首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 153 毫秒
1.
Zhao Y  Shi X  Yu D  Wang H  Sun W 《Chemosphere》2005,59(11):1527-1535
The spatial patterns of soil organic carbon (SOC) are closely related to the global climate change. In quantifying the spatial patterns of SOC density, the concept of uncertainty of the SOC density values at unsampled locations is particularly important because such uncertainty can be propagated into the subsequent global climate change modelling and has fundamental impacts on the ultimate results of the model. A total of 361 SOC density data of topsoil (0–20 cm) in Hebei province and sequential indicator simulation (SIS) were applied to perform a conditional stochastic simulation in this study to quantitatively assess the uncertainty of mapping SOC density. The results showed that a great variation exists in the SOC density data. The conditional variance of 500 realizations generated by SIS was larger in mountainous areas of the study area where the SOC density fluctuated the most, and the uncertainty was smaller on the plain area where SOC density was consistently small. Realizations generated by SIS can represent the possible spatial patterns of SOC density without smoothing effect. A set of realizations can be used to explore all possible spatial patterns of SOC density and provide a visual and quantitative measure of the spatial uncertainty of mapping SOC density. With a given threshold of SOC density, SIS can quantitatively assess both local uncertainty and spatial uncertainty of SOC density that is greater the threshold.  相似文献   

2.
Sorption of ametryn and imazethapyr in 25 soils from Pakistan and Australia was investigated using the batch method. The soils varied widely in their intrinsic capacities to sorb these herbicides as shown by the sorption coefficients, Kd, which ranged from 0.59 to 47.6 for ametryn and 0.02 to 6.94 for imazethapyr. Generally the alkaline soils of Pakistan had much lower Kd values of both herbicides than the soils of Australia. Both soil pH and soil organic carbon (SOC) were correlated significantly with the sorption of ametryn, whereas only soil pH was strongly correlated with imazethapyr sorption. No correlation was found between Kd values of the herbicides and the clay contents of the soils. Multiple regression analysis showed that Kd values were better correlated (r2=0.94 and 0.89 for ametryn and imazethapyr, respectively) if SOC and pH were simultaneously taken into account. The study indicated that sorption of these herbicides in the alkaline soils of Pakistan was low and consequently there is considerable risk of groundwater contamination.  相似文献   

3.
Soil water/distribution coefficients (Kd) have been measured for the partitioning of naphthalene, phenanthrene and pyrene between aqueous surfactant solutions and a clean soil. The surfactants used are ABA block copolymers constructed from ethylene oxide (the monomer used to synthesise the hydrophilic A blocks) and propylene oxide (used for the manufacture of the hydrophobic B block). Three of these surfactants comprising the same size propylene oxide block but different ethylene oxide/propylene oxide ratios were investigated. Increasing amounts of surfactant in the system result in a progressive decrease in the Kd values signifying an increasing tendency for the hydrophobic solutes to be dispersed in aqueous solution due to the action of the surfactant. More significantly for equal surfactant doses the most hydrophobic surfactant possessing the lowest ethylene oxide/propylene oxide ratio reduces Kd by the greatest amount whereas the most hydrophilic surfactant reduces Kd the least. Finally micellar HPLC using the above surfactants and hydrophobic solutes was undertaken. Interpolated capacity factors evaluated for particular surfactant doses correlated well with Kd values calculated for the same surfactant doses. The relationship between Kd and capacity was found to be log-linear and the correlation line could be fitted to the data obtained for all three surfactants. It is therefore concluded that micellar HPLC may be used for preliminary evaluations of the effectiveness of particular surfactants proposed for contaminated soils restoration schemes.  相似文献   

4.
The sorption and desorption behavior of radium on bentonite and purified smectite was investigated as a function of pH, ionic strength and liquid to solid ratio by batch experiments. The distribution coefficients (Kd) were in the range of 10(2) to > 10(4) ml g-1 and depended on ionic strength and pH. Most of sorbed Ra was desorbed by 1 M KCl. The results for purified smectite indicated that Ra sorption is dominated by ion exchange at layer sites of smectite, and surface complexation at edge sites may increase Ra sorption at higher pH region. Reaction parameters between Ra and smectite were determined based on an interaction model between smectite and groundwater. The reaction parameters were then used to explain the results of bentonite by considering dissolution and precipitation of minerals and soluble impurities. The dependencies of experimental Kd values on pH, ionic strength and liquid to solid ratio were qualitatively explained by the model. The modeling result for bentonite indicated that sorption of Ra on bentonite is dominated by ion exchange with smectite. The observed pH dependency was caused by changes of Ca concentration arising from dissolution and precipitation of calcite. Diffusion behavior of Ra in bentonite was also investigated as a function of dry density and ionic strength. The apparent diffusion coefficients (Da) obtained in compacted bentonite were in the range of 1.1 x 10(-11) to 2.2 x 10(-12) m2 s-1 and decreased with increasing in dry density and ionic strength. The Kd values obtained by measured effective diffusion coefficient (De) and modeled De were consistent with those by the sorption model in a deviation within one order of magnitude.  相似文献   

5.
Distribution coefficient of selenium in Japanese agricultural soils   总被引:2,自引:0,他引:2  
Nakamaru Y  Tagami K  Uchida S 《Chemosphere》2005,58(10):1347-1354
In order to evaluate the selenium (Se) sorption level in Japanese soils, soil/soil solution distribution coefficients (K(d)s) were obtained for 58 agricultural soil samples (seven soil classification groups) using 75Se as a tracer. Although several chemical forms of Se are present in agricultural fields, selenite was used, because it is the major inorganic Se form in acid soils such as found in Japan. The Kd values obtained covered a wide range, from 12 to 1060l/kg, and their arithmetic mean was 315l/kg. Among the soil groups, Andosols had higher Kd values. The Kd values for all samples were highly correlated with soil active-aluminum (Al) and active-iron (Fe) contents. Thus, active-Al and active-Fe were considered to be the major adsorbents of Se. Then, a new sequential extraction procedure was applied to 12 soil samples in order to quantify the effect of soil components on Se adsorption. The sequential extraction results showed that 80-100% of the adsorbed Se was recovered as Al-bound Se and Fe-bound Se. The amount of Al-bound Se was the highest in the soils that showed high Kd values, though the relative contribution of Fe-bound Se tended to increase with decreasing Kd values. The high values of Kd seemed to be caused mainly by the adsorption of Se onto active-Al in Japanese soils.  相似文献   

6.
To assess transport and ecotoxicological risks of metals, such as cadmium (Cd) in soils, models are needed for partitioning and speciation. We derived regression-based “partition-relations” based on adsorption and desorption experiments for main Australian soil types. First, batch adsorption experiments were carried out over a realistic range of dissolved Cd concentrations in agricultural soils in Australia. Results showed linear sorption relationships, implying the adequacy of using Kd values to describe partitioning. Desorption measurements were then carried out to assess in-situ Kd values and relate these to soil properties The best transfer functions for solid-solution partitioning were found for Kd values relating total dissolved Cd concentration to total soil Cd concentrations, accounting for the variation in pH, SOM contents and DOC concentrations. Model predictions compared well with measurements of an independent data set, but there was a tendency to underestimate dissolved Cd concentrations of highly polluted soils.  相似文献   

7.
Evaluation of the potential environmental risk posed by metals depends to a great extent on modeling the fate and mobility of metals with soil-solution partitioning coefficients (Kd). However, the effect of biological cycling on metal partitioning is rarely considered in standard risk assessments. We determined soil-solution partitioning coefficients for 5 metals (Cd, Zn, Pb, Co and Ni) at 46 forested sites that border the Precambrian Shield in central Ontario, where soil pHaq varied from 3.9 to 8.1. Foliage from the dominant tree species and forest floor samples were also collected from each site to compare their metal levels with Kd predictions. Analogous to other studies, log Kd values for all metals were predicted by empirical linear regression with soil pH (r2=0.66-0.72), demonstrating that metal partitioning between soil and soil solution can be reliably predicted for relatively unpolluted forest mineral soils by soil pH. In contrast, whereas the so-called bioavailable water-soluble metal fraction could be predicted from soil pH, metal concentrations in foliage and the forest floor at each site were not consistently related to pH. Risk assessment of metals should take into account the role of biota in metal cycling and partitioning in forests, particularly if metal bio-accumulation and chronic toxicity in the food chain, rather than metal mobility in soils, are of primary concern.  相似文献   

8.
Carbendazim sorption-desorption in Vietnamese soils   总被引:2,自引:0,他引:2  
Four Vietnamese soils (denoted AG, CT, ST and TG) which differed with respect to pH (pH 2.9-5.4), clay (17-50%) and organic matter (0.3-9.8%) content, were selected for sorption and desorption studies of carbendazim using the batch equilibration technique. Sorption increased with increasing organic carbon (OC) and clay content. Kd values for carbendazim sorption on AG, CT, ST, TG soils at initial concentration of 20 microg/g were 12.5, 127, 8.1 and 9.6 ml/g, respectively. The OC partition coefficients (Koc) for AG, CT, ST and TG were 1140, 1300, 2700 and 960 ml/g, respectively. Carbendazim was strongly sorbed and the binding was less reversible in the acid sulfate soil (CT), than in the other soils. The CT soil had both the highest OC content (9.8%) and the highest clay content (49.8%). The influence of pH on carbendazim sorption was studied in the ST and CT soils. Sorption of carbendazim by the sandy ST soil (OC 0.3%; clay content 26.3%) increased as the pH decreased, while sorption of carbendazim by the CT soil decreased as pH decreased.  相似文献   

9.
Kah M  Brown CD 《Chemosphere》2008,72(10):1401-1408
The octanol/water partition coefficient (Kow) for organic compounds is widely used in predictive environmental studies. A significant proportion of contaminants of surface and ground water are ionisable (e.g. many pesticides, pharmaceuticals, metabolites). Such compounds may be partially ionised dependent on the pH. Since the neutral and ionic species exhibit different polarities, the Kow value of ionisable pesticides is pH dependent. It is therefore essential to determine Kow values over the full range of pH that occurs in the environment in order to get appropriate predictors. Numerous methods are available to measure lipophilicity but only a few are appropriate for ionisable pesticides (e.g. pH metric and filter probe methods). Parameters such as pH and ionic strength need to be carefully controlled when working with ionisable compounds. Variation of these factors probably explains why literature can yield Kow values that differ by more than one order of magnitude for some compounds. In this article, Kow values obtained for six acidic pesticides with three different methods are compared as well (data from the literature, measured by pH metric method and calculated with five computer programs). The values used in predictive regression equations needs to be either measured with a suitable method or selected from the literature with great care.  相似文献   

10.
I G Dubus  E Barriuso  R Calvet 《Chemosphere》2001,45(6-7):767-774
The sorption behaviour of a new wheat hybridising agent (clofencet, 2-4-(chlorophenyl)-3-ethyl-2,5-dihydro-5-oxopyridazine-4-carboxylic acid) was investigated in batch equilibrium experiments and compared to that of two other organic acids (2,4-D and salicylic acid). Sorption coefficients Kd for the three compounds were determined in 18 Cambisols and Ferralsols. Kd values for clofencet were 0.3-9.4 l/kg for Cambisols and 2.1-68 l/kg for Ferralsols. Sorption of clofencet was strongly related statistically to that of salicylic acid. Sorption of clofencet and salicylic acid decreased exponentially with increasing solution pH in Cambisols whereas a bell-shaped curve was obtained for the sorption of salicylic acid in Ferralsols. Sorption of 2,4-D (2,4-dichlorophenoxyacetic acid) was not statistically related to the pH of the different soils. Positively charged oxide surfaces were shown to play a significant role in the sorption of clofencet and salicylic acid. The use of simple correlation and multiple linear regressions suggested that the main sorption mechanisms of clofencet in soils were likely to be ligand exchange on oxide surfaces and, to a lesser extent, cation bridging. Differences in the sorption behaviour of clofencet/salicylic acid and 2,4-D might be attributed to the possibility of the two former compounds forming bidentate complexes with metals.  相似文献   

11.
The sorption of imidacloprid (1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolid-inimine ) (IMI) and its metabolites imidacloprid-urea (1-[(6-chloro-3-pyridinyl)-methyl]-2-imidazol-idinone) (IU), imidacloprid-guanidine (1-[(6-chloro-3-pyridinyl)-methyl]-4,5-dihydro-1H-imidazol-2-amine) (IG), and imidacloprid-guanidine-olefin (1-[(6-chloro-3-pyridinyl)methyl]-1H-imidazol-2-amine) (IGO) was determined on six typical Brazilian soils. Sorption of the chemicals on the soil was characterized using the batch equilibration method. The range and order of sorption (Kd) on the six soils was IG (4.75-134) > or = IGO (2.87-72.3) > IMI (0.55-16.9) > IU (0.31-9.50). For IMI and IU, Kd was correlated with soil organic carbon (OC) content and CEC, the latter due to the high correlation between OC and cation exchange capacity (CEC) (R2 = 0.98). For IG and IGO, there was no correlation of sorption to clay, pH, OC or CEC due to the high sorption on all soils. Average Koc values were IU = 170, IMI = 362, IGO = 2433, and IG = 3500. Although Kd and Koc values found were consistently lower than those found in soils developed in non-tropical climates, imidacloprid and its metabolites were still considered to be slightly mobile to immobile in Brazilian soils.  相似文献   

12.
Leaching of acidic herbicides (2,4-D, flumetsulam, and sulfentrazone) in soils was estimated by comparing the original and modified AF (Attenuation Factor) models for multi-layered soils (AFi). The original AFi model was modified to include the concept of pH-dependence for Kd (sorption coefficient) based on pesticide dissociation and changes in the accessibility of soil organic functional groups able to interact with the pesticide. The original and modified models, considering soil and herbicide properties, were applied to assess the leaching potential of selected herbicides in three Brazilian soils. The pH-dependent Kd values estimated for all three herbicides were observed to be always higher than pH-independent Kd values calculated using average Koc data, and therefore the original AFi model overestimated the overall leaching potential for the soils studied.  相似文献   

13.
This article reports on methabenzthiazuron [1-(1,3-benzothiazol-2-yl)-1,3-dimethylurea] (MBT) adsorption process on six agricultural allophanic and nonallophanic soils. The effect of amendment with exogenous organic matter was also studied. Adsorption kinetic fits an hyperbolic model. MBT adsorption reached an apparent equilibrium within 2 h and followed a second-order reaction. The maximum adsorbed amounts for natural soils ranged from 32 to 145 microg g(-1). Rate constants were considered relatively low (0.27-1.5 x 10(-4) [microg g(-1)](1-n) s-1); the slow process was attributed to a combined effect of difussion and adsorption. MBT adsorption fits the Freundlich model with r values > or =0.998 at P < or = 0.001 significance levels. Kf and Freundlich exponents (l/n) ranged from 5.3 to 82.1 cm3 g(-1) and from 0.66 to 0.73, respectively. Kf values for soils with a low organic matter content were lower than that obtained from the only typical allophanic soil derived from volcanic ash under study. Lineal regression analysis between Kf and organic matter content of nonallophanic soils gave a correlation coefficient of 0.980 (P = 0.02). Dispersion of Kd values together with close values of K(OM) indicate that organic matter (OM) was the principal component responsible for MBT adsorption in unamended soils. Addition of peat decreased soil pH and increased adsorption capacity for allophanic and nonallophanic soils. Kinetic experiments showed enhancements of Xmax values and lower rate constants.  相似文献   

14.
Pesticide soil/solution distribution coefficients ( Kd values), commonly referred to as pesticide soil sorption values, are utilized in computer and decision aid models to predict soil mobility of the compounds. The values are specific for a given chemical in a given soil sample, normally taken from surface soil, a selected soil horizon, or at a specific soil depth, and are normally related to selected soil properties. Pesticide databases provide Kd values for each chemical, but the values vary widely depending on the soil sample on which the chemicals were tested. We have correlated Kd values reported in the literature with the reported soil properties for an assortment of pesticides in an attempt to improve the accuracy of a Kd value for a specific chemical in a soil with known soil properties. Mathematical equations were developed from regression equations for the related properties. Soil properties that were correlated included organic matter content, clay mineral content, and/or soil pH, depending on the chemical properties of the pesticide. Pesticide families for which Kd equations were developed for 57 pesticides include the following: Carboxy acid, amino sulfonyl acid, hydroxy acid, weakly basic compounds and nonionizable amide/anilide, carbamate, dinitroaniline, organochlorine, organophosphate, and phenylurea compounds. Mean Kd values for 32 additional pesticides, many of which had Kd values that were correlated with specific soil properties but for which no significant Kd equations could be developed are also included.  相似文献   

15.
The interaction of Cu with dissolved organic matter (DOM, extracted from an organic forest floor) was investigated and the resulting data was evaluated in terms of their uncertainty. The speciation of Cu over ‘free’ Cu (as analysed by diffusive gradients in thin films (DGT)), dissolved Cu–DOM complexes and precipitated Cu–DOM was determined as a function of pH (3.5, 4.0 and 4.5) and Cu/C ratio. The dissolved organically bound fraction was highest at pH 4.5, but this fraction decreased with increasing Cu/C ratio, which was observed for all pH levels. In the range of Cu/C=7×10−5–2.3×10−2 (mol/mol) the precipitated fraction was very small. The speciation of both Al and Fe was not affected by increasing Cu concentrations. From a continuous distribution model using the Scatchard approach, we calculated the optimal fit and corresponding upper and lower 95% uncertainty bounds of the overall stability constants (Ko) with the shuffled complex evolution Metropolis (SCEM) algorithm. Although the optimal equation fitted the data very well, the uncertainty of the, according to literature, most reliable approach to establish stability constants, was still large. Accordingly, the usually reported intrinsic stability constants exhibited large uncertainty ranging from logKi=6.0–7.1 (optimal 6.7) for pH 3.5, logKi=6.5–7.1 (optimal 6.8) for pH 4.0, and logKi=6.4–7.2 (optimal 6.8) for pH 4.5 and showed only little effect of pH.  相似文献   

16.
为了解农村池塘养殖水体的水质情况,分析了湖北宜东平原34个农村分散养殖鱼塘水体中pH、叶绿素a、总氮(TN)、总磷(TP)及3种磺胺类抗生素(SAs,即磺胺二甲嘧啶、磺胺甲噁唑及磺胺异噁唑),并讨论了它们之间的相关性.结果表明,所监测鱼塘水体pH值差异较小,范围为7.26~8.96,但鱼塘之间的TN、TP及叶绿素a含量差别大,其含量范围分别为0.074~47.185 mg/L、0.007~1.311 mg/L及4~421 μg/L.其中有85.29%的鱼塘水体TN含量劣于地表水V类标准,17.65%TP劣于V类,只有3个鱼塘的叶绿素a含量小于10 μg/L,水体富营养化严重.鱼塘水中3种SAs的浓度范围为23~828 ng/L,其检出率顺序为磺胺异噁唑(47%)> 磺胺甲噁唑(18%)> 磺胺二甲嘧啶(6%).对所考察因子的相关性研究表明,鱼塘养殖水体的pH、TN及TP无相关,但磺胺二甲嘧啶与TN/TP呈显著正相关(r=0.345,P=0.05).叶绿素a与水体中TN及TP的关系呈较好的幂指数函数关系,而且TP为浮游植物的生长限制因子.  相似文献   

17.
The solid-solution distribution or partition coefficient (Kd) is a measure of affinity of potentially toxic elements (PTE) for soil colloids. Kd plays a key role in several models for defining PTE guideline values in soils and for assessing environmental risks, and its value depends on edaphic and climatic conditions of the sites where the soils occur. This study quantified Kd values for Cd, Co, Cr, Cu, Hg, Ni, Pb, and Zn from representative soil samples from Brazil’s eastern Amazon region, which measures 1.2 million km2. The Kd values obtained were lower than those set by both international and Brazilian environmental agencies and were correlated with the pH, Fe and Mn oxide content, and cationic exchange capacity of the soils. The following order of decreasing affinity was observed: Pb?>?Cu?>?Hg?>?Cr?>?Cd?≈?Co?>?Ni?>?Zn.  相似文献   

18.
ABSTRACT

The effects of the spread of residue concentrations in the samples derived from the selected supervised trials and the number of trials were studied on the magnitude and uncertainty of the short-term dietary intakes calculated with the proposed new procedure (IESTIp) and that one used currently by the FAO (Food and Agriculture Organization) and WHO (World Health Organization) Joint meeting on Pesticide Residues (JMPR) (IESTIc). The residue data of 10 pesticides were obtained from supervised trials conducted on apples and pears. The methods described in Part I were used for the calculations of the uncertainty. The results indicate that the ratio of IESTIP to IESTIcIESTI) is directly proportional to the ratio of the estimated maximum residue level (MRL), recommended by the JMPR; to the highest residue (HR) observed in supervised trials, and it may have a wide range depending on the particular conditions. The φIESTI becomes greater with the increase of the difference between the mrl or maximum residue limit (MRL, established by the Codex Alimentarius Commission, CAC) and HR, and becomes smaller if the difference between the large portion (LP) and unit mass (U) decreases. The φIESTI ranged between 2 and 5.1 in the 16 cases examined indicating that the IESTIp calculation method leads to higher intake estimates. The ratio of CVIESTIp and CVIESTIc ranged typically between 0.62 and 1.71. It rapidly increased up to 12 trials. For a larger number of trials, the ratio remained practically constant (1.69–1.71). The processing factor (PF) equally affects the MRL and HR values, therefore, it will not practically influence the φIESTI. The uncertainty of the estimated median residues depends on the spread and number of values in the residue datasets, which affects the uncertainty of the conversion factor (CF) and subsequently the uncertainty of the estimated IESTIp. Residue values obtained from minimum nine independent trials are required for the correct calculation of the 95% confidence intervals of the calculated median residues. The uncertainty of the analytical results directly affects the median, HR values and indirectly the calculated mrl and the MRL derived from it. Therefore, it should also be considered for the calculation of the combined uncertainty of the conversion factors. For the correct interpretation of the results of dietary exposure calculations, the upper 95% confidence limit of the short-term intake should also be considered. However, it is not the current practice of regulatory agencies or JMPR.  相似文献   

19.
The variability of species sensitivity distribution (SSD) due to contaminant bioavailability in soil was explored by using nickel as metal of concern. SSDs of toxicity test results of Avena sativa L. originating from different soils and expressed as total content and available (0.01 M CaCl2) extractable concentration were compared to SSDs for terrestrial plants derived from literature toxicity data. Also the 'free' nickel (Ni2+) concentration was calculated and compared. The results demonstrated that SSDs based on total nickel content highly depend on the experimental conditions set up for toxicity testing (i.e. selected soil and pH value) and thus on metal bioavailability in soil, resulting in an unacceptable uncertainty for ecological risk estimation. The use in SSDs of plant toxicity data expressed as 0.01 M CaCl2 extractable metal strongly reduced the uncertainty in the SSD curve and thus can improve the ERA procedure remarkably by taking bioavailability into account.  相似文献   

20.
Removal of PAHs from water using an immature coal (leonardite)   总被引:1,自引:0,他引:1  
It has been studied an immature coal (leonardite) as an adsorbent for removing PAHs [fluorene, pyrene, benzo(k)fluoranthene, benzo(a)pyrene and benzo(g,h,i)perylene] from water. To determine the efficiency of leonardite as an adsorbent of PAHs, factors such as pH, contact time and equilibrium sorption were evaluated in a series of batch experiments. There were no significant differences in the removal percentages for the various pH values studied, except for fluorene. The adsorption of fluorene was higher at lower pH values. The equilibrium time was reached at 24h. At this time, more than 82% of the pyrene, benzo(k)fluoranthene, benzo(a)pyrene and benzo(g,h,i)perylene had been removed. During the first 2h, the adsorption rate increased rapidly. After that time, however, there was a minor decrease. Equilibrium data were fitted to Freundlich models to determine the water-leonardite partitioning coefficient. Physical adsorption caused by the aromatic nature of the compounds was the main mechanism that governed the removal process. The polarity of the humic substances in leonardite may also have influenced the adsorption capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号