首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Alarm signal response in the brittle star Amphiura filiformis   总被引:1,自引:1,他引:0  
 Flat fishes, such as the dab Limanda limanda, commonly prey on arms of Amphiura filiformis. We demonstrate in flume experiments that A. filiformis showed a more or less simultaneous response to an up-stream predation by dab on conspecifics: the arms, which are stretched up into the water column when filter feeding, responded by bending down to the sediment surface, and some arms submerged, at least partly, into the sediment. We interpret this as an alarm response. A similar, but significantly weaker response in A. filiformis was also recorded when dab ate Amphiura chiajei. Homogenates of the two Amphiura species and arm pinching – to simulate partial predation – elicited a similar response in A. filiformis, the arms bent to the sediment surface. In contrast, however, the behavioural response of the arms to the homogenates was to protrude further out of the sediment and sweep the surface vigorously. We interpret this as a feeding behaviour. Response to arm pinching was less clear. The ecological consequences and origin of alarm signal response in A. filiformis are discussed. Received: 8 February 1999 / Accepted: 16 July 1999  相似文献   

2.
Teleost fishes capture prey using ram, suction, and biting behaviors. The relative use of these behaviors in feeding on midwater prey is well studied, but few attempts have been made to determine how benthic prey are captured. This issue was addressed in the wrasses (Labridae), a trophically diverse lineage of marine reef fishes that feed extensively on prey that take refuge in the benthos. Most species possess strong jaws with stout conical teeth that appear well-suited to gripping prey. Mechanisms of prey capture were evaluated in five species encompassing a diversity of feeding ecologies: Choerodon anchorago (Bloch, 1791), Coris gaimard (Quoy and Gaimard, 1824), Hologymnosus doliatus (Lacepède, 1801), Novaculichthys taeniourus (Lacepède, 1801) and Oxycheilinus digrammus (Lacepède, 1801). Prey capture sequences were filmed with high-speed video at the Lizard Island Field Station (14°40′S, 145°28′E) during April and May 1998. Recordings were made of feeding on pieces of prawn suspended in the midwater and similar pieces of prawn held in a clip that was fixed to the substratum. Variation was quantified among species and between prey types for kinematic variables describing the magnitude and timing of jaw, hyoid, and head motion. Species differed in prey capture kinematics with mean values of most variables ranging between two and four-fold among species and angular velocity of the opening jaw differing seven-fold. The kinematics of attached prey feeding could be differentiated from that of midwater captures on the basis of faster angular velocities of the jaws and smaller movements of cranial structures which were of shorter duration. All five species used ram and suction in combination during the capture of midwater prey. Surprisingly, ram and suction also dominated feedings on attached prey, with only one species making greater use of biting than suction to remove attached prey. These data suggest an important role for suction in the capture of benthic prey by wrasses. Trade-offs in skull design associated with suction and biting may be particularly relevant to understanding the evolution of feeding mechanisms in this group. Published online: 11 July 2002  相似文献   

3.
J. McConaugha 《Marine Biology》2002,140(6):1227-1233
The apparent mismatch between the energy requirements for planktotrophic growth and prey availability has long been paradoxical. One hypothesis to explain this paradox is that planktotrophic larvae display plasticity in feeding mechanisms in response to variable prey types and concentrations. This hypothesis was tested by videotaping megalopae of the brachyuran crab Callinectes sapidus Rathbun feeding on various-sized prey. Frame-by-frame analysis of the videotapes indicated that C. sapidus megalopae used both raptorial and suspension feeding to capture prey while in the water column. Raptorial feeding was used to capture macro-zooplankton, including copepods. The swimming form of suspension feeding was based on a modified fling-and-clap mechanism using the chelipeds. Suspension feeding while at rest utilized a weak current generated by the mouthparts to direct prey to the mouth. Both suspension-feeding mechanisms resulted in the efficient capture of rotifer-sized particles. The energy/handling time ratios for all three feeding mechanisms are very similar (E/H range 0.016-0.019 µg C s-1) for the natural prey tested. These results support the hypothesis that feeding in brachyuran larvae is plastic and includes mechanisms of both raptorial and suspension feeding. The ability to suspension feed at rest is adaptive, since megalopae use selective tidal transport to re-invade an estuary and may spend up to 18 h day-1 clinging to a benthic substrate. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00227-002-0781-1.  相似文献   

4.
Ram feeding is the process by which a predatory fish uses a high-velocity lunge or chase to overtake its prey. This study compares the strike and prey capture behaviors and kinematics of three species of ram-feeding fishes: Florida gar Lepisosteus platyrhincus, redfin needlefish Strongylura notata, and great barracuda Sphyraena barracuda. These ram-feeding piscivores are morphologically similar with fusiform bodies, posteriorly placed dorsal and anal fins, and large, conical teeth. Strike and prey capture kinematics for five individuals of each species were recorded with high-speed video. Pre-strike behavior in L. platyrhincus consists of a slow stalk, resulting in the close, lateral positioning of the predators head relative to the prey. Lepisosteus employ a sideways lunge of the head during the strike, which lasts only 25–40 ms and is the most rapid strike among these three species. Strongylura notata and Sphyraena barracuda exhibit longitudinal orientation to the prey before the strike, followed by a high velocity, head-on lunge, initiated by an s-start in Sphyraena barracuda. Prey capture in adult L. platyrhincus and Strongylura notata is characterized by the jaws closing on the prey, with the prey held orthogonal to the jaws. This is followed by manipulation using the inertia of the prey to reposition the prey head first, and then suction transport into the buccal cavity. Prey capture in juvenile Sphyraena is accomplished by closing the jaws after the prey has entered the buccal cavity, resulting in possible ram transport of the prey with no oral manipulation under these experimental conditions. Although these three species all employ ram feeding for prey capture of elusive prey, each species has a unique repertoire that appears to minimize hydrodynamic constraints and prey response, utilize locomotory capabilities, and may be suited to each species specific habitat.Communicated by P.W. Sammarco, Chauvin  相似文献   

5.
Shallow-feeding shorebirds, dowitchers (Limnodromus griseus and L. scolopaceus), western sandpipers (Calidris mauri), dunlin (C. alpina) and American avocets (Recurvirostra americana), reduced the density of their prey in mudflats with little sand but not in mudflats with a moderate admixture of sand. An experiment in Upper Newport Bay, Southern California, during October and November 1979 to explain the difference in density is described. The effect of sand on shorebird feeding was compared in the field by measuring the times spent feeding in plots where sand had or had not been added, respectively. Increasing the sand content to 14% from 2% in the top centimeter decreased the time spent in treated plots by all species compared to adjacent untreated plots. The prey species were small polychaete and oligochaete worms (0.25 to 1.25 mm wide) similar in diameter to sand grains (0.5 to 1.0 mm). In plots where sand had been added, avocets fed by pecking at the surface in addition to scything, the more common method of feeding on muddy substrates. The results suggest that sand interferes with the detection and or capture of prey that are similar in diameter to small sand grains and explains the differences in the effects of predation by these birds seen on mudflats with a moderate admixture of sand compared to the effects on mudflats with little sand. Differential success in prey capture between one microhabitat and the nest (rather than a reduction in competition, as suggested by some authors) might explain the different use of such habitats.  相似文献   

6.
Summary In experiments, blue-green chromis [Chromis viridis (Cuvier 1830)] were fed on either scattered or aggregated swarms of brine shrimp (Artemia sp.). Ten runs with each prey dispersion treatment were performed with shoals of one, two, five and ten chromis. The mean lag in reaching peak feeding rate for fish fed on aggregated prey was significantly shorter in the larger chromis shoals. In contrast, with the scattered treatment all such lags were similar and very short. As foraging proceeded, higher feeding rates were observed in the larger feeding shoals, regardless of prey dispersion. Prey capture success (i.e. the rate of retention of intercepted prey) declined with time, but was significantly higher in groups of ten fish. Two main conclusions emerge. Firstly, grouping facilitated initiation of feeding by individuals preying on concentrated swarms and reduced the delay in reaching a maximum feeding level. This may have been due to a suppression of the confusion effect through reduced reliance upon vigilance. Secondly, reduced vigilance allowed larger shoals of chromis to feed effectively over more extended periods. Trends of increasing shoal cohesion and decreasing prey retention rate with time were consistent with a postulated increase in antipredator vigilance with declining feeding motivation.  相似文献   

7.
Summary The queens of larger colonies of the primitive ant Amblyopone silvestrii are exclusively dependent on the hemolymph of their own larvae as a nutrient, even when prey feeding is possible. On the other hand, the foundresses suppress larval hemolymph feeding (LHF) when prey is available, allowing them to rear the first workers more swiftly. The nondestructive form of cannibalism can be regarded as a nutritive adaptation related to: (1) the lack of social food transfer in this species, and (2) its specialized predation on large sporadic prey (centipedes). LHF similar to that in Amblyopone was found in Proceratium and another type of LHF, with a larval specialized exudatory organ, in Leptanilla.  相似文献   

8.
Water motion is an important factor affecting planktivory on coral reefs. The feeding behavior of two species of tube-dwelling coral reef fish (Chaenopsidae) was studied in still and turbulent water. One species of blenny, Acanthemblemaria spinosa , lives in holes higher above the reef surface and feeds mainly on calanoid copepods, while a second, A. aspera , lives closer to the reef surface, feeds mainly on harpacticoid copepods, and is exposed to less water motion than the first. In the laboratory, these two blenny species were video recorded attacking a calanoid copepod ( Acartia tonsa, evasive prey) and an anostracan branchiopod (nauplii of Artemia sp., passive prey). Whereas A. spinosa attacked with the same vigor in still and turbulent water, A. aspera modulated its attack with a more deliberate strike under still conditions than turbulent conditions. For both fish species combined, mean capture success when feeding on Artemia sp. was 100% in still water and dropped to 78% in turbulent water. In contrast, when feeding on Acartia tonsa, mean capture success was 21% in still water and rose to 56% in turbulent water. We hypothesize that, although turbulence reduces capture success by adding erratic movement to Artemia sp. (passive prey), it increases capture success of Acartia tonsa (evasive prey) by interfering with the hydrodynamic sensing of the approaching predator. These opposite effects of water motion increase the complexity of the predator-prey relationship as water motion varies spatially and temporally on structurally complex coral reefs. Some observations were consistent with A. aspera living in a lower energy benthic boundary layer as compared with A. spinosa: slower initial approach to prey, attack speeds modulated according to water velocity, and lower proportion of approaches that result in strikes in turbulent water.Communicated by P.W. Sammarco, Chauvin  相似文献   

9.
The behaviour of the oral arms of Pelagia noctiluca (Forsskål) has been investigated in open sea predation and in predation induced both in the laboratory and the natural environment. Specimens were first studied in the field and then collected from coastal aggregations in the Gulf of Trieste, North Adriatic Sea, in December 1985 (Lat. 13°40 E, Long. 45°42 N) and in June 1986 (Lat. 13°39 E, Long. 45°43 N). The results of laboratory experiments and in situ observations, recorded on videotapes and photographs, show that the marginal tentacles are utilized to: (1) paralyze the prey; (2) contract and bend inward towards the nearest oral arm. Occasionally the tentacle does not contract and the prey is released; thus prey selection may occur. The oral arms are therefore involved in the: (1) transport of prey from the tentacle to the gastric cavity; (2) catching of motionless prey; (3) anchoring the medusa to the substratum. A similar feeding pattern can explain the survival of several specimens of P. noctiluca near the bottom during the winter of 1985/1986 in the Gulf of Trieste (North Adriatic Sea) in spite of the severe climatic conditions.  相似文献   

10.
Ophiurid basket stars belonging to the family Gorgonocephalidae are distributed from the Arctic to the Antarctic and from the shallow subtidal to the deep sea, but their biology remains poorly known. In situ observations at the mouth of the Oslofjord by a remotely operated vehicle showed that Gorgonocephalus caputmedusae had a patchy distribution at 85 to 120 m water depth and frequently occurred in association with the gorgonian Paramuricea placomus and the coral Lophelia pertusa. Morphological and histological studies show that G. caputmedusae is well adapted to capture macroplanktonic prey. Histological examination of the arms revealed the presence of a thick layer of dermal mutable connective tissue which is probably an energy-efficient way to maintain its feeding posture against the current. This layer is connected to the nerve cord suggesting that the passive mechanical properties (stiffness) is controlled by the nervous system. In the distal parts of the arms, each segment has a pair of sticky tube feet and a sophisticated system of spines and hooks, which are connected to muscles and collagenous tendons. In combination, these features were shown, in an experimental flume study, to be used for capturing the locally abundant krill species Meganyctiphanes norvegica. This is the first documentation of G. caputmedusae of this kind.  相似文献   

11.
The mechanism of prey capture in two syngnathid fishes, the lined seahorse Hippocampus erectus (Perry) and the dusky pipefish Syngnathus floridae (Jordan and Gilbert), is described based on anatomical observations and high-speed video recordings (200 and 400 images s−1) of feeding events by four seahorses and three pipefish. The fish were collected near Turkey Point, Florida, U.S.A., in January 1994 to March 1995. The dominant features of the morphology of these and many other syngnathiform fishes include extreme elongation of the suspensorium and neurocranium with a small mouth located at the anterior tip of the head. In the seahorse, a preparatory phase of prey capture consisted of slow ventral head flexion. This was followed by rapid elevation of the head and snout as the prey was drawn into the mouth by suction. Both H. erectus and S. floridae capture prey rapidly, with peak head excursions and mouth opening occurring within 5 to 7 ms of the onset of the strike. There was no upper jaw protrusion. In both species the time to recovery of the cranium and hyoid apparatus to resting positions was highly variable but took at least 500 ms. Manipulations of freshly dead specimens indicated a biomechanical linkage between head elevation and hyoid depression. However, the predictions of a previously proposed four-bar linkage model that couples hyoid depression to head elevation were not fully supported by kinematic data from one seahorse, suggesting that additional linkages act during the expansive phase of prey capture. These species exhibit the generalized kinematic pattern of prey capture in bony fishes, with head elevation, hyoid depression and mouth opening occurring almost simultaneously. The derived morphology results in a unique feeding behav‐ior, in which prey are captured during a sudden up-swing of the head, which brings the mouth to the prey. Suction is used to draw the prey into the buccal cavity. Received: 4 August 1996 / Accepted: 27 August 1996  相似文献   

12.
Capture of zooplankton by scleractinian corals has been noted for several species, yet quantitative information on rates of capture and differential capture by prey taxon has been lacking. We used field enclosures to examine prey capture for two coral species,Madracis mirabilis (Duchassaing and Michelotti) andMontastrea cavernosa (Linnaeus), on the north coast of Jamaica (Discovery Bay) in November 1989, February and March 1990, and January 1992.M. mirabilis has small polyps and a branching colony morphology (high surface/volume ratio), whereasM. cavernosa has large polyps and mounding colonies (low surface/volume ratio). Corals were isolated front potential prey, then were introduced into enclosures with enhanced zooplankton concentrations for 15- to 20-min feeding periods. Corals were fixed immediately after the experiment to prevent digestion, and coelenteron contents were examined for captured zooplankton. Plankton pumps were used to sample ambient zooplankton in the enclosures near the end of each run. Selectivity and capture rates were calculated for each prey taxon in each experiment; both indices were high for relatively uncommon large prey, and low for copepods, which were often the most common items in the plankton. Sizes of zooplankton captured by both species were generally larger than those available considering all prey taxa combined, but were almost the same for both coral species, even though the corals' polyp sizes are very different. This occurred primarily because small copepods, with low capture rates, dominated most plankton samples. For specific prey species, or group of species, there were few significant differences in size between the prey available and the prey captured.M. mirabilis, with small polyps, also captured far more prey per unit coral biomass than didM. cavernosa, with much larger polyps. We hypothesize that the large differences in capture rate of prey taxa are related to escape or avoidance behavior by those potential prey, and to the mechanics of capture, rather than to any selectivity by the corals.  相似文献   

13.
The anti-predator behaviour of Baltic crustacean planktivores was studied in feeding experiments under predation pressure of herring. The experiments were conducted with pelagic mysids: Mysis mixta and Mysis relicta, and with Cercopagis pengoi, a non-indigenous cladoceran, which invaded the Baltic Sea in 1992. Zooplankton was offered as prey. Two kinds of experiments were performed in the absence and presence of chemical predator cues: (1) two-prey experiments with prey, which have poor or good escape responses and all three planktivores and (2) natural prey experiments with mysids in natural zooplankton assemblages. The results showed that all three species reacted to the chemical cue of herring by decreasing their feeding rate and altering prey selection. C. pengoi selected easily captured prey (rotifers) in two-prey experiments under predation risk while selection for any prey was evident in mysids in natural prey experiments only in the absence of predator cues. This indicates that planktivores have different anti-predator strategies, which are modified by their own prey capture abilities. C. pengoi was a very efficient predator on small prey with size-specific prey consumption rate 5 to 18 times the rate of mysids. Results show that the studied planktivores are capable of adjusting their feeding behaviour to decrease their conspicuousness in order to increase survival under predation risk. Further, results support the view that C. pengoi has adapted well to the Baltic ecosystem, sharing food niche with pelagic mysids and most probably having a strong influence on the whole pelagic food web.  相似文献   

14.
G. Piniak 《Marine Biology》2002,141(3):449-455
Symbiotic temperate corals can supplement prey capture by the coelenterate host with autotrophic carbon production by endosymbiotic zooxanthellae. To test the relationship between heterotrophic consumption and photosynthetic energy, prey capture by symbiotic and aposymbiotic specimens of the temperate scleractinian coral Oculina arbuscula (Verrill) was measured in January-April 2001. Corals were tested in a laboratory flume at five flow speeds, using Artemia franciscana cysts and nauplii as prey. Per-polyp capture rate and feeding efficiency were independent of symbiotic condition. Capture rate increased with flow speed, while capture efficiency declined. The location of capture shifted from the upstream to downstream side of the coral as flow speed increased. Differences in capture rate, location, and feeding efficiency for cysts and live brine shrimp nauplii were likely due to prey size rather than swimming ability.  相似文献   

15.
Most marine fishes undergo a pelagic larval phase, the early life history stage that is often associated with a high rate of mortality due to starvation and predation. We present the first study that examines the effects of prey swimming behavior on prey-capture kinematics in marine fish larvae. Using a digital high-speed video camera, we recorded the swimming velocity of zooplankton prey (Artemia franciscana, Brachionus rotundiformis, a ciliate species, and two species of copepods) and the feeding behavior of red drum (Sciaenops ocellatus) larvae. From the video recordings we measured: (1) zooplankton swimming velocity in the absence of a red drum larva; (2) zooplankton swimming velocity in the presence of a red drum larva; and (3) the excursion and timing of key kinematic events during prey capture in red drum larvae. Two-way ANOVA revealed that: (1) swimming velocity varied among zooplankton prey; and (2) all zooplankton prey, except rotifers and ciliates, increased their swimming velocity in the presence of a red drum larva. The kinematics of prey capture differed between two developmental stages in S. ocellatus larvae. Hyoid-stage larvae (3–14 days old) fed on slow swimming B. rotundiformis (rotifers) while hyoid-opercular stage larvae (15 days and older) ate fast moving A. franciscana. Hyoid-opercular stage red drum larvae had a larger gape, hyoid depression and lower jaw angle, and a longer gape cycle duration relative to their hyoid-stage conspecifics. Interestingly, the feeding repertoire within either stage of red drum development was not affected by prey type. Knowledge of the direct relationship between fish larvae and their prey aids in our understanding of optimal foraging strategies and of the sources of mortality in marine fish larvae.  相似文献   

16.
Increasing dietary specialization is an inherently risky strategy because it increases a species’ vulnerability to resource depletion. However, risks associated with dietary specialization may be offset by increased performance when feeding on preferred prey. Although rarely demonstrated, highly specialized species are expected to outperform generalists when feeding on their preferred prey, whereas generalists are predicted to have more similar performance across a range of different prey. To test this theory, we compared the growth rates of two obligate coral-feeding butterflyfishes (Chaetodon trifascialis and Chaetodon plebeius) maintained on exclusive diets of preferred vs nonpreferred prey. In the field, C. trifascialis was the most specialized species, feeding almost exclusively on just one coral species, Acropora hyacinthus. C. plebeius meanwhile, was much less specialized, but fed predominantly on Pocillopora damicornis. During growth experiments, C. trifascialis grew fastest when feeding on A. hyacinthus and did not grow at all when feeding on less preferred prey (P. damicornis and Porites cylindrica). C. plebeius performed equally well on both A. hyacinthus and P. damicornis (its preferred prey), but performed poorly when feeding on P. cylindrica. Both butterflyfishes select coral species that maximize juvenile growth, but contrary to expectations, the more specialized species (C. trifascialis) did not outperform the generalist species (C. plebeius) when both consumed their preferred prey. Increased dietary specialization, therefore, appears to be a questionable strategy, as there was no evidence of any increased benefits to offset increases in susceptibility to disturbance.  相似文献   

17.
Scleractinian corals experience a wide range of flow regimes which, coupled with colony morphology, can affect the ability of corals to capture zooplankton and other particulate materials. We used a field enclosure oriented parallel to prevailing oscillatory flow on the forereef at Discovery Bay, Jamaica, to investigate rates of zooplankton capture by corals of varying morphology and polyp size under realistic flow speeds. Experiments were carried out from 1989 to 1992. Particles (Artemia salina cysts) and naturally occurring zooplankton attracted into the enclosures were used as prey for the corals Madracis mirabilis (Duchassaing and Michelotti) (narrow branches, small polyps), Montastrea cavernosa (Linnaeus) (mounding, large polyps), and Porites porites (Pallas) (wide branches, small polyps). This design allowed corals to be used without removing them or their prey from the reef environment, and avoided contact of zooplankton with net surfaces. Flow speed had significant effects on capture rate for cysts (M. mirabilis), total zooplankton (M. mirabilis, M. cavernosa), and non-copepod zooplankton (M. mirabilis). Zooplankton prey capture increased with prey concentration for M. mirabilis and M. cavernosa, over a broad range of concentrations, indicating that saturation of the feeding response had not occurred until prey density was over 104 items m−3, a concentration at least an order of magnitude greater than the normal range of reef zooplankton concentrations. Location of cyst capture on coral surfaces was not uniform; for M. cavernosa, sides and tops of mounds captured most particles, and for P. porites, capture was greatest near branch tops, but was close to uniform for M. mirabilis branches in all flow conditions. The present study confirms laboratory flume results, and field results for other species, suggesting that many coral species experience particle flux and encounter rate limitations at low flow speeds, decreasing potential zooplankton capture rates. Received: 17 September 1996 / Accepted: 22 November 1997  相似文献   

18.
J. R. Allen 《Marine Biology》1998,132(3):383-390
Dense beds of the suspension-feeding brittle-star Ophiothrix fragilis are common in European waters. Their potential importance in benthic–pelagic coupling has been highlighted, but little is known about the feeding dynamics of this species. Encounter-rate models provide a potential mechanism for the estimation of feeding rates on suspended material of varying sizes. This work investigates factors essential to the application of such models. Particle-retention efficiency (RE) converts encounter rate into capture, or clearance rate. Laboratory studies demonstrated that RE varied with the interactive effects of flow velocity and particle size. RE was lowest for large particles, particularly at high flow velocity where RE as low as 59% was observed. This indicates that if RE is not accounted for in encounter-rate models, significant overestimates of feeding rates on large particles may occur. Flow around feeding arms and tube feet was characterised by intermediate Reynolds numbers, precluding application of the most simple encounter-rate models. Complex secondary-flow patterns were observed, which carried particles along the downstream side of the feeding arms, but these did not appear to increase the area available for particle capture. Previously reported particle capture by arm spines was not observed. Evidence of active rejection of large particles by tube feet was recorded. Difficulties in the application of encounter-rate models for prediction of seston-removal rates are highlighted by these results. Predicted encounter rate may deviate from actual clearance rate due to the effects of retention dynamics, localised flow patterns and differential particle handling. Other methods of estimation of seston-removal rates are equally problematic however, so that encounter-rate models are likely to remain a useful tool for such estimates. Received: 23 January 1998 / Accepted: 24 June 1998  相似文献   

19.
Development mode in the ophiuroid genus Macrophiothrix includes an unusual diversity of planktonic larval forms and feeding types. The modes of development for seven congeners that coexist in coral reef habitats at Lizard Island, Australia were compared using larvae generated from crosses over several reproductive seasons from 1999 to 2003. Three species (Macrophiothrix koehleri Clark, Macrophiothrix longipeda Lamarck, Macrophiothrix lorioli Clark) develop from small eggs (<170 μm) into typical obligately feeding planktonic (planktotrophic) pluteus larvae with four larval arm pairs. The remaining four species develop from larger eggs (≥230 μm) into either facultatively-feeding or non-feeding (lecithotrophic) larval forms. The facultative planktotroph (Macrophiothrix rhabdota Clark) retains the ability to digest and benefit from food but does not require particulate food to complete metamorphosis. Among the lecithotrophic species, Macrophiothrix caenosa Hoggett retains the pluteus morphology with four pairs of larval arms, but is incapable of feeding, depending instead on maternal provisions for larval development. The remaining two lecithotrophs have simplified larval morphologies with only a single pair of full length (Macrophiothrix nereidina Lamarck) or highly reduced (Macrophiothrix belli Doderlein) larval arms and no functional mouth or gut. This genus includes the first example of facultative planktotrophy in ophiuroids, the first example in echinoderms of a complete pluteus morphology retained by a lecithotrophic larva, and three degrees of morphological simplification among lecithotrophic larval forms. Egg volume varies 20-fold among species and is related to variation in feeding mode, larval form, and development time, as predicted for the transition from planktotrophic to lecithotrophic development.  相似文献   

20.
Summary The webs of Miagrammopes animotus have a simple structure and variable form. However, both the length of their lines and the total surface area of their capture threads are closely associated with spider size. These spiders' ability to deposit both linear and looped cribellar capture threads along a web's diverging capture lines plays an important role in establishing these relationships. Looped capture threads have the greater surface area and are more prominent in the webs of older spiders where they increase a web's surface area and enhance its ability to retain prey. The predicted performance of these webs is supported by comparisons of the stickiness of their threads and a survey of the prey their owners capture. Cribellar thread stickiness increases with spider size, and larger spiders capture prey that have greater masses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号