首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 835 毫秒
1.
The Micronesian sponge Oceanapia sp. has an unusual growth form that consists of an irregular turnip-shaped base, which is buried in the substrate. One to several fistules, which protrude through the sand, are attached to the base of the sponge. On top of each fistule is a small fragile capitum. We examined whether this conspicuous red-colored sponge was chemically defended and if intraspecimen variation existed in the distribution of secondary metabolites between different parts of the sponge. Furthermore we assessed the deterrent properties of the secondary metabolites to generalist and more specialized fish predators. We also wanted to see if the optimal defense theory holds in the case of a marine invertebrate. According to the theory, organisms evolve and allocate defenses in a way that maximizes individual fitness, assuming that defenses are costly to the fitness of the organisms. We were able to evaluate this hypothesis, since the different sponge parts in Oceanapia sp. were at different risk to damage by predators and had a different value in terms of fitness loss to the sponge (the capitum probably plays a role in asexual propagation). Concentrations of crude organic extract increased from the base to the capitum of the sponge. The major secondary metabolites kuanoniamine C and D also showed a sharp increase from the basal root to the capitum. There was no difference in structural material or ash content between the base and the fistule of the sponge, but fiber and protein content were significantly higher in the fistule. The methanol fraction was highly deterrent in field feeding assays towards generalist reef fish at base concentration. It also deterred feeding by the spongivorous angelfish Pomacanthus imperator in laboratory feeding experiments at the same concentration. The field feeding assays with pure compounds showed that kuanoniamine C and D deterred feeding by natural assemblages of reef fishes at fistule concentrations, confirming their role as defensive agents. The intraspecimen variation of secondary metabolites in Oceanapia sp. supports the optimal defense theory by showing the highest concentrations in those parts of the sponge that are most visible to predators and are likely to be most important for inclusive fitness. Received: 5 May 1999 / Accepted: 16 September 1999  相似文献   

2.
Six species of bacteria and a marine yeast which are able to use alkylated amines as a sole source of nitrogen have been isolated from marine mud and tentatively assigned to genera. One isolate (Micrococcus sp.) has been studied in greater detail. This organism has a constitutive ability to utilise trimethylamine and the lesser methylated amines as a sole source of nitrogen. Growth and metabolic studies suggest that the methylated amines are metabolized by a pathway involving a stepwise demethylation process. The implications of the results obtained on the route of regeneration and recycling of amine nitrogen in the marine environment is discussed.  相似文献   

3.
The composition, distribution and infestation sequence of organisms that destroy the commercially valuable shells of the black oyster Pinctada margaritifera var. cumingii Jameson, 1901 were studied. Three ecologically different groups of boring (euendolithic) organisms were identified: (1) phototrophic boring microorganisms (cyanobacteria, Hyella caespitosa, Hyella sp., Mastigocoleus testarum, Plectonema terebrans, and green algae, Phaeophila dendroides, Ostreobium quekettii); (2) heterotrophic boring microorganisms (fungi, Ostracoblabe implexa); (3) filter-feeding boring organisms (sponges, Cliona margaritiferae, C. vastifica). The phototrophic endoliths dominate the external pristmatic region of the shell, whereas the valuable interior nacreous region is attacked mainly by heterotrophs. Boring patterns reflect in part the shape and behaviour of the organisms and in part the structural properties of the shell, and inflict different types of damage. Infestation starts with microbial borers, which prepare the conditions for later invasion by more damaging clionid sponges. The infestation begins always at the apex, the oldest part of the shells, from which the periostracum is often removed by natural attrition or by cleaning procedure. The rate of bioerosion in 1 yr-old hatchery shells is 36 times higher than in natural populations.  相似文献   

4.
A potential method to detoxify pesticides in aquatic system is using bioremediation. In this study, four microorganisms (Pseudomonas sp (EB11), Streptomyces sp. (EB12), Aspergillus niger (EB13) and Trichoderma viride (EB14) were isolated from cucumber leaves previously treated with cymoxanil using enrichment technique. These strains were evaluated for their potential to detoxify cymoxanil in aquatic system at the concentration level of 5×10?4M. The effect of pH and temperature on the growth ability of the tested strains was also investigated by measuring the intracellular protein and mycelia dry weight for bacterial and fungal strains, respectively. Moreover, the remaining toxicity of cymoxanil after 28 days of incubation with tested strains was evaluated to confirm the complete removal of any toxic materials (cymoxanil and its metabolites). The results showed that the optimum pH for the growth of cymoxanil degrading strains (bacteria and fungi) was 7. A temperature of 30°C appears to be the optimum for the growth of either fungal or bacterial strains. Pseudomonas sp. (EB11) was the most effective strain in cymoxanil degradation followed Streptomyces sp (EB12), Trichoderma viride (EB14) and Aspergillus niger (EB13), with half-lives of 4.33, 9.5, 17.3 and 24.7 days, respectively. The degradation of cymoxanil by bacterial strains was much faster than fungal one. There is no remaining toxicity of cymoxanil detected in aqueous media previously treated with Pseudomonas sp. (EB11) for 28 days. The results suggest that bioremediation by Pseudomonas sp. (EB11) are promising for the detoxification of cymoxanil in aqueous media.  相似文献   

5.
The study describes the diversity of actinobacteria isolated from the marine sponge Iotrochota sp. collected in the South China Sea. Species and natural product diversity of isolates were analyzed, including screening for genes encoding polyketide synthases (PKS) and nonribosomal peptide synthetase (NRPS), and 16S rRNA gene restriction fragment length polymorphism (RFLP). PKS and NRPS sequences were detected in more than half of the isolates and the different “PKS-I–PKS-II–NRPS” combinations in different isolates belonging to the same species indicated a potential natural product diversity and divergent genetic evolution. The phylogenetic analysis based on 16S rRNA gene sequencing showed that the isolates belonged to genera Streptomyces, Cellulosimicrobium, and Nocardiopsis. The majority of the strains tested belonged to the genus Streptomyces and one of them may be a new species. To our knowledge, this is the first report of a bacterium classified as Cellulosimicrobium sp. isolated from a marine sponge. Key Laboratory of Marine Bio-recourses Sustainable Utilization (LMB-CAS), Guangdong Key Laboratory of Marine Materia Medica (LMMM-GD), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People’s Republic of China.  相似文献   

6.
This is the first report of bisphenol A release from polycarbonate during biodegradation by marine microorganisms. Bisphenol A is a monomer in polycarbonate and an endocrine disruptor toxic for marine organisms. Biodegradation of polycarbonate is poorly documented. Here, we have tested the possible release of bisphenol A and metabolites during biodegradation of polycarbonate by marine microorganisms. Polycarbonate degradation was carried out in vitro using a mixed marine microbial consortium isolated from the Bay of Bengal, India, 1 year under controlled laboratory conditions. The degradation was monitored by elemental analysis (EA), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), and gas chromatography—mass spectrometry (GC–MS). The organic soluble metabolites were analyzed by high-performance liquid chromatography (HPLC). We found that bisphenol A was released. The amount of bisphenol A released during 1 year is higher than the half-maximal effective concentration (EC50) values reported for marine organisms. We also identified the following bisphenol A metabolites: 4-hydroxyacetophenone, 4-hydroxybenzaldehyde, and 4-hydroxybenzoic acid. Polycarbonate biodegradation was evidenced by gravimetric weight loss and Fourier transform infrared spectroscopy. The reduction of methyl and carbonyl indices suggests oxidation and hydrolysis of the polymer, respectively. 2D NMR showed an aromatic C–C cleavage.  相似文献   

7.
Arsenic is subject to microbial interactions, which support a wide range of biogeochemical transformations of elements in natural environments such as wetlands. The arsenic detoxification potential of the bacterial strains was investigated with the arsenite oxidation gene, aox genotype, which were isolated from the natural and constructed wetlands. The isolates were able to grow in the presence of 10 mM of sodium arsenite (As(III) as NaAsO2) and 1 mM of d+glucose. Phylogenetic analysis based on 16S rRNA gene sequencing indicated that these isolated strains resembled members of the genus that have arsenic-resistant systems (Acinetobacter sp., Aeromonas sp., Agrobacterium sp., Comamonas sp., Enterobacter sp., Pantoea sp., and Pseudomonas sp.) with sequence similarities of 81–98%. One bacterial isolate identified as Pseudomonas stutzeri strain GIST-BDan2 (EF429003) showed the activity of arsenite oxidation and existence of aoxB and aoxR gene, which could play an important role in arsenite oxidation to arsenate. This reaction may be considered as arsenic detoxification process. The results of a batch test showed that P. stutzeri GIST-BDan2 (EF429003) completely oxidized in 1 mM of As(III) to As(V) within 25–30 h. In this study, microbial activity was evaluated to provide a better understanding of arsenic biogeochemical cycle in both natural and constructed wetlands, where ecological niches for microorganisms could be different, with a specific focus on arsenic oxidation/reduction and detoxification.  相似文献   

8.
A fine-mesh seine net was used at regular intervals to collect fishes from the entrance channel and basin of the Blackwood River Estuary (south-western Australia), from Deadwater Lagoon, which is joined to the entrance channel by a narrow and shallow water-course and thus constitutes part of this estuary, and from Flinders Bay into which the estuary discharges. Sampling was at six-weekly intervals between February and December 1994. The juveniles of some marine species, such as Pelates sexlineatus, Rhabdosargus sarba and Aldrichetta forsteri, were either found only in the estuary or were in far higher densities in the estuary than in Flinders Bay. In contrast, the juveniles of some other marine species, such as Sillago schomburgkii, were relatively abundant in both environments, while others such as S. bassensis, Pelsartia humeralis, Lesueurina platycephala and Spratelloides robustus were either far more abundant in Flinders Bay or entirely restricted to this marine embayment. The various marine species found in inshore waters thus apparently vary considerably in their “preference” for estuaries as nursery areas. Although some marine species were abundant in the shallows of the estuary, the fish fauna of these waters was dominated by the estuarine-spawning species Leptatherina wallacei, Favonigobius lateralis, L. presbyteroides and Atherinosoma elongata. The above regional differences help account␣for the very marked difference that was found between the compositions of the shallow-water␣ichthyofaunas of Flinders Bay and each of the three estuarine regions. The ichthyofaunal compositions of the basin and channel underwent pronounced changes during winter, when freshwater discharge increased markedly and salinities in the estuary thus declined precipitously. This faunal change was mainly attributable to the emigration of marine stragglers, a reduction in the densities of marine estuarine-opportunist species such as Pelates sexlineatus and R. sarba, and the immigration of large numbers of both young 0+ Aldrichetti forsteri from the sea and of L. wallacei from the river. Although most of the above species were also abundant in Deadwater Lagoon, the ichthyofaunal composition of this region did not undergo the same seasonal changes, presumably due to the lack of riverine input and thus the maintenance of relatively high salinities throughout the year. The number of marine straggler species was much lower in Deadwater Lagoon than in the estuary basin, reflecting a far more restricted tidal exchange with the entrance channel. However, the overall density of fishes was far higher in Deadwater Lagoon than in the estuary basin or entrance channel, due mainly to the far higher densities of the estuarine species Atherinosoma elongata and L. wallacei and of the 0+ age class of the marine species R. sarba. The high densities of certain species in Deadwater Lagoon are assumed to be related, at least in part, to the high level of productivity and protection that is provided by the presence of patches of Ruppia megacarpa, an aquatic angiosperm that was not present in the estuary basin or entrance channel. Received: 3 December 1996 / Accepted: 19 December 1996  相似文献   

9.
 Female cuttlefish harbour a dense bacterial community in their accessory nidamental glands (ANG), as is also the case for the myopsid squids. Molecular approaches have been applied to explore this symbiotic association in the sepiid species Sepia officinalis. In situ localisation by Bacteria-specific probes in tissue sections of the ANG revealed the presence of a dense bacterial population in the lumina of the organ tubules. The phylogenetic identification of bacterial strains was realised by 16S rRNA gene sequencing analysis. None of the sequences obtained matched perfectly with known sequences in the database. However their similarity percentages allowed us to relate them to various bacterial groups including the taxa Agrobacterium, Roseobacter, Sporichthya, Rhodobium–Xanthobacter and Clostridium. Some bacterial species are common to both sepioids and myopsid teuthoids, others are different. Received: 28 May 1999 / Accepted: 2 November 1999  相似文献   

10.
Sperm and eggs of sand dollars, Melitta quinquiesperforata (Leske), were subjected to two petroleum oils, and effects determined. The oils chosen were Kuwait crude and No. 2 fuel oil, supplied by the American Petroleum Institute. Water-soluble extracts (WSF) from oil-sea water mixes were prepared and the major aromatic components in the WSF of the fuel oil were identified. WSF of No. 2 fuel oil depressed respiration, mobility of sperm, interfered with fertilization and cleavage, and retarded larval development. The effects were detectable at dilutions of 4% and less (about 0.6 ppm of WSF). Kuwait crude was much less toxic. There was no effect on water permeability of the egg membrane. Results are compared with similar studies on other marine organisms.  相似文献   

11.
I. Imai  Y. Ishida  Y. Hata 《Marine Biology》1993,116(4):527-532
A marine gliding bacterium Cytophaga sp. (strain J18/M01) was isolated from Harima-Nada, eastern Seto Inland Sea, Japan in 1990. This bacterium preys upon various species of marine phytoplankton. All of the five raphidophycean flagellates, all of the four diatoms, and one of the two dinoflagellates examined were killed within a few days when cultured with the bacterium. The bacterium presumably achieves this by direct attack, because the culture filtrate in which host organisms were totally destroyed had no significant effects on the growth of the same host organism (Chattonella antiqua). If one or a few bacterial cells were inoculated into C. antiqua culture, all of the host organisms were killed. The bacterium proliferated in filter-sterilized seawater, suggesting its ubiquitous existence in the coastal sea. The killing of phytoplankton by bacteria such as Cytophaga sp. J18/M01 may be a significant factor influencing the population dynamics of phytoplankton in nature and may contribute to the sudden disappearance of red tides in the coastal sea. Bacterial destruction of phytoplankton may also be a factor that regulates primary productivity in marine ecosystems.  相似文献   

12.
 A distinct smell of dimethylsulfide (DMS) was noted at the edge of the intertidal mudflat of Marennes-Oléron Bay, at the French Atlantic coast, where dense populations of the marine flatworm Convoluta roscoffensis Graff (Platyhelminthes: Turbellaria) were present. DMS is the cleavage product of dimethylsulfoniopropionate (DMSP). DMSP was shown to be present in high amounts in sediment containing the flatworm as well as in axenic cultures of the symbiotic alga Tetraselmis sp. that was isolated from the flatworm. In untreated sediment samples containing C. roscoffensis the concentration of DMS was as high as ∼55 μmol l−1 sediment, and in samples that were fixed with glutaraldehyde the concentration of DMS was even three orders of magnitude higher (∼66 mmol l−1 sediment). This rapid cleavage of DMSP to DMS in fixed samples was unexpected. Pure DMSP was stable in glutaraldehyde, and it was therefore concluded that a DMSP-lyase was responsible for cleavage in the field samples. The isolated symbiotic alga, Tetraselmis sp., did not show DMSP-lyase activity, indicating that DMSP-lyase may have been present in the flatworm, although the role of bacteria could not be excluded. The Chl a-specific DMSP content of C. roscoffensis (∼200 mmol g−1) was much higher than that of Tetraselmis sp. (∼30 mmol g−1). Possibly, DMSP was not only present in the symbiotic alga, but was also incorporated in the body tissue of the flatworm. It remains unclear what the function of DMSP is in C. roscoffensis. In Tetraselmis sp., but not in C. roscoffensis, DMSP increased with increasing salinity. It was concluded that salinity probably does not play an important role in the dynamics of DMSP and DMS in sediment containing C. roscoffensis. Received: 21 January 2000 / Accepted: 29 August 2000  相似文献   

13.
Polychaetes belonging to the genus Capitella are often present in high numbers in organic-rich sediments polluted with, e.g., oil components, and Capitella spp. may have a great impact on the biogeochemistry of these sediments. We examined the influence of Capitella sp. I on microbial activity in an organic-rich marine sediment contaminated with the polycyclic aromatic hydrocarbon, fluoranthene. Capitella sp. I were added to microcosms (10 000 ind m−2) and the impact of a pulse-sedimentation of fluoranthene-contaminated sediment (3 mm layer) was studied for a period of 12 d after sedimentation. The sediment oxygen uptake and total sediment metabolism (TCO2 production) increased in cores with worms (71 to 131%), whereas the anaerobic activity, measured as sulfate reduction rate 12 d after sedimentation, was lower compared to cores without worms. The effect of fluoranthene on sulfate reduction was most pronounced in the presence of worms, with a 34% reduction versus 16% in cores without worms. The reduced sulfur pools in cores with worms were smaller than in cores without worms, suggesting that the reduced anaerobic activity was caused by increased oxidation of the sediment, which may favor O2 and other electron-acceptors (e.g. NO3 , Fe3+, Mn4+) in organic matter decomposition. The sediment oxygen uptake and TCO2 production did not show significant changes due to fluoranthene treatment, indicating that these parameters were either less sensitive to fluoranthene stress or recovered more rapidly (i.e. within 48 h) than sulfate reduction rates. Bioturbation by Capitella sp. I altered the depth profile of fluoranthene such that fluoranthene was found in deeper sediment layers (down to 2 cm) where diffusional loss and microbial breakdown probably are reduced relative to surface layers. In cores without worms, fluoranthene was found down to 1 cm, with 75% remaining in the upper 5 mm. Received: 5 December 1996 / Accepted: 11 February 1997  相似文献   

14.
The food sources of benthic deposit feeders were investigated at three stations in an estuarine mudflat (Idoura Lagoon, Sendai Bay, Japan) during July and August 2005, using δ13C and δ15N ratios. Sediment at the stations was characterized by low chlorophyll (chl) a content (0–1 cm depth, <4 μg cm−2) and the dominance of riverine–terrestrial materials (RTM) in the sediment organic matter (SOM) pool. Surface-deposit feeders (Macoma contabulata, Macrophthalmus japonicus, and Cyathura muromiensis) exhibited much higher δ13C values (−18.4 to −12.4‰) than did the SOM pool (<−25‰). A δ13C-based isotopic mixing model estimated that benthic diatoms comprised 45–100% (on average) of their assimilated diet, whereas RTM comprised a lesser fraction (29% maximum). The major diet of the deep-deposit feeding polychaetes Notomastus sp. and Heteromastus sp. was benthic diatoms and/or marine particulate organic matter (POM), with little RTM assimilated (39% maximum). The consumers appeared to lack specific digestive enzymes and to use detritus-derived carbon only after its transfer to the microbial biomass. The isotopic mixing model also showed that the dietary contribution of RTM increased slightly (15% maximum) in the vicinity of freshwater input, suggesting that spatial changes in RTM supply affect the dietary composition of deposit feeders. These results clearly demonstrate that deposit feeders selectively ingest and/or assimilate the more nutritious microalgal fractions in the SOM pool. Such adaptations may allow enhanced energy gain in estuarine mudflats that are rich in vascular plant detritus with low nutritive value.  相似文献   

15.
A marine algicidal gliding bacterium Cytophaga sp. strain J18/M01 was isolated in 1990 from a station in northern Harima-Nada, the Seto Inland Sea, Japan, using the harmful red tide alga Chattonella antiqua (Hada) Ono as a susceptible organism. The bacterium can prey upon various species of microalgae. Temporal fluctuations of this bacterium and Chattonella spp. [C. antiqua and C. marina (Subrahmanyan) Hara et Chihara] were investigated weekly at the above station in the summer of 1997 and 1998, using immunofluorescence assay employing highly specific polyclonal antibodies for the bacterium. In the summer of 1997, the cell density of Chattonella spp. showed a maximum value (70 cells ml−1) on 8 July, and decreased thereafter. The bacterium Cytophaga sp. J18/M01 was commonly detected around a few hundreds of cells per milliliter or less. The number of Cytophaga sp. J18/M01 increased after the peak of Chattonella spp., and the maximum cell number of the bacterium was 1350 ml−1. This algicidal bacterium also followed the changes of total amounts of microalgal biomass (chlorophyll a+pheophytin) when Chattonella spp. were absent. In the summer of 1998, Chattonella spp. were relatively less abundant (maximum 21 cells ml−1), and the algicidal bacterium Cytophaga sp. J18/M01 showed a close relationship with the change of total microalgal biomass. The present study suggests that the algicidal bacterium Cytophaga sp. J18/M01 preyed upon, not only harmful red tide microalgae, but also other common microalgae such as diatoms, and the bacterium presumably plays an important role in regulating microalgal biomass in natural marine environments. Received: 20 April 2000 / Accepted: 1 December 2000  相似文献   

16.
M. Uchida 《Marine Biology》1995,123(3):639-644
The extracellular decomposing enzyme activities of marine bacteria, including 60 and 16 strains of Laminaria-thallus decomposing bacteria (LDB) and non-LDB, respectively, were determined against several algal polysaccharides. A number of LDB decomposed alginate, fucoidan, and cellulose, but not laminarin. Clear decomposing activity was not observed in the culture supernatant from nutrient broth, but was detected in that from a Laminaria-thallus medium, suggesting that decomposing enzymes were induced. During the incubation of LDB in Laminaria-thallus medium, depolymerized sugar materials with a wide range of molecular size were released into the culture fluid. Total sugars released into the culture fluid after 4 d of incubation amounted to a maximum of 95% of the initial content in the thallus tissues. These findings suggest that microbial decomposition of Laminaria thallus in sea water could be a good source of carbohydrates which may support the heterotrophic growth of marine organisms.  相似文献   

17.
Horseshoe crabs act as moving substrata for simple to complex communities of small marine organisms. Amplexed adult pairs migrate for breeding once every 2 weeks from deep waters towards nearshore waters during highest high tide. Female horseshoe crabs bury themselves to the level of the lateral eyes to deposit eggs while the male crabs fertilize them. Subsequently eggs are buried by the female. Tachypleus gigas (Müller) is the most abundant horseshoe crab species above available along the Orissa coast (India). Adults reach terminal anecdysis once sexually mature and live with their carapace for 4 to 9 years. In spite of this, epibiosis is limited. In the current investigation, differences in the epibiotic community (diatoms and macro-epibionts) present on horseshoe crabs, according to gender, were evaluated, and the macro-epibiont population from different regions of the carapace was mapped. In general, female horseshoe crabs harbored fewer epibionts than the males. Among the diatoms, Navicula spp., Nitzschia spp. and Skeletonema sp. were dominant in both sexes. However, the abundance and diversity of diatoms was greater on the carapaces of male crabs. Among the macro-epibionts, the acorn barnacle (Balanus amphitrite Darwin) and encrusting bryozoan (Membranipora sp.) were the most dominant forms. Barnacles and bryozoans were greater in abundance in the “rough” zone (cardiopthalmic region and anterior region of the opisthosoma). Mapping of the macro-epibionts from different regions of the carapace revealed differential distribution in males and females. Such differentiated distribution of the macro-epibionts can be related to factors such as changing habitat by the horseshoe crabs during breeding, mechanical abrasion and surface availability during mating and nesting periods, requirements of epizootic larvae and surface properties of the carapace (wettability and roughness). In the case of females, mechanical abrasion and surface availability played an important role in the epibiotic community structure and distribution patterns. The surface wettability measurements indicated male carapace to be slightly more hydrophobic than the female carapace. Scanning electron microscopy revealed that the male carapace was comparatively rough compared to the smooth carapace of females. A comparison of surface properties of the carapace indicated that the male carapace is more conducive for epibiosis. Received: 23 August 1999 / Accepted: 25 January 2000  相似文献   

18.
 Seasonal dynamics of feeding activity, oil sac volume, gonad development, sex ratio and spawning periods in the two sibling species Calanusfinmarchicus and C. hyperboreus, the key zooplankton copepod organisms throughout the northern Atlantic waters, were studied simultaneously in Malangen, northern Norway, during 1992. We were also tracing differences in surface- and deep-dwelling components of these populations in terms of oil sac volume and gonad development during the time period when the G1 is preparing for a subsequent generation (G2) or hibernation. The main difference in the life cycle strategies of these species is the earlier maturation and spawning of C. hyperboreus. No feeding activity in either of the two species was found in February, but both commenced feeding in March, prior to the spring phytoplankton peak. The larger copepod, C. hyperboreus, had a more intensive energy deposition than C. finmarchicus. The period of active feeding was much shorter for the former species, only from March through July in copepodite stages CIV and CV, and even less in females – March and April. Basically, a similar pattern of seasonal changes in gonad length and lipids was observed in the two species. In June, oil sacs in the surface- and deep-dwelling specimens were about equal, during the rest of the year, lipids in the deep CVs exceeded those in the surface. We propose that as copepods accumulated sufficient lipid reserves, they started to descend, while others, containing less fat, stayed in the upper layers feeding. The mean length of the gonads in the surface-dwelling copepods was consistently less than in their deep counterparts from October to February, so that gonad development at the expense of accumulated reserves during resting stage was confirmed. C. finmarchicus males were found in considerable numbers only in February and March, and were only occasionally found in the upper layers (0–100 m), while adult male C. hyperboreus were present from October to March, but were never found in the surface layers. The differences in life cycle timing among the two species are discussed in relation to tradeoffs with regard to foraging strategies, generation numbers, bioenergetics and predator avoidance. Received: 31 March 1999 / Accepted: 23 November 1999  相似文献   

19.
以广州市和佛山市的5个城市污水处理厂的污泥为实验对象,选取费氏弧菌、蒙古裸腹溞、卤虫、裸项栉鰕虎鱼仔鱼4种不同营养级的海洋生物为受试对象,结合化学分析方法,研究广州区域周边污水污泥浸出液的生物毒性效应。结果显示各污水污泥浸出液的毒性均较大,且浸出液的Cu污染浓度较高;广州市污水污泥对4种受试生物的毒性效应要高于佛山市。从污泥毒性对受试生物的选择性方面分析,发现卤虫筛分能力强且灵敏度高,而费氏弧菌则相关性好且方法简捷。研究结果为反映城市污泥的生物毒性强度和选择合适毒性评价受试生物提供基础数据。  相似文献   

20.
Non-indigenous ascidians in southern California harbors and marinas   总被引:6,自引:0,他引:6  
Southern California's many large harbors form an important coastal ecosystem, yet they are also a␣major destination for thousands of pleasure craft and cargo vessels that have often traveled great distances. Many groups of marine organisms, including ascidians, have now been documented as undergoing range extensions as a consequence of rapid ship-transport between distant harbors phenomenon. This has resulted in a rapid increase in the rate of introductions of non-indigenous species worldwide, yet these effects of boat traffic remain largely unstudied in southern California. Ascidians are sessile marine filter-feeders, hermaphroditic, and often self-fertilizing; many species are tolerant of a wide range of environmental conditions, can reach sexual maturity in just a few weeks, and have a long breeding season. This paper documents the arrival of 14␣non-indigenous species in southern California harbors␣during this century, 13 of which have persisted:␣four prior to the 1960s (Cionaintestinalis, Styelaclava, S.␣plicata, Botryllusschlosseri), another by 1972 (S.␣canopus, formerly S. partita), and 8 since 1983 [C.␣savignyi, Ascidia zara, Ascidia sp., Polyandrocarpa zorritensis, Symplegma brakenhielmi (formerly S. oceania, and S. reptans, Microcosmus squamiger, and Molgula␣manhattensis)]. We estimate the relative abundance and seasonal fluctuations of both non-indigenous and native ascidians in all harbors in southern California from San Diego to Santa Barbara based upon the historical record, our 35 yr of field notes, and our recent surveys carried out during fall 1994, spring and fall 1995, fall 1996 and spring 1997. Possible points of origin of the exotics and predictions on further U.S. Pacific coast range-extensions are included. The concomitant decline in numbers and species of native ascidians in the harbors of southern California during this century is also reviewed. Received: 4 March 1997 / Accepted: 26 September 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号