首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
塑料牛奶包装及处置方式生命周期环境影响研究   总被引:3,自引:1,他引:2       下载免费PDF全文
采用生命周期评价(LCA)法研究了塑料牛奶包装的全生命周期环境影响,并在处置阶段对不同处置方式的环境影响进行比较.通过现场和资料调研的方式,获得所有生命周期阶段能量物质的输入/输出和环境外排数据.结果表明:塑料牛奶包装生命周期阶段中环境影响比重最大的是原料获取阶段,占90%以上.其全生命周期环境影响主要集中在化石燃料、无机物对人体损害和气候变化3个方面,在致癌、酸化富营养化和生态毒性方面影响稍小.3种处置方式对环境影响由大到小依次为填埋>焚烧>再生,其中填埋和焚烧处置分别比塑料包装处置阶段前的环境影响增加16.1%和5.3%,再生可降低75.9%.  相似文献   

2.
食用油聚酯包装的生命周期评价   总被引:2,自引:2,他引:0  
采用生命周期评价法研究了食用油聚酯(PET)包装的生命周期环境影响,并对不同处置方式的环境影响进行比较评价. 通过现场和资料调研的方式获得所有生命周期阶段的能量物质的输入、输出和环境外排数据. 结果表明:PET包装原料获取阶段的环境影响潜值在全生命周期环境影响潜值中所占比例极高,占处置前环境影响潜值的81.8%. PET包装的全生命周期环境影响类别主要集中在化石燃料、无机物对人体损害和气候变化3个方面;在致癌、生态毒性和酸化/富营养化等方面的影响较小. 3种主要处置方式的环境影响潜值为焚烧>填埋>再生,其中焚烧和填埋分别增加PET包装处置阶段前环境影响潜值的5.1%和3.6%,而再生可降低63.9%.   相似文献   

3.
选用我国终点破坏类影响评价模型(Chinese endpoint damage model,CEDM),采用生命周期评价(LCA)法研究了我国多晶硅片生命周期环境影响。通过座谈和问卷调研的方式,获得多晶硅片生命周期能量物质的输入/输出和环境外排数据。结果表明:从环境影响的最终破坏受体来看,我国多晶硅片生命周期环境影响主要集中在对人体健康的损害方面,占70.21%;其次是对资源衰竭方面的影响,占26.22%;而对生态系统的损害最小,仅占3.57%。从各环境要素来看,由多晶硅原料带来的环境影响是所有环境要素中最高的,占70.83%;其次是电耗和砂浆液,分别占19.44%和7.62%;生产过程污染物排放对环境的影响仅占0.07%。降低多晶硅片环境影响应首先考虑减少原料消耗;其次考虑节能和废砂浆循环利用。我国多晶硅片环境影响略高于欧洲平均水平,主要是由原料端(高纯多晶硅)差异导致。  相似文献   

4.
水泥窑协同处置工业废弃物的生命周期评价   总被引:1,自引:0,他引:1  
侯星宇  张芸  戚昱  蒋慧  张琳  曲殿利 《环境科学学报》2015,35(12):4112-4119
以废白土、废催化剂和污染土壤等工业废弃物为研究对象,运用生命周期评价(LCA)方法,对水泥窑协同处置废弃物的环境影响进行评价.通过建立生产过程输入、输出清单,从全球变暖潜值、资源消耗潜值、人体毒性潜值等方面,基于Gabi5.0软件进行建模与计算,对水泥窑常规生产工艺与协同处置工业废弃物工艺产生的环境影响进行比较.结果表明:功能单位(1 t)水泥的生产过程中,常规生产工艺和协同处置工艺的环境影响潜值分别为5.78×10~(-11)和5.61×10~(-11),协同处置工艺使得全生命周期环境影响潜值降低了2.94%;水泥生产过程最主要的环境影响是全球变暖和人体毒性,其中,协同处置工艺下这两种环境影响分别降低了0.80%和1.80%,资源消耗相比常规生产降低了11.1%;从全生命周期看,水泥生产中熟料煅烧阶段对环境的影响最大,协同处置工艺下熟料煅烧阶段的环境影响相比常规生产降低了8.0%.协同处置工艺相比常规生产工艺有更好的环境效益.  相似文献   

5.
纸塑铝复合包装处置方式的生命周期评价   总被引:9,自引:5,他引:4       下载免费PDF全文
采用生命周期评价(LCA)法研究了纸塑铝复合包装的全生命周期环境影响,并在处置阶段对不同处置方式的环境影响进行评价. 通过现场和资料调研的方式,获得所有生命周期阶段能量物质的输入/输出和环境外排数据. 结果表明:纸塑铝复合包装生命周期阶段中环境影响比重最大的是原料获取阶段,占75%以上. 纸塑铝复合包装的全生命周期环境影响主要集中在化石燃料、土地占用和无机物对人体损害3个方面,在矿产资源、气候变化、酸化富营养化和生态毒性方面影响稍小. 3种处置方式对环境影响由大到小依次为填埋>焚烧>再生,其中填埋和焚烧处置分别比纸塑铝复合包装处置阶段前的环境影响增加11%和7%,再生可降低23%,而进一步降低环境影响的方式为发展铝塑分离技术.   相似文献   

6.
水泥窑共处置废农药生命周期评价研究   总被引:4,自引:3,他引:1       下载免费PDF全文
国内在水泥窑共处置废农药方面的研究处于起步阶段. 通过开展试烧试验,以生命周期评价方法(LCA)为研究手段, 对水泥窑共处置废农药技术的环境影响进行评价,并与危险废物的其他处置方法做比较,以处置1 kg危险废物为功能单位. 结果表明,常规危险废物焚烧的综合环境负荷指数为1.428 4×10-12 a-1, 而水泥窑中共处置废农药的综合环境负荷指数为0.183 9×10-12 a-1,远低于常规危险废物焚烧.   相似文献   

7.
为判识光伏组件全生命周期环境影响,采用生命周期评价法对光伏组件的生产、使用、处置等阶段环境影响进行分析。通过现场和问卷调研的方式获得了光伏组件生产、使用阶段的能源物质消耗和污染物排放数据,通过回收工艺研发与应用获得了光伏组件处置阶段的能源物质投入、产出和污染物排放数据。依据不同的处置技术设计了填埋情景、拆解情景、热解情景,从而分别计算生产、使用、处置等阶段环境影响潜值并进行对比分析。结果表明:1)每m2光伏组件生产阶段和使用阶段环境影响潜值分别为13.98、1.50 Pt,处置阶段3种情景的环境影响潜值分别为0.04、-0.62、-3.59 Pt,因此3种情景下光伏组件全生命周期环境影响潜值分别为15.52、14.86、11.89 Pt。2)从环境影响类别来看,主要集中在呼吸系统损害、致癌和气候变化3个方面,从影响因素来看,电耗是主要因素,3种情景下占全生命周期环境影响的64.81%、67.70%、84.61%。3)从光伏发电的度电环境影响潜值水平来看,3种情景下光伏发电单位发电量环境影响潜值分别为3.34×10-3、3.20×10-3、2.56×10-3 Pt/(kW·h),占当前电力结构下单位发电量环境影响潜值〔70.1×10-3 Pt/(kW·h)〕的4.8%、4.6%、3.7%。4)从碳排放水平来看,3种情景下光伏组件单位发电量碳排放量分别是35.68、33.53、23.70 g/(kW·h)(CO2当量值),低于同类研究和我国电力行业水平。5)我国早期安装的光伏组件已接近报废周期,因此,大力发展光伏组件回收技术,不仅可以实现资源的回收,还可以降低光伏组件全生命周期环境影响,减少碳排放,从而实现能源环境双赢。  相似文献   

8.
面对循环经济技术应用过程中存在的环境污染问题,需要定量化评价废旧资源再循环过程中污染物的产生和对环境的潜在影响。文章以废聚丙烯塑料的气化技术和超临界水降解技术为研究对象,采用生命周期分析为研究方法,通过目标和范围确定、清单分析、影响评价以及结果解析四大步骤,对两种技术的环境影响进行评价并比较。结果表明,从总的环境负荷来看,超临界水降解技术是气化技术的3.6倍,其环境影响潜值分别是2.38和0.66;从环境影响类型来看,废聚丙烯塑料能源回收技术主要对全球变暖、酸化和烟尘粉尘三类环境问题影响较大,三者分别占气化技术环境负荷总量的56.9%、23.2%和12.5%,占超临界水技术环境负荷总量的37.4%、33.9%和18.2%。  相似文献   

9.
以低品质包装废物为典型固体废物开展水泥窑共处置试烧试验. 以生命周期评价(LCA)方法为研究手段,对水泥窑共处置技术的环境影响进行评价,并且与常规水泥熟料生产过程进行比较. 通过试验和资料调研,获得所有生命周期阶段的能量和物质输入、输出以及环境外排数据,利用SimaPro7.1软件进行处理,得出相应的环境影响潜值. 结果表明:①在水泥熟料生产的全生命周期过程中,对环境影响所占比重最大的是生产阶段,共处置低品质包装废物可以使环境影响潜值降低10.65%(从263 Pt降至235 Pt),主要表现在无机物对人体的损害和酸化/富营养化方面. ②从全生命周期来看,共处置低品质包装废物使环境影响潜值降低了8.68%(从334 Pt降至305 Pt),主要表现在无机物对人体的损害和酸化/富营养化方面的降低,二者的环境影响潜值分别降低了11.00%和15.70%.   相似文献   

10.
水泥窑共处置废白土的环境效益分析   总被引:1,自引:0,他引:1       下载免费PDF全文
以废白土为研究对象,应用生命周期评价法(LCA)对水泥窑共处置和焚烧炉处置系统3个类别的环境影响[人类健康(HH)、生态系统质量(EQ)和资源(R)]进行研究和对比分析.结果表明,水泥窑共处置废白土有利于环境的可持续发展,焚烧炉处置对环境的影响较大.水泥窑共处置和焚烧炉处置功能单位废白土的总环境负荷分别为-1.03,0.273Pt,前者的环境负荷比后者减少了477%,相应各指标的减少率为:HH 413%, EQ 479%, R 36.9%. EQ在2种处置方式的LCA中均为最敏感的影响指标.水泥窑系统中,避免了贡献率占97%以上的矿山开采阶段的环境影响,是降低整个系统环境影响的关键环节;焚烧炉系统中,电力消耗是造成环境破坏的重要阶段,对各影响指标都有很高的贡献率.二 、苯、重金属的排放是水泥窑共处置废白土的主要影响因子;粉尘和重金属排放对焚烧处置系统的影响较大.  相似文献   

11.
基于生命周期评价法(LCA)评价加氢脱硫废金属催化剂回收生产过程的环境影响,将回收生产过程分为6个阶段,选取了12种关键环境影响类型,通过建立物质投入及排放清单,基于eBalance软件进行建模和计算。结果表明:回收1 t废催化剂的总环境影响为1.11E-08,其中,全球变暖效应潜值(GWP)是废催化剂回收生产过程中最大的环境影响贡献类型。焙烧阶段的环境影响贡献最大,其次为提取钴镍阶段、浓缩蒸发阶段、提取钼钒阶段,预处理阶段、运输阶段的环境影响贡献很小。基于生命周期评价法提出能源替代方案,清洁能源替代方案的环境影响为4.98E-09,较回收工艺环境影响削减了55.16%的环境影响。  相似文献   

12.
中国塑料生命周期的环境—经济综合评价   总被引:9,自引:0,他引:9  
周新 《环境保护》1998,(7):34-37
从塑料生产到塑料消费及废塑料的回收再利用和最终处置,中国的塑料行业存在着供需之间的矛盾,大量产生的废塑料对环境造成极大压力,废塑料的再生利用行业呈现出不景气。本文利用生命周期的思想对中国的塑料生命周期及上述问题进行了环境-经济综合评价,并提出建议。  相似文献   

13.
分析了废弃办公设备关键部件——硒鼓和墨盒的组成.采用层次分析法对硒鼓和墨盒现有处理处置技术进行评价,结果表明硒鼓和墨盒目前国内较为适宜的处理技术均为人工拆解法,评估过程中环境因素和经济效益的权重较高.研究还采用生命周期评价方法,对硒鼓和墨盒处理处置过程对环境的影响进行了评估.评价采用SimPro软件和Eco-indicator99方法进行.评价结果显示硒鼓人工拆解的环境效益为535.2mPt高于该过程产生的环境影响(27.3mPt).环境效益主要来源于对硒鼓中塑料、金属和磁性材料的回收,以及墨粉焚烧过程中热量回收.硒鼓人工拆解过程和危险废物处理会对带来一定环境影响.墨盒人工拆解过程将带来271.0mPt的环境效益以及10.8mPt环境危害,其中环境效益是由塑料回收带来的.清洗用水、清洗试剂的使用等环节带来一定的环境影响.从人体健康、生态质量和资源保护3个指标来看,硒鼓人工拆解过程带来的环境效益,主要体现在减少对人体健康的威胁,比例约为68.4%.墨盒人工拆解带来的环境效益,主要体现在对资源的保护,比例约为84.1%.  相似文献   

14.
北京市衍生燃料法处置低品质塑料包装的环境影响   总被引:1,自引:1,他引:0  
采用生命周期评价法对北京市2种衍生燃料(RDF)法处置低品质塑料包装废物的环境影响进行评价,并与填埋和焚烧处置进行比较. 通过现场及资料调研获得所有生命周期阶段的能量物质输入、输出和环境外排数据. 发电量计算是通过实地调查生活垃圾中低品质塑料包装废物组成特性,用氧弹式量热计测定各组分热值后折算成单位热值,再与北京市生活垃圾焚烧厂G单位热值生活垃圾发电量的调研结果类比,得出其对应的发电量. 结果表明:低品质塑料包装废物的4种处置方式环境影响潜值为直接作为RDF焚烧发电<干燥热压RDF焚烧发电<焚烧<填埋,这4种处置方式的环境影响潜值分别为-0.064 9,0.009 0,0.024 1和0.152 8 Pt. 直接作为RDF处置方式的环境影响主要集中在无机物对健康损害方面;干燥热压RDF处置的环境影响主要集中在无机物对健康损害和化石燃料方面;焚烧和填埋的环境影响主要集中在气候变化和致癌方面.   相似文献   

15.
废铅酸电池的回收利用已成为铅酸电池行业实现健康持续发展的关键一环.本文采用生命周期评价方法,分析了废铅酸电池回收制取铅合金技术及末端污染控制全过程的环境影响,并与废铅酸电池回收制铅锭再制电池材料和利用原生材料生产电池材料的过程进行了对比研究.结论表明废铅酸电池回收直接制取铅合金过程中铅膏熔炼和合金配制环节在各环境影响指标中的贡献较大(其中全球变暖潜值中占60%和33%,酸化潜值中占33%和54%,人体毒性潜值中占28%和57%),主要为辅助材料及能源动力带来的间接影响;利用原生材料生产电池材料过程的环境影响相对另两个过程更大,归一化的环境影响指标结果中人体毒性潜值、富营养化潜值及酸化潜值最大(分别为2.42×10~(-11)、1.26×10~(-11)和1.08×10~(-11)),其中铅原料生产的贡献比例占绝大部分.废电池回收直接制取再生铅合金与废电池回收制铅锭再制电池材料相比,环境影响表现更优,有利于形成电池生产企业的闭环循环过程,值得应用推广.未来应鼓励以废铅酸电池回收代替相应原生材料生产新电池,同时进一步减少回收过程中使用的资源能源环境影响,以带来更大的环境效益.  相似文献   

16.
水泥窑协同处置生活垃圾技术既能实现生活垃圾的减容,同时垃圾可为水泥工业提供能量和原料,降低水泥行业能源和资源的消耗。但与传统的生活垃圾处置技术相比,该技术的环境效益仍有待考察。采用生命周期评价方法,分析了水泥窑协同处置生活垃圾技术的环境影响,并与传统的垃圾焚烧技术和垃圾填埋技术进行了对比。结果表明:水泥原料制备和水泥生产过程是水泥窑协同处置生活垃圾技术产生环境影响的主要环节;相比于垃圾焚烧技术和垃圾填埋技术,水泥窑协同处置生活垃圾技术在全球变暖潜值方面表现最优,分别降低了2.4%和3.6%;在富营养化潜值方面,该技术高于垃圾焚烧技术但低于垃圾填埋技术;在酸化潜值和人体毒性潜值方面,该技术表现不佳,在未来发展中需要引起重视。随着水泥窑协同处置生活垃圾技术的成熟与优化,其环境表现将会越来越好,是一项环境友好的固废处置技术。  相似文献   

17.
以废皮革为典型固体废物开展水泥窑共处置试烧试验.以生命周期评价方法(LCA)为研究手段,对水泥窑共处置技术的环境影响进行评价,并与常规水泥生产过程作比较.结果表明:常规水泥生产过程的综合环境负荷为7.028×10-12 a-1,其中最大的环境负荷为全球变暖,达3.368×10-12 a-1.当废皮革作为替代燃料在水泥窑中共处置时,可减少燃煤的使用量,同时降低CO2的排放,降低了能源消耗、人体健康损害等方面的环境压力;其综合环境负荷为6.618×10-12 a-1,比常规水泥生产降低了5.83%.   相似文献   

18.
典型复合包装的全生命周期环境影响评价研究   总被引:8,自引:1,他引:8       下载免费PDF全文
采用生命周期评价法研究了牛奶纸塑铝复合包装的全生命周期环境影响,并与塑料包装的环境影响进行比较评价.通过现场和资料调研的方式获得整个生命周期的能量物质的输入输出和环境外排的数据.结果表明,纸塑铝复合包装和塑料包装的环境影响值分别为5.225, 4.670Pt,在整个生命周期中,环境影响比重最大的是原材料获取阶段,两者均在80%左右.塑料包装在化石资源消耗方面是纸塑铝复合包装的2倍多,由于化石资源消耗是不可再生的,因此其对环境的影响无法通过相关途径降低.纸塑铝复合包装的环境影响较大的原因是其尚未得到很好的回收再生利用,通过发展铝塑分离再生技术和提高纸塑铝复合包装回收率可以降低其环境影响.  相似文献   

19.
自20世纪50年代以来,全球塑料使用量急剧增长,塑料已成为人类生产生活不可或缺的重要组成部分,同时也带来严峻的塑料和微塑料污染.为全面加强塑料污染控制,提出从“原料—生产—分销—倾倒—回收(处理)”5个环节实行塑料污染生命周期管理.对我国塑料污染生命周期管理现状及存在问题进行了分析,目前我国在各环节均采取了相关的管理措施,包括立法、开展专项行动等,但仍存在塑料污染管理尚未实现生命周期全覆盖、某些法律法规缺乏实施细则以及部分政策难以落实等问题.在此基础上,借鉴国外塑料污染生命周期管理的经验,提出我国加强塑料污染生命周期管理的政策建议,主要包括:①在塑料原料管理方面,针对生产过程中可能存在微塑料泄露、废水排放等,应完善相关行业标准,鼓励减少化纤等容易造成泄漏的材料在衣物生产中的使用;②在设计生产方面,进一步贯彻落实涉及塑料加工、循环利用的管理规定,提出具体的微塑料循环指标和专项回收目标,同时对可生物降解塑料对环境的影响开展研究,并进一步完善其降解性能;③在分销使用方面,在严格执行“限塑令”的同时,对需求量大、与民生关系密切的塑料制品应分阶段逐步禁止,更加注重绿色产品的替代和新模式的探索,避免“一刀切”的管理模式;④在塑料垃圾倾倒方面,严格落实相关管理条例,并加强国际合作;⑤在塑料垃圾回收及处理方面,应完善含有塑料的垃圾回收处理工艺,在降低环境负面影响的同时实现二次资源的最大化利用.   相似文献   

20.
电动与内燃机汽车的动力系统生命周期环境影响对比分析   总被引:3,自引:2,他引:3  
以国内某两款同一车型的电动与内燃机汽车的动力系统为研究对象,通过生命周期分析软件GaBi建立生命周期评价(LCA)模型,在清单数据分析的基础上,采用CML2001模型对两种动力系统分别进行了定量的生命周期环境影响评价.评价结果表明,电动汽车动力系统的全生命周期综合环境影响比内燃机汽车动力系统高60.15%,并分别通过回收阶段分析、电能结构分析和敏感性分析对这一结果进行了解释:回收阶段中酸化、富营养化和光化学臭氧合成3种环境影响类型的直接排放大于回收得到的环境效益;电动汽车动力系统的环境影响随着火力发电比例的下降而减小,增大水能、风力和核能发电在电力系统中所占比例能有效降低电动汽车对环境的影响;动力系统重量对电动汽车动力系统的环境排放影响最为敏感,电池充电效率次之,制造阶段能耗的敏感度最小.将动力系统使用阶段的环境影响分配到整车,则电动汽车的生命周期环境影响比内燃机汽车低0.14%,且主要环境影响类型是全球变暖、酸化和富营养化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号