首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Four organophosphorus compounds: azinphos-methyl, chlorpyrifos, malathion and malaoxon in aqueous solution were degraded by using a 125 W xenon parabolic lamp. Gas chromatography-mass spectrometry (GC-MS) was used to monitor the disappearance of starting compounds and formation of degradation products as a function of time. AChE-thermal lens spectrometric bioassay was employed to assess the toxicity of photoproducts. The photodegradation kinetics can be described by a first-order degradation curve C=C0e(-kt), resulting in the following half lives: 2.5min for azinphos-methyl, 11.6 min for malathion, 13.3 min for chlorpyrifos and 45.5 min for malaoxon, under given experimental conditions. During the photoprocess several intermediates were identified by GC-MS suggesting the pathway of OP degradation. The oxidation of chlorpyrifos results in the formation of chlorpyrifos-oxon as the main identified photoproduct. In case of malathion and azinphos-methyl the corresponding oxon analogues were not detected. The formation of diethyl (dimethoxy-phosphoryl) succinate in traces was observed during photodegradation of malaoxon and malathion. Several other photoproducts including trimethyl phosphate esters, which are known to be AChE inhibitors and 1,2,3-benzotriazin-4(3H)-one as a member of triazine compounds were identified in photodegraded samples of malathion, malaoxon, and azinphos-methyl. Based on this, two main degradation pathways can be proposed, both result of the (P-S-C) bond cleavage taking place at the side of leaving group. The enhanced inhibition of AChE observed with the TLS bioassay during the initial 30 min of photodegradation in case of all four OPs, confirmed the formation of toxic intermediates. With the continuation of irradiation, the AChE inhibition decreased, indicating that the formed toxic compounds were further degraded to AChE non-inhibiting products. The presented results demonstrate the importance of toxicity monitoring during the degradation of OPs in processes of waste water remediation, before releasing it into the environment.  相似文献   

2.
Abstract

Malathion is an organophosphorus pesticide widely used in agricultural crops, despite its toxicity. In addition, malaoxon occurs by oxidation of malathion being more toxic. The toxic effects of malathion and malaoxon in humans include hepatoxicity, breast cancer, genetic damage and endocrine disruption. The aim of this study involved assessing the effect of malathion commercial grade on Chroococcus sp., and its potential as an alternative to the removal of this pesticide and its transformation product such as malaoxon. We evaluated the effect of malathion at different concentrations (1, 25, 50, 75 and 100?ppm) on the biomass of the cyanobacteria Chroococcus sp. grown in medium BG-11; also, we analyse its ability to degrade both malathion and malaoxon into a temperature of 28?±?2?°C and at pH 6. The results showed that 50?ppm of malathion the cyanobacteria Chroococcus sp. reached the highest removal efficiency of malathion and malaoxon (69 and 65%, respectively); also, the growth rate of Chroococcus sp. increased without inhibiting the production of chlorophyll “a”, this can be explained by the hormesis phenomenon. Therefore, we consider that the cyanobacteria Chroococcus sp. may be a good candidate for bioremediation of aquatic systems contaminated with organophosphorus pesticides such as malathion and its transformation product such as malaoxon.  相似文献   

3.
Zhang Y  Hou Y  Chen F  Xiao Z  Zhang J  Hu X 《Chemosphere》2011,82(8):1109-1115
In this paper, elimination of two types of organophosphorus pesticides (OPPs), chlorpyrifos and diazinon spiked in aqueous solution by ultrasonic irradiation was investigated. Results showed that chlorpyrifos and diazinon could be effectively and rapidly degraded by ultrasonic irradiation, and the degradation of both pesticides was strongly influenced by ultrasonic power, temperature and pH value. Furthermore, two and seven products for the degradation of chlorpyrifos and diazinon formed during ultrasonic irradiation have been identified by gas chromatography-mass spectrometry, respectively. The hydrolysis, oxidation, hydroxylation, dehydration and decarboxylation were deduced to contribute to the degradation reaction and the degradation pathway for each pesticide under ultrasonic irradiation was proposed. Finally, the toxicity evaluation indicated that the toxicity decreased for diazinon solution after ultrasonic irradiation, but it increased for chlorpyrifos solution. The detoxification of OPPs by ultrasonic irradiation was discriminative.  相似文献   

4.
Kim YH  Ahn JY  Moon SH  Lee J 《Chemosphere》2005,60(10):1349-1355
Efficiencies of two lypolytic enzymes (fungal cutinase and yeast esterase) in malathion degradation were investigated. Surprisingly, degradation rate of malathion by fungal cutinase was very high, i.e. almost 60% of initial malathion (500 mg l(-1)) was decomposed within 0.5 h, and nearly 50% of the degraded malathion disappeared within initial 15 min. With the yeast esterase, despite the same concentration, more than 65% of malathion remained even after 2-day treatment. During enzymatic degradation of malathion, two malathion-derived compounds were detected, and time-course changes in composition were also monitored. In the degradation by both fungal cutinase and yeast esterase, two additional organic chemicals were produced from malathion: malathion monoacid (MMA) and malathion diacid (MDA) by ester hydrolysis. Final chemical composition after 2 d was significantly dependent on the enzyme used. Fungal cutinase produced MDA as a major degradation compound. However in the malathion degradation by yeast esterase, an isomer of MMA was produced in abundance in addition to MDA. Toxic effects of malathion and its final degradation products were investigated using various recombinant bioluminescent bacteria. As a result, the degradation products (including MMA) by esterase severely caused membrane damage and inhibition of protein synthesis in bacterial cells, while in the fungal cutinase processes, malathion was significantly degraded to non-toxic MDA after the extended period (2 days).  相似文献   

5.
This investigation was undertaken to elucidate whether the active metabolite of malathion, malaoxon, has any role in exerting cyto- and genotoxic effects for human choriocarcinoma (JAR) cell line which is an acceptable model for human placental cells. Gas chromatography-mass spectrometry (GC-MS) analysis were separately performed on the cell compartment and supernatant cell culture medium after subjecting the cell line to different malathion concentrations (10-400 μg/mL) and for various incubation periods (0.5 to 24 hours). GC-MS analysis showed that the sonication performed for the disruption of the cells did not cause the chemical change of malathion. The uptake of malathion by the cells was relatively fast. However, the presence of malaoxon, even in trace amounts, could not be confirmed either in samples originating from disrupted cells or in the cell culture medium. Although the hydrolysis of malaoxon occurred in the culture medium, this degradation process could not be counted as a reason for the absence of malaoxon. Since both malathion and malaoxon standard compounds could be accurately detected and distinguished by the applied liquid-liquid extraction and GC-MS methods, one can conclude that, in the case of JAR cells, the parent compound, (i.e. malathion itself) is responsible for the observed in vitro cyto- and genotoxic effects. Our results indicate that the direct toxicity of malathion contributes to the complications of pregnancy observed for environmental malathion exposure.  相似文献   

6.
This investigation was undertaken to elucidate whether the active metabolite of malathion, malaoxon, has any role in exerting cyto- and genotoxic effects for human choriocarcinoma (JAR) cell line which is an acceptable model for human placental cells. Gas chromatography-mass spectrometry (GC-MS) analysis were separately performed on the cell compartment and supernatant cell culture medium after subjecting the cell line to different malathion concentrations (10–400 μg/mL) and for various incubation periods (0.5 to 24 hours). GC-MS analysis showed that the sonication performed for the disruption of the cells did not cause the chemical change of malathion. The uptake of malathion by the cells was relatively fast. However, the presence of malaoxon, even in trace amounts, could not be confirmed either in samples originating from disrupted cells or in the cell culture medium. Although the hydrolysis of malaoxon occurred in the culture medium, this degradation process could not be counted as a reason for the absence of malaoxon. Since both malathion and malaoxon standard compounds could be accurately detected and distinguished by the applied liquid-liquid extraction and GC-MS methods, one can conclude that, in the case of JAR cells, the parent compound, (i.e. malathion itself) is responsible for the observed in vitro cyto- and genotoxic effects. Our results indicate that the direct toxicity of malathion contributes to the complications of pregnancy observed for environmental malathion exposure.  相似文献   

7.
A process for disposing of pesticide rinsates using sorption onto organic matter followed by composting is being evaluated. As a part of this evaluation process, we have studied the bioavailability of composted delta-2-14C-diazinon and its degradation products to earthworms (Eisenia foetida Savigny) in 30 and 60 d compost amended soil. After 60 d of composting there was considerable degradation of diazinon (95%) and a corresponding increase in the primary hydrolysis product, 2-isopropyl-4-methyl-6-hydroxypyrimidine (IMHP) as determined by high performance thin layer chromatography (HPTLC). Approximately 50% of the radioactivity became incorporated into the non-extractable fractions associated with composted organic matter with no measurable amounts of 14CO2 produced during the 60-day composting period. Following addition of the composted materials to soil, diazinon leading to 50% mortality after 14 d of exposure; continued to slowly degrade and become increasingly sorbed/entrapped within the soil-compost matrix. Soil amended with 30-d composted diazinon was toxic to earthworms whereas, no mortality was observed in those earthworms exposed to the 60-d composted diazinon. However, earthworms exposed to 30-d and 60-d composted diazinon were found to have similar levels of radioactivity in their tissues. The majority of the radioactivity in earthworms exposed 60-d composted diazinon was either unextractably bound within the earthworm tissue or was not acetone soluble. Most of the radioactivity that could be extracted with acetone was not separated by the two HPTLC methods we used. This study demonstrates that composting high concentrations of diazinon can greatly reduce toxicity and the amount of diazinon that is bioavailable to a representative soil macroinvertebrate (E. foetida).  相似文献   

8.
Fenoll J  Ruiz E  Flores P  Hellín P  Navarro S 《Chemosphere》2011,85(8):1375-1382
Laboratory and field studies were conducted in order to determine the leaching potential of eight pesticides commonly used during pepper cultivation by use of disturbed soil columns and field lysimeters, respectively. Two soils with different organic matter content (soils A and B) were used. Additionally, soil B was amended with compost (sheep manure). The tested compounds were cypermethrin, chlorpyrifos-methyl, bifenthrin, chlorpyrifos, cyfluthrin, endosulfan, malathion and tolclofos-methyl. In soil B (lower organic matter content), only endosulfan sulphate, malathion and tolclofos-methyl were found in leachates. For the soil A (higher organic matter content) and amended soil B, pesticide residues were not found in the leachates. In addition, this paper reports on the use of common agronomic practices (solarization and biosolarization) to enhance degradation of these pesticides from polluted soil A. The results showed that both solarization and biosolarization enhanced the degradation rates of endosulfan, bifenthrin and tolclofos-methyl compared with the control. Most of the studied pesticides showed similar behavior under solarization and biosolarization conditions. However, chlorpyrifos was degraded to a greater extent in the solarization than in biosolarization treatment. The results obtained point to the interest in the use of organic amendment in reducing the pollution of groundwater by pesticide drainage and in the use of solarization and biosolarization in reducing the persistence of pesticides in soil.  相似文献   

9.
Solid-phase micro-extraction (SPME) coupled on line with high resolution gas chromatography and mass spectrometric detection is described for the analysis of pesticides in environmental water samples. Experiments were performed in order to optimize the SPME extraction conditions for selected pesticides including tiomethon, trichorfon, dimethoate, diazinon, malathion, dicofol, methidathion, ethion, bromopropylate and pyrazophos from spiked water solutions. To enhance the SPME efficiency, experimental conditions including the fiber composition, stirring rate, temperature, adsorption time, desorption time and salt concentration were optimized. After validation, the SPME-GC/MS methodology was applied to real-world environmental water samples.  相似文献   

10.
Soil disposal is the most common method of handling dilute pesticide wastes. The effects of several soil factors on the degradation of a pesticide mixture were investigated. Atrazine, captan, carbaryl, 2,4-D, diazinon, fenitrothion, and trifluralin were studied under varying laboratory conditions of soil type, pH, moisture content, organic matter content, microbial activity, and pesticide concentration. Of the variables investigated, pesticide concentration was the single most important factor with degradation rates much slower at high (1000 ppm) levels of fortification than moderate (100 ppm) levels. Under most conditions, chemical degradation was at least as significant as microbial degradation. Effects of other factors varied considerably and were pesticide dependent.  相似文献   

11.
The behaviour of diazinon in the soil determines the likelihood of further pollution incidents, particularly leaching to water. The most significant processes in the control of the fate of diazinon in the soil are microbial degradation and the formation of bound residues. Soils from four sites in the UK were amended with diazinon and its 14C labelled analogue and incubated for 100 days. After 0, 10, 21, 50 and 100 days, the formation of bound residues was assessed by solvent extraction, and the microbial degradation of diazinon by mineralisation assay. In microbially active soils, diazinon is degraded rapidly, reducing the risk of future pollution incidents. However, where there was limited mineralisation there was also significantly lower formation of bound residues, which may lead to water pollution via leaching. The formation of bound residues was dependent on extraction type. Acetonitrile extraction identified bound residues in all soils, with the bound residue fraction increasing with increasing incubation time.  相似文献   

12.
Organophosphorus pesticides (OPs) are ubiquitous in the environment and are highly toxic to amphibians. They deactivate cholinesterase, resulting in neurological dysfunction. Most chemicals in this group require oxidative desulfuration to achieve their greatest cholinesterase-inhibiting potencies. Oxon derivatives are formed within liver cells but also by bacterial decay of parental pesticides. This study examines the toxicity of chlorpyrifos, malathion and diazinon and their oxons on the foothill yellow-legged frog (Rana boylii). R. boylii is exposed to agricultural pesticides in the California Central Valley. Median lethal concentrations of the parental forms during a 96 h exposure were 3.00 mg/L (24h) for chlorpyrifos, 2.14 mg/L for malathion and 7.49 mg/L for diazinon. Corresponding oxons were 10 to 100 times more toxic than their parental forms. We conclude that environmental concentrations of these pesticides can be harmful to R. boylii populations.  相似文献   

13.
This paper describes a new analytical method for determination of organophosphorus pesticides (OPs) along with their degradation products involving liquid chromatography (LC) positive ion electrospray (ESI+) tandem mass spectrometry (MS-MS) with selective reaction monitoring (SRM). Chromatography was performed on a Gemini C6-Phenyl (150 mmx2.0 mm, 3 microm) with a gradient elution using water-methanol with 0.1% formic acid, 2 mM ammonium acetate mobile phase at a flow rate of 0.2 mL min(-1). The LC separation and MS/MS operating conditions were optimized with a total analysis time less than 40 minutes. Method detection limits of 0.1-5 microg L(-1) for selected organophosphorus pesticides (OP), OP oxon degradation products, and other degradation products: 3,5,6-trichloro-2-pyridinol (TCP); 2-isopropyl-6-methyl-4-pyrimidol (IMP); and diethyl phosphate (DEP). Some OPs such as fenchlorphos are less sensitive (MDL 30 microg L(-1)). Calibration curves were linear with coefficients of correlation better than 0.995. A three-point identification approach was adopted with area from first selective reaction monitoring (SRM) transition used for quantitative analysis, while a second SRM transition along with the ratio of areas obtained from the first to second transition are used for confirmation with sample tolerance established by the relative standard deviation of the ratio obtained from standards. This new method permitted the first known detection of OP oxon degradation products including chlorpyrifos oxon at Bratt's Lake, SK and diazinon oxon and malathion oxon at Abbotsford, BC in atmospheric samples. Atmospheric detection limits typically ranged from 0.2-10 pg m(-3).  相似文献   

14.
Membrane bioreactor treatment of commonly used organophosphate pesticides   总被引:1,自引:0,他引:1  
Five pesticide formulations registered for use in Canada containing organophosphate-insecticide active ingredients azinphos-methyl, chlorpyrifos, diazinon, malathion and phorate were subjected to treatment by membrane bioreactor (MBR) technology. The target active ingredients were introduced to the MBR at ppm level concentrations. The biodegradation of these compounds was analyzed daily using selected ion monitoring gas chromatography-mass spectrometry (GC/MS-SIM) following extraction of the analytes using solid-phase extraction (SPE). Amounts measuring 83 % to 98 % of the target analytes were removed with steady-state concentrations being reached within 5 days of their introduction. The dissolved oxygen, temperature, pH, and total heterotrophic bacterial population were monitored daily to ensure optimal conditions for biodegradation. The quality of the effluent from the MBR was assessed daily through spectrophotometric methods. Measurements were conducted for the concentration of ammonia, nitrate, nitrite, total and reactive phosphorus, as well as the chemical oxygen demand (COD) of the effluent. This study demonstrated that the MBR technology is feasible and efficient for treatment of organophosphate pesticides without introducing additional chemical additives.  相似文献   

15.
Abstract

The active ingredients in commercial formulations of malathion, oxamyl, carbaryl, diazinon, and chlorpyrifos diluted to “spray tank”; concentrations with buffered distilled or natural water of pH 4–9 were stable for at least 24 hr. Formulations of trichlorfon were not stable at pH 7 or above but disappearance rates were slower than for the pure chemical in homogeneous solution. Cupric ion was observed to be an effective catalyst for the hydrolysis of a variety of pure organophosphorus insecticides but did not catalyze hydrolysis of the active ingredients of the formulations examined. Increasing the dilution of the formulation increased the susceptibility of malathion, oxamyl, and carbaryl to hydrolysis.  相似文献   

16.
The time required to destroy 3 concentrations (10, 100, and 1000 ppm) of 9 formulated herbicides (alachlor, atrazine, bentazon, butylate, cyanazine, 2, 4-D, metolachlor, metribuzin, and trifluralin) and two formulated insecticides (carbofuran and malathion) by ultraviolet (UV)-ozonation (O3) was measured in a 66 UV lamp unit. The time required for 90% destruction was dependent on the concentration and increased as the concentration of pesticide increased. UV irradiation in the presence of ozone rapidly photooxidized all pesticides at 10 and 100 ppm and averaged 22 and 61 min, respectively. Longer times were required for pesticides at 1000 ppm.  相似文献   

17.
Data on the adsorption and transformation rates of diazinon, parathion, tetrachlorvinphos and triazophos in soils were collected from a survey of the literature. As little information is available on their mobility, the adsorption of tetrachlorvinphos and triazophos on three soils was measured in a slurry experiment. Properties of diazinon were introduced into a computer model simulating glasshouse soil systems in a simplified way. The leaching of diazinon from the root zone was calculated to be zero. The properties of the other three organophosphates indicate that in similar computations leaching from the root zone would have been even lower.Samples from tile drains and water courses in areas with many glasshouses were analysed by gas-liquid chromatography. The concentration of the four organophosphate insecticides in almost all of the samples of water from tile drains was below the detectable limit. However in samples from the water courses, pesticide residues were found regularly, sometimes at fairly high concentrations. Thus contamination of water courses would seem to be produced not by leaching of pesticides through the soil but by other pathways.  相似文献   

18.
Liu C  Yang B  Gan J  Zhang Y  Liang M  Shu X  Shu J 《Chemosphere》2012,87(5):470-476
Organophosphorus pesticides (OPPs) emit into the atmosphere in both gas and particulate phases via spray drift from treatments and post-application emission, but most of their degradations in the atmosphere are not well known. In this study, the heterogeneous reactions of nitrate (NO3) radicals with three typical OPPs (parathion, malathion, and fenthion) absorbed on azelaic acid particles are investigated using an online vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer (VUV-ATOFMS). The reaction products observed with the VUV-ATOFMS are identified on the basis of GC/MS analysis of the products in the reaction between NO3 radicals and the coating of the pesticide. Paraoxon is identified as the only product of parathion; malaoxon and bis(1,2-bis-ethoxycarbonylethyl)disulfide as the products of malathion; fenoxon, fenoxon sulfoxide, fenthion sulfoxide, fenoxon sulfone, and fenthion sulfone as the products of fenthion. The degradation rates of parathion, malathion, and fenthion under the experimental conditions are 5.5 × 10−3, 5.6 × 10−2, and 3.3 × 10−2 s−1, respectively. The pathways of the heterogeneous reactions between the three OPPs and NO3 radicals are proposed. The experimental results reveal the possible transformations of these OPPs through the oxidation of NO3 radicals in the atmosphere.  相似文献   

19.
DDT污染土壤的植物修复技术   总被引:2,自引:0,他引:2  
本文报道用植草方法研究为DDT及其主要降解产物污染土壤的植物修复技术。在污染物的浓度为 0 .2 15mg/kg的土壤中 ,种植 10种草 3个月后DDT及其主要降解产物的总含量分别降低 19.6 %— 73.0 %。种植不同品种的草对土壤中污染物有不同的去除能力 ,其中以种植丹麦产的Taya草 (Per .ryegrass)与美国产的Titan草 (Tallfescue)为最强。用种植草的方法修复受DDT及其主要降解产物污染的土壤是一项可行的技术。在去除土壤中DDT的作用上 ,草的吸收是轻微的 ,只占原施药量的 0 .13%— 1.0 8% ,土壤中污染物消失的主要因素是土壤中生物降解作用的结果。  相似文献   

20.
Jan MR  Shah J  Khan H 《Chemosphere》2003,52(9):1623-1626
A new spectrophotometric method has been investigated for the determination of Carbofuran pesticide. The method was based on the hydrolysis of the pesticides. The hydrolyzed products, methylamine on reaction with sodium nitroprusside solution in acetone medium gives a purple colored solution. The absorbance of the resulting solution was measured at 530 nm. Conditions for the complete hydrolysis of pesticides and quantitative determination of methylamine were optimized. From the standard calibration plot of methylamine, the amount of pesticides was calculated. The amount of active ingredients in commercial products was determined from the amount of methylamine found. It was observed that lower concentration of the active ingredients were present in the commercial products. The limit of detection and quantification was calculated and found to be 0.804 and 2.68 ppm respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号