首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
随着环境空气质量新标准的全面实施,PM_(2.5)监测已经全面普及,并成为全国大部分城市关注的首要污染物,根据新疆环境空气质量监测网中不同区域、不同时段颗粒物(PM_(2.5)、PM_(10))质量浓度监测结果,对PM_(2.5)/PM_(10)质量浓度的比值关系进行深入分析,研究其在新疆典型区域特殊气象条件下的分布规律,为科学合理评价和考核新疆环境空气质量提供数据支持与参考。  相似文献   

2.
环境空气PM_(2.5)和PM_(10)监测分析质量保证及其评价   总被引:5,自引:0,他引:5  
为保证四城市PM25和PM10的监测数据准确,具有可比性,本研究规定了滤膜的选择、称量操作步骤的要求和滤膜称量的质控指标。研究结果表明,粗细颗粒物样品的采集和称量操作可行,监测数据准确、可靠,具有可比性。  相似文献   

3.
为检验PM_(2.5)和PM_(10)新监测标准实施近3年长沙大气颗粒物污染状况,利用近3年每日监测数据,对长沙10个国控自动监测点PM_(2.5)和PM_(10)达标情况、首要污染物及变化特征进行研究分析。结果表明,近3年长沙市PM_(2.5)和PM_(10)年均质量浓度均超过了新标准规定的年均值二级标准限值;2013年污染最严重。PM_(2.5)和PM_(10)月均值峰值出现在1月和11月,谷值在8月,各月PM_(2.5)超标天数和首要污染物为PM_(2.5)天数都大于PM_(10);PM_(2.5)和PM_(10)冬季日均值浓度明显高于其他季节,呈双峰型,峰值在上午10:00和20:00~21:00,夜晚浓度高于白天;PM_(2.5)春、夏、秋三季日变化呈单峰型,峰值在20:00~21:00;PM_(10)四季日变化呈双峰型。PM_(2.5)和PM_(10)浓度的比值(P)1月和2月最高,PM_(10)和PM_(2.5)日均值有着显著的线性相关性。  相似文献   

4.
正环保部2016年7月8日向媒体发布了2016年6月全国和京津冀、长三角、珠三角区域及直辖市、省会城市、计划单列市空气质量状况。环境保护部环境监测司司长罗毅介绍,6月,74个城市中空气质量排名相对较差的后10位城市(从第74名到第65名)分别是:唐山、邢台、邯郸、济南、保定、郑州、太原、廊坊、衡水、北京和天津(北京、天津并列倒数第10位);空气质量排名相对较好的前10位城市依次是珠海、中山、海口、厦门、深圳、江门、舟山、惠州、南宁和丽水。  相似文献   

5.
利用2015年1月1日至12月31日南水北调中线源头南阳市主城区5个国控空气质量监测站24 h自动连续采样的PM_(10)、PM_(2.5)质量浓度数据和同期气象要素观测数据,分析了南阳市大气颗粒物浓度的污染特征及其与气象因子的关系。结果表明:2015年南阳市PM_(10)、PM_(2.5)年均质量浓度分别为0.136、0.074 mg/m~3,超标率分别为31.8%、39.2%;PM_(10)、PM_(2.5)峰值均出现在1月,PM_(10)谷值出现在11月,PM_(2.5)谷值出现在9月;PM_(10)四季日变化均呈双峰型,而PM_(2.5)冬季日变化呈双峰型,其他季节无明显峰值;PM_(2.5)/PM_(10)值在43%~65%,均值54%;PM_(10)、PM_(2.5)与大气压呈显著正相关,与温度、相对湿度呈显著负相关,与风速、降水相关性不明显。  相似文献   

6.
淮安市区大气中颗粒物PM_(10)、PM_(2.5)污染水平   总被引:1,自引:0,他引:1  
通过对淮安市大气颗粒物中PM10、PM2.5的监测与污染水平分析,得出了淮安市区PM10与PM2.5浓度呈冬秋季高,夏春季低的特征。PM2.5和PM10的比值范围在0.62~0.65之间,即PM2.5在PM10以下颗粒物中所占比例大约为63%。  相似文献   

7.
昌吉市2016年冬春季多次出现雾霾天气,针对昌吉市2016年采暖期和非采暖期PM_(2.5)和PM_(10)的浓度变化特征进行分析,结果显示:2016年全年空气质量在二级以上达标的天数为267 d,占72.9%,未达标天数占26.6%;采暖期PM_(2.5)和PM_(10)的质量浓度显著高于非采暖期,平均值是非采暖期的5.6倍和3.1倍,2月浓度值达到最高;采暖期间的首要污染物质为PM_(2.5),比例最高占66.3%,PM_(10)次之(占33.7%),非采暖期间污染物质PM_(10)占37.4%,PM_(2.5)占8.1%;采暖期间PM_(2.5)在PM_(10)中的比重(60.8%)也高于非采暖期(33.3%)。  相似文献   

8.
茂名市大气PM_(2.5)在线源解析   总被引:1,自引:0,他引:1  
于2014年12月31日—2015年1月12日,利用单颗粒气溶胶质谱仪对茂名市大气中PM2.5进行在线监测和分析。结果表明,茂名市大气颗粒物污染来源分布(颗粒数占比)分别为扬尘6%、工业工艺源10.9%、生物质燃烧14.7%、机动车尾气27.5%、燃煤23.4%、二次无机源7.7%和其他9.9%。空气质量从重度污染转为优良天气过程中,机动车尾气的贡献率基本保持在20%以上,而燃煤占比从28.9%降至12.3%;空气质量从优良转为污染天气的过程中,工业工艺源、二次无机源、生物质燃烧、燃煤的占比增加,而机动车尾气占比不断下降。  相似文献   

9.
介绍了金山区PM2.5监测概况,并采用2012年环保部颁发的新标准对该区所监测的PM2.5数据进行评价,通过与上海市数据比较,与周围区县比较以及各点位历史数据比较等多方面对该区历史数据进行了分析,结合上述分析讨论了该区PM2.5的主要来源  相似文献   

10.
使用2013年PM2.5监测数据和南京气候基准站的气象资料,分析PM2.5扩散与气象条件的关系。结果表明:PM2.5质量浓度与降水量有良好的负相关关系;较大混合层厚度和不稳定的大气层结有利于PM2.5质量浓度的降低;在南京地区,PM2.5质量浓度在东北风向和西南风下相对较低,而且与风速也有较好的负相关性;较高的湿度不利于PM2.5质量浓度的降低,并会影响能见度,60%~70%的湿度区间是PM2.5污染加重的转折点。  相似文献   

11.
近年来随着雾霾天气的频发和空气环境质量的不断下降,有关PM_(2.5)的研究逐渐成为研究的重点和热点。本研究利用阿克苏市2014年PM_(2.5)连续在线监测数据,对PM_(2.5)的污染现状和季节变化、月变化、日变化、昼夜变化规律进行探讨和分析。结果表明,阿克苏市PM_(2.5)质量浓度平均值春季最高,其次为冬季,夏季最低。春季沙尘天气和冬季采暖燃烧源是PM_(2.5)质量浓度增加的主要原因;阿克苏市PM_(2.5)质量浓度日均值为14.96~282.84μg/m3,年平均值为77.85μg/m3,是国家二级标准的1.04倍;阿克苏市PM_(2.5)质量浓度春季白天高于夜间,夏季和冬季白天低于夜间。  相似文献   

12.
为了研究北京地区PM2.5与空气污染物的质量浓度关系。从PM2.5监测网收集2013-04-01~2014-05-15期间PM2.5、PM10、SO2、NO2、CO、O3等主要空气污染物数据,用多元线性回归模型建立PM2.5与空气污染物的质量浓度关系。结果表明:北京地区PM2.5与空气污染物PM10、SO2、NO2、CO、O3的质量浓度相关系数分别为0.9172、0.6332、0.7683、0.8166和-0.1797,优化的拟合方程为:[PM2.5]=-22.5925+0.569109×[PM10]+23.94913×[CO]+0.113025×[BPM2.5],模型的估算值与观测值相关系数为0.9426,此方程能较好地模拟北京地区的PM2.5质量浓度。  相似文献   

13.
冬季大气中PM_(10)和PM_(2.5)污染特征及形貌分析   总被引:2,自引:4,他引:2  
2008年冬季采集大气中PM10和PM2.5样品,利用SPSS软件进行分析。结果表明,PM10质量浓度在92.87~384.7μg/m3之间,平均值为201.09μg/m3,超标率71.43%。PM2.5浓度跨度为57.27~230.21μg/m3,平均值为133.82μg/m3,超标率89.47%。PM10和PM2.5空间分布略有差异。PM2.5/PM10在29.10%~94.76%之间,均值为66.55%。PM2.5与PM10质量浓度之间有显著相关性,相关方程:PM2.5=0.7993×PM10-55.984(R2=0.9524,置信度为95%)。通过颗粒物形貌分析,初步判定冬季大气主要污染源为燃煤和机动车尾气排放。  相似文献   

14.
于2016年12月30日—2017年2月4日,利用单颗粒气溶胶飞行时间质谱仪(SPAMS),对合肥市PM_(2.5)开展来源解析连续监测,共捕捉到4次较为明显的灰霾过程,对颗粒物种类及质谱特征进行了分析。结果显示,监测期间合肥市主要颗粒物成分为元素碳(EC)(31. 9%)、富钾(K)(16. 6%)、有机碳(OC)(16. 0%)及混合碳颗粒(ECOC)(15. 0%)等。主要污染源为机动车尾气源(24. 5%)、工业工艺源(22. 7%)、燃煤源(14. 1%)、二次无机源(13. 5%)等。污染天气发生时,工业工艺源占比上升2. 2个百分点,生物质燃烧和燃煤源占比分别下降1. 7和2. 7个百分点,机动车尾气和扬尘源基本持平,表明此次污染过程主要受到工业工艺源的累积影响。  相似文献   

15.
2014年使用EHM-X100型在线金属分析仪自动监测苏州市区大气PM2.5中Pb、Cu、K等24种元素质量浓度,并结合当地工业经济发展和降雨、土壤等环境状况对元素污染特征进行分析研究。结果表明:这24种元素的年均质量浓度在0.002μg/m3~0.834μg/m3之间,并总体呈现冬季质量浓度最高,春、秋季次之,夏季最低的变化趋势;Fe、Ca和Zn 3种元素在总质量浓度中占比较高,这可能与当地产业布局、建筑业及交通状况等有关,是人类活动所导致的污染。  相似文献   

16.
对长沙市环境空气中PM10、PM2.5质量浓度进行自动监测,并统计分析其分布的均匀性。结果表明,在1 d的4个典型时刻以及日内,PM2.5的质量浓度分布总体上较PM10均匀;从月内日均值及2013年1月—10月的月均值变化情况看,PM2.5质量浓度的相对标准偏差(RSD)总体高于PM10,表明PM2.5在长时间尺度上的分布较PM10更不均匀;就功能区分布而言,PM10、PM2.5质量浓度分布的均匀性没有明显的区域差异,两者的变化幅度与功能区类别没有必然联系。  相似文献   

17.
我国4个大城市空气PM_(2.5)、PM_(10)污染及其化学组成   总被引:49,自引:3,他引:49  
报告了 1 995~ 1 996年在中国的广州、武汉、兰州、重庆 4大城市 8个采样点 PM2 .5 、PM2 .5~ 1 0 和 PM1 0 的监测结果。结果表明 ,1 995年 PM2 .5 年均值浓度为 57~ 1 60 μg/m3,比美国 1 997年颁布的标准值 (1 5μg/m3)高 2 .8~ 9.7倍。PM1 0 年日均值为 95~ 2 73μg/m3。除武汉市 1个对照点外 ,其余 7个监测点的 PM1 0 均超过我国空气质量二极标准 (1 0 0μg/m3)2 8%~ 1 73 % ,比美国标准 (50μg/m3)超过更多 ,说明污染是相当严重的。用 XRF分析了 PM2 .5 、PM2 .5~ 1 0 中 4 2种化学元素 ,结果表明 ,燃煤、燃油和其它工业污染的元素 As、Pb、Se、Zn、Cu、Cl、Br、S在这些颗粒物中有明显富集 ,特别是在PM2 .5 中的富集倍数达数十倍至数万倍 ,对人体健康有很大危害  相似文献   

18.
为研究乌鲁木齐市冬季采暖期间大气颗粒物污染特征,通过采样和在线监测二种手段分析了2015年1~2月大气颗粒物样品,采用重量法分析颗粒物质量浓度,并对其相关性进行分析。结果表明:依据《环境空气质量标准》(GB 3095-2012),采样期间乌鲁木齐市大气PM_(10) 和PM_(2.5)的日均质量浓度均超过了国家二级标准,颗粒物污染严重;PM_(10) 和PM_(2.5)存在显著相关性,PM_(2.5)和PM_(10) 浓度的比值均大于0.5,采暖期PM2.5对乌鲁木齐市大气颗粒物贡献显著。  相似文献   

19.
根据中国环境保护产品认证标准(CCEP)的技术规范,结合美国环境保护署(EPA)关于环境空气监测参考指标和等效检测方法,对赛默飞世尔最新开发的双通道颗粒物自动监测装置的主要性能指标进行分析表征。用3台待测双通道5028i型和2台参照单通道5014i型颗粒物自动监测装置连续2个月自动监测大气颗粒物PM2.5和PM10,考察双通道颗粒物自动监测装置关于仪器精度、仪器准确度、流量稳定性和准确性等方面的性能。  相似文献   

20.
采用Pearson相关系数分析了2013—2016年3大典型城市北京、南京和广州的ρ(PM_(2.5))与各气象因子的关系。结果表明,3个城市ρ(PM_(2.5))与各风速因子最大的相关系数依次为-0.44,-0.29和-0.37,与各气温因子最大的相关系数依次为-0.44,-0.33和-0.37,气压与南京和广州的ρ(PM_(2.5))正相关,气压因子最大的相关系数分别为0.25和0.34,湿度与北京ρ(PM_(2.5))正相关,与广州ρ(PM_(2.5))负相关,湿度因子最大的相关系数分别为0.49和-0.36,日照时数与北京ρ(PM_(2.5))相关系数为-0.46,降水量与南京和广州ρ(PM_(2.5))相关系数分别为-0.20和-0.24;采用逐步线性回归方法建立城市次日ρ(PM_(2.5))与气象因子的预测模型,复合相关系数分别为0.722 8,0.770 6和0.809 9。模型预测3个城市2016年PM_(2.5)年均值分别偏高4,5和3μg/m3,日均值平均相对误差为±45.6%,±32.9%和±26.0%,模型对高ρ(PM_(2.5))普遍低估。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号