution to mutagenicity could not be quantified due to a lack of standards. Diagnostic Salmonella strains YG1024 and YG1041 were applied to confirm the contribution of nitro-aromatic compounds. We suggest the inclusion of dinitropyrenes and 3-nitrobenzanthrone into sediment monitoring in order to minimize the mutagenic risk to aquatic organisms and to human health.  相似文献   

13.
For a better understanding of the soil-to-plant transfer of radionuclides, their behavior in the soil solution should be elucidated, especially at the interface between plant roots and soil particles, where conditions differ greatly from the bulk soil because of plant activity. This study determined the concentration of stable Cs and Sr, and U in the soil solution, under plant growing conditions. The leafy vegetable komatsuna (Brassica rapa L.) was cultivated for 26 days in pots, where the rhizosphere soil was separated from the non-rhizosphere soil by a nylon net screen. The concentrations of Cs and Sr in the rhizosphere soil solution decreased with time, and were controlled by K+NH(4)(+) and Ca, respectively. On the other hand, the concentration of U in the rhizosphere soil solution increased with time, and was related to the changes of DOC; however, this relationship was different between the rhizosphere and non-rhizosphere soil.  相似文献   

14.
The activity concentrations of natural uranium isotopes (238U and 234U), thorium isotopes (232Th, 230Th and 225Th) and 226Ra were studied in soil and vegetation samples from a disused uranium mine located in the Extremadura region in the south-west of Spain. The results allowed us to characterize radiologically the area close to the installation and one affected zone was clearly manifest as being dependent on the direction of the surface water flow from the mine. The activity concentration mean values (Bq/kg) in this zone were: 10,924, 10,900, 10,075 and 5,289 for 238U, 234U, 230Th and 226Ra, respectively, in soil samples and 1,050, 1,060, 768 and 1,141 for the same radionuclides in plant samples. In an unaffected zone, the activity concentration mean values (Bq/kg) were: 184, 190, 234 and 7251 for 235U, 234U, 230Th and 226Ra, respectively, in soil samples and 28. 29, 31 and 80 in plant samples. The activity concentrations obtained for 232Th and 228Th showed that the influence of the mine was only important for the uranium series radionuclides. The relative radionuclide mobilities were determined from the activity ratios. Correlations between radionuclide activity concentrations and stable element concentrations in the soil samples helped to understand the possible distribution paths for the natural radionuclides.  相似文献   

15.
LR- 115 plastic track detectors have been used to measure indoor radon level in some dwellings of Una district, Himachal Pradesh, India. The annual average radon concentration in dwellings in most of the villages falls in the range of the action level recommended by the International Commission on Radiological Protection. The radon values in some of the dwellings exceed the action level and may be unsafe from the health hazard point of view. The indoor radon values are in general higher in winter than in summer. Uranium, radium and radon exhalation studies have also been carried out in soil samples collected from these areas. A good correlation is obtained between uranium concentration in the soil and indoor radon in dwellings. The soil radon exhalation rate also correlates with the uranium concentration in soil.  相似文献   

16.
A field survey of higher terrestrial plants growing on Lanping lead-zinc mine, China were conducted to identify species accumulating exceptionally large concentrations of Pb, Cd, Cu and Zn of 20 samples of 17 plant species. Concentrations of Pb and Zn in soil and in plant were higher than that of Cu and Cd. Significant difference was observed among the average concentrations of four heavy metals in plants (except Cd and Cu) and in soil (except Pb and Zn) (P<0.05). For the enrichment coefficient of the four heavy metals in plant, the order of average was Pbtree>herbaceous, and herbaceous grew in soil with the highest concentrations of four heavy metals. In different areas, the concentrations of Pb, Cd, Cu and Zn in plants and soils and enrichment coefficient were different. Plants in Paomaping had more accumulating ability to Pb, Cd and Zn, and plants in Jinfeng River had more accumulating ability to Cu. Six plant species, i.e. S. cathayana, Lithocarpus dealbatus, L. plyneura, Fargesia dura, Arundinella yunnanensis and R. annae in Paomaping, had high accumulation capacity. R. annae in Paomaping had hyperaccumulating capacity to Pb, Cd and Zn, L. plyneura to Pb and Cd, and S. cathayana to Cd, respectively.  相似文献   

17.
Past arsenic exposure was found associated with increased incidence of type 2 diabetes. However, the mechanisms remain unclear. Metabolic syndrome has been shown as a strong predictor for diabetes occurrence. We aimed at examining the association of inorganic arsenic exposure and the prevalence of metabolic syndrome. The authors recruited 660 age and gender stratified random population of residents in central Taiwan during 2002-2003. They received home interviews and health examinations at local health care units, where blood and hair specimens were collected. Hair arsenic (H-As) concentrations were determined by inductively coupled plasma-mass spectrometry. Metabolic syndrome was defined as the presence of three or more of the following risk factors: elevated levels of blood pressure, plasma glucose, and triglycerides, also the body mass index, and reduced high-density lipoprotein. Prevalence of metabolic syndrome increased from the 2nd tertile (0.034 ug/g) of H-As levels (odds ratio=2.54, 95% confidence interval: 1.20-5.39, p=0.015) after the adjustment for age, gender, occupation and life styles including cigarette smoking. We further found linear relation between H-As concentrations and increased levels of plasma glucose and lipids, and blood pressures. This first report may help identify modifiable factors associated with diabetogenesis and cardiovascular disease progression and thus be worth following for community health.  相似文献   

18.
The Kadji-Sai abandoned field of U-bearing brown coal on the southern coast of Lake Issyk-Kul (Kyrgyzstan) poses a threat of radioactive pollution to the world's fifth deepest and second largest pristine highland lake. The valleys of ephemeral streams in the lake catchment are filled with coarse-grained sand and clay, with a background U--Ra activity of 35--55 Bqkg(-1). High activity areas vs. this background come from three sources: (1) scarce outcrops of uraniferous brown coal and mining wastes containing fragments of this coal with (238)U/(226)Ra ratios of 0.8 due to uranium losses through weathering; (2) manmade anomalies caused by a radioactive waste dump, where U was extracted from the ash of coal burnt at a coal-fired power plant. As a result, the (238)U/(226)Ra ratios become 0.15--0.25; (3) six catch pools terraced below the mine, where U activity decreases downslope, and (238)U/(226)Ra ratios reach 150--200. Uranium lost in the extraction process may have been retained on the terraces. The distribution pattern of radionuclides in the bottom sediments of the lake is controlled by water depth and offshore distance. The upper section of homogeneous limy--argillic deposits in the lake center remains undisturbed by currents, as indicated by regular sub-exponential distribution of atmospheric (137)Cs and (210)Pb(atm). Sedimentation rate in the lake center for the past century, found from (210)Pb, was 0.32 mmyr(-1). (238)U/(226)Ra in deep-water sediments was about 3. The activity of uranium adsorbed by sediments from the lake water was estimated by subtraction of the Ra-equilibrium component from the total U activity. Thus, the flux of dissolved U to the bottom sediments was as 2.07 x 10(-7)gcm(-2)yr(-1). The upper section of near-shore deposits was disturbed by currents, with (137)Cs and (210)Pb(atm) more or less uniformly distributed in this layer. Peaks of (226)Ra and (210)Pb occur at different depths from 5 to 20 cm below the sediment surface, with (238)U/(226)Ra ratios 0.28--0.44. The presence of mullite in these sediments indicated that radioactive ash penetrated into the lake in the past. At present, (226)Ra in the ash is buried under a non-radioactive cap.  相似文献   

19.
The spatial distribution and behaviour of the global fallout (137)Cs in the tropical, subtropical and equatorial soil-plant systems were investigated at several upland sites in Brazil selected according to their climate characteristics, and to the agricultural importance. To determine the (137)Cs deposition density, undisturbed soil profiles were taken from 23 environments situated between the latitudes of 02 degrees N and 30 degrees S. Sampling sites located along to the equator exhibited (137)Cs deposition densities with an average value of 219Bqm(-2). Extremely low deposition densities of 1.3Bqm(-2) were found in the Amazon region. In contrast, the southern part of Brazil, located between latitudes of 20 degrees S and 34 degrees S, exhibited considerably higher deposition densities ranging from 140Bqm(-2) to 1620Bqm(-2). To examine the (137)Cs soil-to-plant transfer in the Brazilian agricultural products, 29 mainly tropical plant species, and corresponding soil samples were collected at 43 sampling locations in nine federal states of Brazil. Values of the (137)Cs concentration factor plant/soil exhibited a large range from 0.020 (beans) to 6.2 (cassava). Samples of some plant species originated from different collecting areas showed different concentration factors. The (137)Cs content of some plants collected was not measurable due to a very low (137)Cs concentration level found in the upper layers of the incremental soils. Globally, the soil-to-plant transfer of (137)Cs can be described by a logarithmic normal distribution with a geometric mean of 0.3 and a geometric standard deviation of 3.9.  相似文献   

20.
A hydroponic experiment was carried out to investigate the effects of iodine species and solution concentrations on iodine uptake by spinach (Spinacia oleracea L.). Five iodine concentrations (0, 1, 10, 50 and 100 microM) for iodate (IO(3)(-)) and iodide (I(-)) were used. Results show that higher concentrations of I(-) (> or =10 microM) had some detrimental effect on plant growth, while IO(3)(-) had little effect on the biomass production of spinach plants. Increases in iodine concentration in the growth solution significantly enhanced I concentrations in plant tissues. The detrimental effect of I(-) on plant growth was probably due to the excessively high accumulation of I in plant tissues. The solution-to-spinach leaf transfer factors (TF(leaf), fresh weight basis) for plants treated with iodide were between 14.2 and 20.7 at different solution concentrations of iodide; TF(leaf) for plants treated with iodate decreased gradually from 23.7 to 2.2 with increasing solution concentrations of iodate. The distribution coefficients (DCs) of I between leaves and roots were constantly higher for plants treated with iodate than those treated with iodide. DCs for plants treated with iodide increased with increasing solution concentrations of iodide, while DCs for plants treated with iodate (around 5.5) were similar across the range of solution concentrations of iodate used in this experiment. The implications of iodine accumulation in leafy vegetables in human iodine nutrition are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号