首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
• Two IFAS and two MBBR full-scale systems (high COD:N ratio 8:1) were characterized. • High specific surface area carriers grew and retained slow-growing nitrifiers. • High TN removal is related to high SRT and low DO concentration in anoxic tanks. The relative locations of AOB, NOB, and DNB were examined for three different kinds of carriers in two types of hybrid biofilm process configurations: integrated fixed-film activated sludge (IFAS) and moving bed biofilm reactor (MBBR) processes. IFAS water resource recovery facilities (WRRFs) used AnodkalnessTM K1 carriers (KC) at Broomfield, Colorado, USA and polypropylene resin carriers (RC) at Fukuoka, Japan, while MBBR WRRFs used KC carriers at South Adams County, Colorado, USA and sponge carriers (SC) at Saga, Japan. Influent COD to N ratios ranged from 8:1 to 15:1. The COD and BOD removal efficiencies were high (96%–98%); NH4+-N and TN removal efficiencies were more varied at 72%–98% and 64%–77%, respectively. The extent of TN removal was higher at high SRT, high COD:N ratio and low DO concentration in the anoxic tank. In IFAS, RC with high specific surface area (SSA) maintained higher AOB population than KC. Sponge carriers with high SSA maintained higher overall bacteria population than KC in MBBR systems. However, the DNB were not more abundant in high SSA carriers. The diversity of AOB, NOB, and DNB was fairly similar in different carriers. Nitrosomonas sp. dominated over Nitrosospira sp. while denitrifying bacteria included Rhodobacter sp., Sulfuritalea sp., Rubrivivax sp., Paracoccus sp., and Pseudomonas sp. The results from this work suggest that high SRT, high COD:N ratio, low DO concentration in anoxic tanks, and carriers with greater surface area may be recommended for high COD, BOD and TN removal in WRRFs with IFAS and MBBR systems.  相似文献   

2.
3.
New high-throughput technologies continue to emerge for studying complex microbial communities. In particular, massively parallel pyrosequencing enables very high numbers of sequences, providing a more complete view of community structures and a more accurate inference of the functions than has been possible just a few years ago. In parallel, quantitative real-time polymerase chain reaction (QPCR) allows quantitative monitoring of specific community members over time, space, or different environmental conditions. In this review, the principles of these two methods and their complementary applications in studying microbial ecology in bioenvironmental systems are discussed. The parallel sequencing of amplicon libraries and using barcodes to differentiate multiple samples in a pyrosequencing run are explained. The best procedures and chemistries for QPCR amplifications are also described and advantages of applying automation to increase accuracy are addressed. Three examples in which pyrosequencing and QPCR were used together to define and quantify members of microbial communities are provided: in the human large intestine, in a methanogenic digester whose sludge was made more bioavailable by a high-voltage pretreatment, and on the biofilm anode of a microbial electrolytic cell. The key findings in these systems and how both methods were used in concert to achieve those findings are highlighted.  相似文献   

4.
G. J. Edgar 《Marine Biology》1987,95(4):599-610
The potential of drifting Macrocystis pyrifera kelp for transporting associated animals and plants long distances around the southern oceans was assessed by anchoring kelp holdfasts off the Tasmanian coast in 1985, monitoring the turnover of organisms, and relating species survival to water-transport times and species geographic distributions. Although most of the common animal species and approximately half of the plant species associated with Tasmanian M. pyrifera holdfasts were still present on kelp holdfasts after 191 d at sea, very few of these species have been recorded from New Zealand. It therefore seems unlikely that M. pyrifera plants with intact holdfasts are presently drifting to New Zealand. Drifting kelps probably become negatively buoyant in the Tasman Sea because dissolved nitrate concentrations are insufficient for normal plant growth. Moreover, even if some kelp plants do drift to New Zealand it is possible that their holdfasts rapidly disintegrate in the open ocean because of the abundance of the boring isopods Phycolimnoria spp. in Tasmanian holdfasts. In contrast to the restricted distributions of Tasmanian holdfast-inhabiting species, most of the identified species collected from M. pyrifera holdfasts at subantarctic Macquarie Island also occurred 5 000 km west at Kerguelen Island. Because of the extensive ranges of many subantarctic species, the good probability of survival of epifaunal species on drifting kelps, and the high surface-water nitrate concentrations and low holdfast-densities of Phycolimnoria spp. in the higher latitudes, it is likely that M. pyrifera-mediated transport of faunal and floral propagules has recently occurred, and is probably presently occurring, in subantarctic waters.  相似文献   

5.
Manzoni S  Schimel JP  Porporato A 《Ecology》2012,93(4):930-938
Soil heterotrophic respiration and nutrient mineralization are strongly affected by environmental conditions, in particular by moisture fluctuations triggered by rainfall events. When soil moisture decreases, so does decomposers' activity, with microfauna generally undergoing stress sooner than bacteria and fungi. Despite differences in the responses of individual decomposer groups to moisture availability (e.g., bacteria are typically more sensitive than fungi to water stress), we show that responses of decomposers at the community level are different in soils and surface litter, but similar across biomes and climates. This results in a nearly constant soil-moisture threshold corresponding to the point when biological activity ceases, at a water potential of about -14 MPa in mineral soils and -36 MPa in surface litter. This threshold is shown to be comparable to the soil moisture value where solute diffusion becomes strongly inhibited in soil, while in litter it is dehydration rather than diffusion that likely limits biological activity around the stress point. Because of these intrinsic constraints and lack of adaptation to different hydro-climatic regimes, changes in rainfall patterns (primary drivers of the soil moisture balance) may have dramatic impacts on soil carbon and nutrient cycling.  相似文献   

6.
The impact of the widely used herbicide glyphosate has been mainly studied in terrestrial weed control, laboratory bioassays, and field studies focusing on invertebrates, amphibians, and fishes. Despite the importance of phytoplankton and periphyton communities at the base of the aquatic food webs, fewer studies have investigated the effects of glyphosate on freshwater microbial assemblages. We assessed the effect of the commercial formulation Roundup using artificial earthen mesocosms. The herbicide was added at three doses: a control (without Roundup) and two treatments of 6 and 12 mg/L of the active ingredient (glyphosate). Estimates of the dissipation rate (k) were similar in the two treatments (half-lives of 5.77 and 7.37 d, respectively). The only two physicochemical parameters showing statistically significant differences between treatments and controls were the downward vertical spectral attenuation coefficient kd(lambda), where lambda is wavelength, and total phosphorus concentration (TP). At the end of the experiment, the treated mesocosms showed a significant increase in the ratio kd(490 nm)/k(d)(550 nm) and an eightfold increase in TP. Roundup affected the structure of phytoplankton and periphyton assemblages. Total micro- and nano-phytoplankton decreased in abundance in treated mesocosms. In contrast, the abundance of picocyanobacteria increased by a factor of about 40. Primary production also increased in treated mesocosms (roughly by a factor of two). Similar patterns were observed in the periphytic assemblages, which showed an increased proportion of dead: live individuals and increased abundances of cyanobacteria (about 4.5-fold). Interestingly, the observed changes in the microbial assemblages were captured by the analysis of the pigment composition of the phytoplankton, the phytoplankton absorption spectra, and the analysis of the optical properties of the water. The observed changes in the structure of the microbial assemblages are more consistent with a direct toxicological effect of glyphosate rather than an indirect effect mediated by phosphorus enrichment.  相似文献   

7.
Environmental Geochemistry and Health - Biochar (BC) is a porous, carbonaceous material produced by slow pyrolysis of biomass under oxygen-limited conditions. BC production has been attracting...  相似文献   

8.
During the processes of claiming land from the sea, river sediments are used to fill and transform the sea area along the margin of islands and lands into new lands. These activities would probably affect microbial ecosystems of the beach sediment. However, little is known about these effects. In this study, a simulation test was conducted to evaluate these effects. Pyrosequencing technique was employed to assess the effects of river sediment addition to the beach bacterial communities. The used river sediments were collected from different rivers. The results indicated that river sediment addition greatly impacted microbial ecosystems of the beach and caused a clear shift in the beach bacterial community composition. These processes remarkably increased toxic metals and decreased the bacterial diversity in the beach sediment, mainly including the phyla of Bacteroidetes, Cyanobacteria, Proteobacteria, and Spirochaetes. River sediment addition caused an increase in potentially pathogenic bacterial genera of the beach sediment. Bacterial phylotype richness in the beach without river sediment addition was higher than that in the beach with river sediment input. There were significant differences in bacterial communities between beach sediments with and without river sediment addition, and the most dominant classes were Gammaproteobacteria and Flavobacteria.  相似文献   

9.
Cahill JF  Elle E  Smith GR  Shore BH 《Ecology》2008,89(7):1791-1801
Plants engage in diverse and intimate interactions with unrelated taxa. For example, aboveground floral visitors provide pollination services, while belowground arbuscular mycorrhizal fungi (AMF) enhance nutrient capture. Traditionally in ecology, these processes were studied in isolation, reinforcing the prevailing assumption that these above- and belowground processes were also functionally distinct. More recently, there has been a growing realization that the soil surface is not a barrier to many ecological interactions, particularly those involving plants (who live simultaneously above and below ground). Because of the potentially large impact that mycorrhizae and floral visitors can have on plant performance and community dynamics, we designed an experiment to test whether these multi-species mutualisms were interdependent under field conditions. Using benomyl, a widely used fungicide, we suppressed AMF in a native grassland, measuring plant, fungal, and floral-visitor responses after three years of fungal suppression. AMF suppression caused a shift in the community of floral visitors from large-bodied bees to small-bodied bees and flies, and reduced the total number of floral visits per flowering stem 67% across the 23 flowering species found in the plots. Fungal suppression has species-specific effects on floral visits for the six most common flowering plants in this experiment. Exploratory analyses suggest these results were due to changes in floral-visitor behavior due to altered patch-level floral display, rather than through direct effects of AMF suppression on floral morphology. Our findings indicate that AMF are an important, and overlooked, driver of floral-visitor community structure with the potential to affect pollination services. These results support the growing body of research indicating that interactions among ecological interactions can be of meaningful effect size under natural field conditions and may influence individual performance, population dynamics, and community structure.  相似文献   

10.
Maintaining soil fertility, while controlling pollution from excessive chemical fertilizer application is important for keeping soil productivity of sustainable agriculture. Variety of straws have been used and proven to be good soil amendments for increasing soil organic matter (OM) and a range of additional soil nutrients. However, little is known about the utilization of cotton straw for soil amendment. To better understand the mechanism behind cotton straw soil amendments, investigations were performed upon cucumber seedlings, where changes to soil nutrients and microbial communities were investigated. The results revealed that the cotton straw application promoted the cucumber seedling growth by significantly increasing the soil OM, available nitrogen, available phosphorus, and available potassium. The concentration of cotton straw was positively correlated to both the number of the culturable microorganisms and also the total microbial biomass within soil. Furthermore, assessment of cotton straw application using Biolog metabolic profiling and phospholipid fatty acid analysis revealed that such application increased the microbial community metabolic activity, and markedly changed the structure of microbial community. 16S rRNA gene clone library construction and phylogenetic analysis of soil bacteria revealed γ- Proteobacteria sequences dominated the cotton straw amendment soil, comprising 27.8% of the total number of analyzed sequences, while they were less represented in control soil (13.4%). On the contrary, the Sphingobacteria (7.8%) and Verrucomicrobia (2.4%) in the cotton straw amendment soil decreased after application when compared to the control soil 15.2% and 15.2%.  相似文献   

11.
不同类型水生植物群落对铜绿微囊藻的化感作用   总被引:2,自引:0,他引:2  
田如男  孙欣欣  魏勇 《生态环境》2010,19(9):2149-2154
通过将不同类型水生植物群落种植水与藻类共同培养的方式研究了4种植物群落(群落A:梭鱼草Pontederia cordata+黄菖蒲Iris pseudacorus-水罂粟Hydrocleys nymphoides;群落B:梭鱼草+溪荪Iris sanguinea+黄菖蒲;群落C:梭鱼草+溪荪-大薸Pistia stratiotes;群落D:白花水龙Jussiaea repens-大薸+水罂粟)对铜绿微囊藻Microcystis aeruginosa生长的化感作用。研究结果表明:4种植物群落种植水对铜绿微囊藻均具有较强的抑制作用,且随着群落种植时间的延长,种植水对铜绿微囊藻的抑制作用越强。4个植物群落对铜绿微囊藻生长的抑制作用由大到小依次是:群落A,群落B,群落C,群落D。  相似文献   

12.
Box core samples BC26 and BC36 from geologically different settings were examined to test the hypothesis that autochthonous microbial communities from polymetallic-nodule-rich Central Indian Basin sediments actively participate in immobilising metal ions. The bottom water dissolved oxygen concentration was reported to be 4.2–4.3 mL·L?1 in the northern siliceous ooze (BC26) and 4.1–4.2 mL·L?1 in the southern pelagic red clay (BC36); the sedimentation rates for these regions were 0.834 and 0.041 cm·kyr?1, respectively. An onboard experiment, conducted under oxic and sub-oxic conditions with 100 μmol of Mn, Co and Ni, showed that microbial immobilisation under sub-oxic conditions was higher than in azide-treated controls in BC26 for Mn, Co and Ni at 30, 2 and 4 cm below sea floor (bsf), respectively, after 45 days. The trend in immobilisation was BC 26>BC 36, Co>Mn>Ni under oxic conditions and Mn>Co>Ni under sub-oxic conditions. The depth of maximum immobilisation for Co in BC26 under sub-oxic conditions coincided with the yield of cultured Co-tolerant bacteria and Ni only with organic carbon at 4 cm bsf. This study demonstrates that the organic carbon content and bioavailable metal concentrations in sediments regulate microbial participation in metal immobilisation.  相似文献   

13.
Whitcraft CR  Levin LA 《Ecology》2007,88(4):904-917
Plant cover is a fundamental feature of many coastal marine and terrestrial systems and controls the structure of associated animal communities. Both natural and human-mediated changes in plant cover influence abiotic sediment properties and thus have cascading impacts on the biotic community. Using clipping (structural) and light (shading) manipulations in two salt marsh vegetation zones (one dominated by Spartina foliosa and one by Salicornia virginica), we tested whether these plant species exert influence on abiotic environmental factors and examined the mechanisms by which these changes regulate the biotic community. In an unshaded (plant and shade removal) treatment, marsh soils exhibited harsher physical properties, a microalgal community composition shift toward increased diatom dominance, and altered macrofaunal community composition with lower species richness, a larger proportion of insect larvae, and a smaller proportion of annelids, crustaceans, and oligochaetes compared to shaded (plant removal, shade mimic) and control treatment plots. Overall, the shaded treatment plots were similar to the controls. Plant cover removal also resulted in parallel shifts in microalgal and macrofaunal isotopic signatures of the most dynamic species. This suggests that animal responses are seen mainly among microalgae grazers and may be mediated by plant modification of microalgae. Results of these experiments demonstrate how light reduction by the vascular plant canopy can control salt marsh sediment communities in an arid climate. This research facilitates understanding of sequential consequences of changing salt marsh plant cover associated with climate or sea level change, habitat degradation, marsh restoration, or plant invasion.  相似文献   

14.
Algal and bacterial biomass and production were measured in the plankton, platelet ice and congelation ice communities at one station in McMurdo Sound, Antarctica during September and October 1986. Bacterial abundances and particulate organic carbon and nitrogen were 10 to 100 times greater in the plankton than in the sea ice, whereas the chlorophyll a concentrations in the plankton and sea ice microbial communities (SIMCO) were similar Rates of both light-limited and light-saturated photosynthesis and daily primary production were 2 to 6 times greater in the plankton than in the SIMCO. Bacterial growth rates ranges from 0.7 to 1.5 d-1 in all three communities; however, because of the greater bacterial biomass in the plankton, bacterial production was 15 to 20 times higher there than in the SIMCO. These results suggest that during the early austral spring, planktonic production contributes significantly to total production in ice-covered environments.  相似文献   

15.
土壤微生物多样性是表征土壤质量最有潜力的指标,与农田生态系统的稳定性和生产力密切相关。云南永胜涛源乡是保持我国水稻小面积超高产纪录的特殊生态区,常年施用丁草胺作为选择性芽前除草剂,因此,了解丁草胺对其土壤微生物物种多样性的影响意义重大。采用平板菌落计数法,研究了模拟条件下不同丁草胺剂量(有效成分质量分数0.15、0.30和1.5 mg·kg^-1)对高产水稻土中好氧细菌(aerobic bacteria)、放线菌(actinobacteria)和真菌(fungi),以及功能微生物自生固氮菌(nitrogen fixing bacteria)、磷酸盐溶解菌(phosphate solubilizing bacteria)和硅酸盐细菌(silicate dissolving bacteria)数量的影响。结果表明:施药7 d,中、高质量分数(0.30和1.50 mg·kg^-1)丁草胺处理好氧细菌数量比CK分别高出78.6%和153.8%,而后数量逐渐下降,表现出先刺激生长、后抑制活性的作用,低质量分数(0.15 mg·kg^-1)丁草胺对好氧细菌的生长和增殖影响不明显;施药7 d,高质量分数处理放线菌数量超过CK 75.1%,表现出明显的刺激作用;施药15 d,中等质量分数处理放线菌数量比 CK 高出125.0%,丁草胺浓度越高,刺激作用越迅速,低浓度丁草胺对放线菌则主要表现为抑制作用。低浓度丁草胺对真菌的生长和增殖基本没有影响,中等浓度有先抑制后刺激的作用,施药30 d后其真菌数量超过CK 56.9%,高浓度丁草胺则表现为抑制作用,施药7、30和45 d其真菌数量始终显著低于CK;不同浓度处理丁草胺均能刺激自生固氮菌的数量显著增加,施药7 d,低、中、高质量分数处理自生固氮菌数量分别高出CK 237.1%,179.9%和138.1%,刺激作用显著,但随培养时间延长,高浓度开始表现出抑制作用;不同浓度丁草胺均能抑制磷酸盐溶解菌的生长和增殖,低浓度处理抑制作用微弱,中、高浓度处  相似文献   

16.
土壤微生物是维持土壤质量的重要组成部分,是土壤中生物活性的具体体现。土壤微生物多样性的变异可反映其对环境的响应与适应,能敏感反映生态系统的功能演变和生态环境的变化。本研究采用固体平板法研究了枯草芽孢杆菌(Bacillus subtilis)Bs-15对板栗(Castanea mollissimaBL)土壤微生物种群数量的影响,并通过BIOLOG ECO微孔板法分析Bs-15对板栗土壤功能多样性的影响。结果表明,接种Bs-15后,土壤中细菌数量比对照略有增加,但差异不显著;接种后放线菌的数量与对照相比有所减少,第7天达到极显著(p〈0.01)差异,之后差异变小,第14 d开始,处理与对照之间放线菌数量基本持平;真菌数量则先增加后减少,第7天开始接种后的真菌数量与对照相比达极显著(p〈0.01)差异。BIOLOG ECO微孔板分析显示,Bs-15使得土壤中微生物的AWCD值变大,72小时以后,AWCD值与对照相比差异达到极显著(p〈0.01)水平;接种Bs-15后增大了土壤微生物多样性指数,其中Shannon多样性指数、Simpson多样性指数和McIntosh多样性指数分别增加了4.09%、6.01%和7.20%,对对照相比差异均达到极显著水平(p〈0.01),Simpson均匀度和McIntosh均匀度分别增加了2.07%和2.53%,与对照相比差异均达到显著水平(p〈0.05)。本研究结果表明,Bs-15不但提高了板栗土壤微生物的整体活性,丰富了土壤微生物种群,有利于保持和促进土壤肥力和健康状况;还提高了板栗土壤微生物功能多样性,使板栗土壤微生态系统功能更加稳定。  相似文献   

17.
Biological invasions are increasingly attracting the ecologists' attention. Invasive plants threaten the natural ecosystems not only by competing with the native plants, but also by altering the structure and function of soil microbial communities belowground. In this study, we studied the effects of the invasive plant Coreopsis grandiflora (C. grandiflora) on the functional diversity of soil microbial communities in Laoshan mountain in the province of Shandong, North of China. We sampled soil from plots that were invaded or not invaded by C. grandiflora. The functional diversity of microbial communities in the sampled soils was assessed by the Biolog procedure test. By the ANOVA analysis of average well color development (AWCD), Shannon index (H'), Shannon evenness (E), principle components analysis of the level physiological profiles (CLPP) and correlation analysis between the studied parameters, we found that the invasive species C. grandiflora enhanced the functional diversity of soil microbial communities where the habitat was invaded by the C. grandiflora. The study indicated thatthe successful invasive plants have profound effects on the function of soil microbial communities.  相似文献   

18.
Diversity in guilds of primary producers enhances temporal stability in provision of organic matter to consumers. In the Antarctic ecosystem, where temporal variability in phytoplankton production is high, sea ice contains a diatom and microbial community (SIMCO) that represents a pool of organic matter that is seasonally more consistent, although of relatively small magnitude. The fate of organic material produced by SIMCO in Antarctica is largely unknown but may represent an important link between sea ice dynamics and secondary production in nearshore food webs. We used whole tissue and compound-specific stable isotope analysis of consumers to test whether the sea ice microbial community is an important source of organic matter supporting nearshore communities in the Ross Sea. We found distinct gradients in delta13C and delta15N of SIMCO corresponding to differences in inorganic carbon and nitrogen acquisition among sites with different sea ice extent and persistence. Mass balance analysis of a suite of consumers demonstrated large fluxes of SIMCO into the nearshore food web, ranging from 5% to 100% of organic matter supplied to benthic species, and 0-10% of organic matter to upper water column or pelagic inhabitants. A delta13C analysis of nine fatty acids including two key biomarkers for diatoms, eicosapentaenoic acid (EPA, 20:5omega3), and docosahexaenoic acid (DHA, 22:6omega3), confirmed these patterns. We observed clear patterns in delta13C of fatty acids that are enriched in 13C for species that acquire a large fraction of their nutrition from SIMCO. These data demonstrate the key role of SIMCO in ecosystem functioning in Antarctica and strong linkages between sea ice extent and nearshore secondary productivity. While SIMCO provides a stabilizing subsidy of organic matter, changes to sea ice coverage associated with climate change would directly affect secondary production and stability of benthic food webs in Antarctica.  相似文献   

19.
Nectar collection in the honey-bee is partitioned. Foragers collect nectar and take it to the nest, where they transfer it to receiver bees who then store it in cells. Because nectar is a fluctuating and unpredictable resource, changes in worker allocation are required to balance the work capacities of foragers and receivers so that the resource is exploited efficiently. Honey bee colonies use a complex system of signals and other feedback mechanisms to coordinate the relative and total work capacities of the two groups of workers involved. We present a functional evaluation of each of the component mechanisms used by honey bees – waggle dance, tremble dance, stop signal, shaking signal and abandonment – and analyse how their interplay leads to group-level regulation. We contrast the actual regulatory system of the honey bee with theory. The tremble dance conforms to predicted best use of information, where the group in excess applies negative feedback to itself and positive feedback to the group in shortage, but this is not true of the waggle dance. Reasons for this and other discrepancies are discussed. We also suggest reasons why honey bees use a combination of recruitment plus abandonment and not switching between subtasks, which is another mechanism for balancing the work capacities of foragers and receivers. We propose that the waggle and tremble dances are the primary regulation mechanisms, and that the stop and shaking signals are secondary mechanisms, which fine-tune the system. Fine-tuning is needed because of the inherent unreliability of the cues, queueing delays, which foragers use to make recruitment decisions. Received: 15 December 1998 / Received in revised form: 6 March 1999 / Accepted: 12 March 1999  相似文献   

20.
分子技术在湿地微生物群落解析中的应用   总被引:1,自引:0,他引:1  
梁威  吴苏青  吴振斌 《生态环境》2010,19(4):974-978
人工湿地的研究和应用近年来受到了广泛重视。微生物是人工湿地系统的重要组成部分,其群落结构对于湿地的净化功能的发挥具有重要影响。与传统的微生物分析技术相比,分子生物学技术在解析人工湿地微生物群落结构时无需纯培养,具有高效、快速、简便的特点,使其广泛应用于环境微生物的研究。文章综述了近年来在聚合酶链反应技术(Polymerase Chain Reaction,PCR)基础上发展起来的几种新的分子生物技术,包括PCR-DGGE、LH-PCR、T-RFLP、PCR-SSCP和ARDRA,以及其在人工湿地微生物研究中的应用现状。通过这些分子技术,可以分析湿地处理特定废水过程中微生物的数量、丰度、多样性及优势种;鉴定湿地中特定功能菌群(如氨氧化细菌、反硝化细菌、除硫菌等)的数量、活动分布、空间变更及与污染物去除的关系;判断各种系统条件(如不同基质、植物、水力负荷等)的设置对微生物多样性和稳定性的影响。最后,对分子技术在湿地领域的未来发展进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号