首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Pyrolysis of brominated flame retardant-containing high-impact polystyrene (HIPS-Br) was performed at 430°C in the presence of 0.1 wt% of polyethylene terephthalate (PET) in a Pyrex glass reactor. Two different types of brominated flame retardants (decabromodiphenyl ether and decabromodiphenyl ethane) with or without antimony trioxide (as synergist) 5 wt% were used. The presence of PET had a significant effect on the material balance, decreasing the gaseous product and increasing the residue. The type of flame retardant had no effect on the yield of liquid product; however, the presence of Sb resulted in a marked difference in the distribution of decomposition products. Analysis by a gas chromatograph equipped with a flame ionization detector showed that the hydrocarbons were distributed in the range n-C7 to n-C25 with major peaks at n-C9 and n-C17. The presence of PET increased the formation of brominated compounds by several times and affected both the type and quantity of polybrominated compounds. The liquid products obtained from the pyrolysis of HIPS-Br/PET have to be treated before they can be used  相似文献   

2.
This study focused on the thermal degradation of polycarbonate (BrPC) and high-impact polystyrene (BrHIPS), containing different brominated flame retardants. The evolved inorganic bromine was utilized for the separation of metals present in electric arc furnace dust (EAFD). The thermal degradation of BrPC generated inorganic gaseous HBr (69%) and condensable Br2 (31%). The bromine evolved from BrHIPS was detected almost entirely in a condensed phase as SbBr3. When mixed with EAFD, the evolved inorganic bromine reacted immediately with the metallic components of zinc and lead, but not with iron. The best bromination efficiencies were obtained during the isothermal heating (80 min at 550 °C) of the mixtures at mass ratios of 6:1 and 9:1 w/w under oxidizing conditions. The achieved brominating rates reached 78 and 81% for zinc and 90 and 94% for lead in 6:1 and 9:1 BrPC:EAFD, respectively, and 47 and 65% for zinc and 67 and 63% for lead in 6:1 and 9:1 BrHIPS:EAFD, respectively. The oxidizing condition favored complete vaporization of the formed bromides.  相似文献   

3.
The growing consumption of electric and electronic equipment results in creating an increasing amount of electronic waste. The most economically and environmentally advantageous methods for the treatment and recycling of waste electric and electronic equipment (WEEE) are the thermal techniques such as direct combustion, co-combustion with plastic wastes, pyrolysis and gasification. Nowadays, this kind of waste is mainly thermally treated in incinerators (e.g. rotary kilns) to decompose the plastics present, and to concentrate metals in bottom ash. The concentrated metals (e.g. copper, precious metals) can be supplied as a secondary raw material to metal smelters, while the pyrolysis of plastics allows the recovery of fuel gases, volatilising agents and, eventually, energy. Indeed, WEEE, such as a printed circuit boards (PCBs) usually contains brominated flame retardants (BFRs). From these materials, hydrobromic acid (HBr) is formed as a product of their thermal decomposition.In the present work, the bromination was studied of copper, silver and gold by HBr, originating from BFRs, such as Tetrabromobisphenol A (TBBPA) and Tetrabromobisphenol A-Tetrabromobisophenol A diglycidyl ether (TTDE) polymer; possible volatilization of the bromides formed was monitored using a thermo-gravimetric analyzer (TGA) and a laboratory-scale furnace for treating samples of metals and BFRs under an inert atmosphere and at a wide range of temperatures. The results obtained indicate that up to about 50% of copper and silver can evolve from sample residues in the form of volatile CuBr and AgBr above 600 and 1000 °C, respectively. The reactions occur in the molten resin phase simultaneously with the decomposition of the brominated resin. Gold is resistant to HBr and remains unchanged in the residue.  相似文献   

4.
We conducted time-series substance flow analysis of two types of brominated flame retardants (BFRs)--polybrominated diphenyl ethers (PBDEs) and tetrabromobisphenol A (TBBPA)--and two types of related compounds--Sb (used with BFRs for flame inhibition) and polybrominated dibenzo dioxins and furans (PBDDs/DFs: unintended byproducts)--in five size categories of waste TV sets in Japan. Two scenarios were created with BFR substitutions and compared to a "business as usual" scenario in order to obtain basic information for strategic product management. The results showed that the use of DecaBDE in rear and front covers of TV sets began in fiscal 1987-1990 and 1993-1996, respectively, and that TBBPA was used to some extent as a substitute for DecaBDE in the 90s. The amount of waste Br in the plastic covers is predicted to increase until at least fiscal 2020 due to the increasing size of TV sets. Although substitution of BFRs with non-BFRs in Japan by 2006 will reduce waste Br, the amount in waste TV sets will not peak until fiscal 2009. The results will help inform decisions in Japan regarding the recovery and disposal of waste TV sets. The methods used would benefit waste managers faced with similar issues in other countries.  相似文献   

5.
Dehalogenation is a key technology in the feedstock recycling of mixed halogenated waste plastics. In this study, two different methods were used to clarify the effectiveness of our proposed catalytic dehalogenation process using various carbon composites of iron oxides and calcium carbonate as the catalyst/sorbent. The first approach (a two-step process) was to develop a process for the thermal degradation of mixed halogenated waste plastics, and also develop dehalogenation catalysts for the catalytic dehydrochlorination of organic chlorine compounds from mixed plastic-derived oil containing polyvinyl chloride (PVC) using a fixed-bed flow-type reactor. The second approach (a single-step process) was the simultaneous degradation and dehalogenation of chlorinated (PVC) and brominated (plastic containing brominated flame retardant, HIPS–Br) mixed plastics into halogen-free liquid products. We report on a catalytic dehalogenation process for the chlorinated and brominated organic compounds formed by the pyrolysis of PVC and brominated flame retardant (HIPS–Br) mixed waste plastics [(polyethylene (PE), polypropylene (PP), and polystyrene (PS)], and also other plastics. During dehydrohalogenation, the iron- and calcium-based catalysts were transformed into their corresponding halides, which are also very active in the dehydrohalogenation of organic halogenated compounds. The halogen-free plastic-derived oil (PDO) can be used as a fuel oil or feedstock in refineries.  相似文献   

6.
High temperature combustion experiments of waste printed circuit boards (PCBs) were conducted using a lab-scale system featuring a continuously-fed drop tube furnace. Combustion efficiency and the occurrence of inorganic bromine (HBr and Br2) were systematically studied by monitoring the main combustion products continuously. The influence of furnace temperature (T) was studied from 800 to 1400 °C, the excess air factor (EAF) was varied from 1.2 to 1.9 and the residence time in the high temperature zone (RTHT) was set at 0.25, 0.5, or 0.75 s.Combustion efficiency depends on temperature, EAF and RTHT; temperature has the most significant effect. Conversion of organic bromine from flame retardants into HBr and Br2 depends on temperature and EAF. Temperature has crucial influence over the ratio of HBr to Br2, whereas oxygen partial pressure plays a minor role. The two forms of inorganic bromine seem substantially to reach thermodynamic equilibrium within 0.25 s. High temperature is required to improve the combustion performance: at 1200 °C or higher, an EAF of 1.3 or more, and a RTHT exceeding 0.75 s, combustion is quite complete, the CO concentration in flue gas and remained carbon in ash are sufficiently low, and organobrominated compounds are successfully decomposed (more than 99.9%).According to these results, incineration of waste PCBs without preliminary separation and without additives would perform very well under certain conditions; the potential precursors for brominated dioxins formation could be destroyed efficiently. Increasing temperature could decrease the volume percentage ratio of Br2/HBr in flue gas greatly.  相似文献   

7.
Brominated high-impact polystyrene (HIPS-Br), which contained decabromodiphenyl ether flame retardant, and brominated acrylonitrile butadiene styrene (ABS-Br), which contained bromine-containing epoxy-type flame retardant, were degraded at 450°C individually and in a 1/1 mixture by a thermal and catalytic procedure using folded sheet mesoporous (FSM) and ZSM-5 zeolite in liquid phase contact mode. The two polymers produced similar degradation oils but at a higher yield for HIPS-Br. However, the composition and distribution of Br-, N-, and O-containing compounds depended on the type of flame retardant in HIPS-Br and ABS-Br. Multiphase catalytic systems consisting of FSM in liquid phase contact mode and various CaH-, FeO-, CoMo-, and NiMo-based catalysts, or combinations of these catalysts, in vapor phase contact mode were used to decrease the amount of heteroatoms (Br, N, and O) in the degradation oils. Each system gave particular results in terms of mass balance and concentrations of heteroatoms. A FSM (liquid phase contact)/CaHC (vapor phase contact) combination was the best catalytic system to remove Br-, N-, and O-containing compounds from degradation oils.  相似文献   

8.
The End-of-life Vehicles Recycling Act went into effect on January 1, 2005, in Japan and requires the proper treatment of airbags, chlorofluorocarbons (CFCs), and automobile shredder residue (ASR). The need for optimal treatment and recycling of ASR, in particular, has been increasing year after year because ASR is regarded as being difficult to treat. Dioxin-related compounds, brominated flame retardants (BFRs), heavy metals, chlorine and organotin compounds are all present in high concentrations in ASR. The authors conducted ASR melting treatment tests using a 10-tons/day-scale direct melting system (DMS), which employs shaft-type gasification and melting technology. The results obtained showed that dioxin-related compounds and BFRs were decomposed by this melting treatment. The high-temperature reducing atmosphere in the melting furnace moved volatile heavy metals such as lead and zinc into the fly ash where they were distributed at a rate of more than 90% of the input amount. This treatment was also found to be effective in the decomposition of organotin, with a rate of decomposition higher than 99.996% of the input amount. Via the recovery of heavy metals concentrated in the fly ash, all the products discharged from this treatment system were utilized effectively for the complete realization of an ASR recycling system that requires no final disposal sites.  相似文献   

9.
WEEE recycling: Pyrolysis of fire retardant model polymers   总被引:6,自引:0,他引:6  
Pyrolysis treatments of model polymers were made with the aim of studying the recycling of wastes from electronic, electric equipment containing brominated flame retardants. Pyrolysis of flame retarded high impact polystyrene and epoxy resins were made both in flow and closed systems. Products of pyrolysis were analysed with FT-IR spectroscopy and GC-MS and the evolution of bromine was followed with a bromine ion specific electrode. The effect of alkali on pyrolysis was also studied demonstrating, as far epoxy resin is concerned, to be effective on decreasing bromine content in oil and volatile products leading to the recovery of bromine from the residue by washing. The alkali treatment was shown to be less effective in styrenic polymers containing brominated flame retardants.  相似文献   

10.

The direct conversion of natural products to useful engineering materials is desirable from both economic and environmental considerations. We describe the synthesis and properties of 100?% oil-based epoxy resins generated from three epoxidized oils. The catalyst, tris(pentafluorophenyl)borane (B(C6F5)3) in toluene, allowed for controlled cationic polymerization at a very low concentration. Epoxidized oils (derived from triolein, soybean, and linseed oil) had varying epoxy content, rendering resins of different cross-link density. The polymerization was carried out at room temperature followed by post-curing at elevated temperature to speed up conversion. Epoxy resins were amorphous transparent glasses below glass transitions and hard rubbers above. Despite their high cross-link density, these materials show relatively low Tg’s reflecting the aliphatic nature of fatty acids and the presence of plasticizing “dangling” chains. The structure of the triglyceride starting oils influenced the properties of the resulting materials: the more regular structure of triolein compared to the very heterogeneous structures of soybean and linseed oils seemed to have enhanced some properties of the polymer networks. These epoxy polymers are potentially useful as encapsulating and potting compounds for electronic applications.

  相似文献   

11.
A continuous system (feeding rate >1 kg/h) consisting of thermal dechlorination pre-treatment and catalytic pyrolysis with Fe-restructured clay (Fe-RC) catalyst was developed for feedstock recycling of PVC-containing mixed plastic waste. The vented screw conveyor which was specially designed for continuous dechlorination was able to achieve dechlorination efficiency of over 90 % with a feedstock retention time longer than 35.5 min. The chlorine content of the pyrolytic oil obtained after dechlorination was in the range of 6.08–39.50 ppm, which meet the specification for reclamation pyrolytic oil in Japan. Fe-RC was found to significantly improve the yield of pyrolytic oil (achieved to 83.73 wt%) at the optimized pyrolysis temperature of 450 °C and catalyst dosage of 60 g. With the optimized parameters, Fe-RC showed high selectivity for the C9–C12 and C13–C19 oil fraction, which are the major constituents of kerosene and diesel fuel, demonstrating that this catalyst can be applied in the pyrolysis of mixed plastic wastes for the production of kerosene and diesel fuel. Overall, the continuous process exhibited high stability and consistently high-oil yield upon reaching steady state, indicating its potential up-scaling application in the industry.  相似文献   

12.
The tensile and combustion properties of polypropylene/polyolyaltha olefin composites filled with intumescent flame retardant (IFR) and nanometer calcium carbonate (nano-CaCO3) were measured. It was found that the values of the Young’s modulus of the composites increased almost linearly, while the values of the tensile yield strength and tensile fracture strength of the composites decreased with increasing the IFR weight fraction; the values of the elongation at break of the composites decreased quickly when the IFR weight fraction was lower than 10 wt%, and then varied slightly when the IFR weight fraction was higher than 10 wt%. Moreover, the morphology of the specimens after combustion was observed and the frame retardant mechanisms of the composites were discussed.  相似文献   

13.
In this research, absorbents for CO2 capture were prepared by blending 30 wt% potassium carbonate, 3 wt% of a rate promoter, and 1 wt% of a corrosion inhibitor. Pipecolic acid, sarcosine, and diethanolamine were chosen as rate promoter candidates. Based on a rate promoter screening test for CO2 loading capacity and absorption rate, pipecolic acid and sarcosine were selected to be used as rate promoters. 1,2,3-benzotriazole and ammonium thiocyanate were chosen as corrosion inhibitors, and they were mixed with a 30 wt% potassium carbonate-based absorbent mixture containing one of the rate promoters. The absorption rates for four absorbent solutions (30 wt% potassium carbonate?+?3 wt% pipecolic acid?+?1 wt% 1,2,3-benzotriazole, 30 wt% potassium carbonate?+?3 wt% pipecolic acid?+?1 wt% ammonium thiocyanate, 30 wt% potassium carbonate?+?3 wt% sarcosine?+?1 wt% 1,2,3-benzotriazole, and 30 wt% potassium carbonate?+?3 wt% sarcosine?+?1 wt% ammonium thiocyanate) were measured, tabulated, and graphically displayed. These types of absorbents can be used for capturing CO2 under high temperature and pressure conditions, such as those found in coal-fired power plants.  相似文献   

14.
Carbon microspheres with diameter of 1–10 μm were prepared by treatment of waste oil in a supercritical carbon dioxide (scCO2) system. The structure and morphology of the products were characterized by X-ray diffraction, field-emission scanning electron microscopy, and Raman spectrometry. It is shown that the products consist of graphite microspheres with relatively low graphitization. The yield of solid products increased from 26.8 wt% to 42.2 wt% as the reaction temperature was raised from 530°C to 600°C. Spheres with multilayer structure could be obtained by means of subsequent vacuum annealing of the carbon microspheres at 1500°C. The formation mechanisms of carbon microspheres in the scCO2 system and the influence of vacuum annealing on the structure are discussed in detail.  相似文献   

15.
Thermocatalytic degradation of high density polyethylene (HDPE) was carried out using acid activated fire clay catalyst in a semi batch reactor. Thermal pyrolysis was performed in the temperature range of 420–500 °C. The liquid and gaseous yields were increased with increase in temperature. The liquid yield was obtained 30.1 wt% with thermal pyrolysis at temperature of 450 °C, which increased to 41.4 wt% with catalytic pyrolysis using acid activated fire clay catalyst at 10 wt% of catalyst loading. The composition of liquid products obtained by thermal and catalytic pyrolysis was analyzed by gas chromatography-mass spectrometry and compounds identified for catalytic pyrolysis were mainly paraffins and olefins with carbon number range of C6–C18. The boiling point was found in the range of commercial fuels (gasoline, diesel) and the calorific value was calculated to be 42 MJ/kg.  相似文献   

16.
The influence of the industrial control composting conditions (aeration 0.005–0.300?Lair?kg?1 and moisture 40–70?%) of municipal solid waste on the composition of the selected compound emitted (limonene, β-pinene, 2-butanone, undecane, phenol, toluene, dimethyl sulfide, dimethyl disulfide) was studied. The highest emissions of volatile organic compounds (VOCs) were observed in the early stages of the processes. At the end of the process, low concentrations of the emitted compounds were found. Aeration rate had a strong effect on emissions. High aeration rate (0.300?Lair?kg?1?min?1) caused normally high emissions of all selected compounds whereas low aeration rates (0.05?Lair?kg?1?min?1) could cause anaerobiosis problems and generation of organic sulphur compounds. We observed that the effect of the moisture upon the emitted concentrations varied depending on the studied compound.  相似文献   

17.
A study of the second step or methanogenic stage of a two-stage anaerobic digestion process treating two-phase olive oil mill solid residue (OMSR) was conducted at mesophilic temperature (35 °C). The substrate fed to the methanogenic step was the effluent from a hydrolytic–acidogenic reactor operating at an organic loading rate (OLR) of 12.9 g chemical oxygen demand (COD) L?1 d?1 and at a hydraulic retention time (HRT) of 12.4 days; these OLR and HRT were found to be the best values to achieve the maximum total volatile fatty acid concentration (14.5 g L?1 expressed as acetic acid) with a high concentration in acetic acid (57.5% of the total concentration) as the principal precursor of methane. The methanogenic stage was carried out in an anaerobic stirred tank reactor containing saponite as support media for the immobilization of microorganisms. OLRs of between 0.8 and 22.0 g COD L?1 d?1 were studied. These OLRs corresponded to HRTs of between 142.9 and 4.6 days. The methanogenic reactor operated with high stability for OLRs lower than 20.0 g COD L?1 d?1. This behaviour was shown by the total volatile fatty acids/total alkalinity ratio, whose values were always kept ?0.12 for HRTs > 4.6 days. The total COD (T-COD) removed was in the range of 94.3–61.3% and the volatile solids (VS) removed between 92.8% and 56.1% for OLRs between 0.8 and 20.0 g COD L?1 d?1. In the same way, a reduction of 43.8% was achieved for phenolic content. The low concentration of total volatile fatty acids (TVFA) observed (below 1 g L?1 expressed as CH3COOH) in the methanogenic reactor effluents showed the high percentage of consumption and conversion of these acids to methane. A methane yield of 0.268 ± 0.003 L CH4 at standard temperature and pressure conditions (STP) g?1 COD eliminated was achieved.  相似文献   

18.
A major problem of radiometric sensors in the detection of oil spills on the sea is differentiating the oil spill from other objects on the water surface such as rough areas, areas with warm and cold streams, oil-water emulsions, areas with seaweed, etc. A procedure to convert antenna temperatures to brightness temperatures and then to the oil thickness is described. Generally, a calibration procedure at the start of each experiment is needed. In order to develop and test these procedures, a polarization method has been designed for remotely detecting an oil slick. This required building three radiometers operating in the millimeter-wave bands (W, Wa, ku) as well as associated laboratory test equipment. Experimental results, obtained in the laboratory and in an outdoor test facility, conform well with theoretical computations using an air-oil-water stratified layer model. This new method of microwave radiometry by measuring its polarization contrasts at two orthogonal polarizations is a next step in the development of microwave sensors for detecting oil spills.  相似文献   

19.
This study focused on investigating the potential of using canola protein fractions as bio-degradable wood adhesives. Native and sodium bisulfite (NaHSO3)-modified canola protein fractions isolated successively at different pH values (7.0, 5.5, and 3.5) was used as adhesives. Wood specimens were assembled with adhesives at a pressure of 2?MPa at 150, 170, or 190?°C for 10?min. The adhesion performance of adhesives were evaluated by wet, soak, and dry shear strength. Their physicochemical properties: extractability, electrophoresis profiles, thermal, rheological and morphological properties were also characterized. Results showed that canola protein had the highest protein yield and purity at pH 5.5. Electrophoresis profile proved that NaHSO3 cleaved the disulfide bonds in canola protein. This could induce extra charges (RS-SO3 ?) on the protein surface, leading to the reduced apparent viscosity. Thermal analysis implied that the thermal transition temperature of canola protein decreased with modification of NaHSO3. Canola protein adhesives showed excellent dry and soak shear strength with 100?% wood cohesive failure in all curing temperatures. The wet adhesion strength of native and modified canola protein fraction adhesives at pH 5.5 and pH 3.5 (3.9?C4.1?MPa) was higher than the fractions at pH 7.0. NaHSO3 had insignificant effects on the adhesion performance of canola protein adhesives but notably improved the handling and flow-ability properties of canola protein adhesives.  相似文献   

20.
In this study, experimental conditions were optimized to maximize the production of hydrogen gas from refuse plastic fuel (RPF) by pyrolysis and steam gasification processes conducted in a laboratory-scale reactor. We carried out gasification using 10-g RPF samples at different temperatures (700°-1000°C) with and without steam. The effect of the amount of steam (0–0.25 g/min) for RPF steam gasification was also studied. The effect of K2CO3 as a catalyst on these processes was also investigated. Experimental results showed that the hydrogen gas yield increased with temperature; with respect to the gas composition, the hydrogen content increased mainly at the expense of other gaseous compounds, which highlights the major extension of secondary cracking reactions in the gaseous fraction at higher temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号