首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exposure of the temperate sea anemone Anemonia viridis Forskål to increased seawater temperature (from 16 to 26°C) reduced the lysosomal latency of coelenterate tissues. Lysosomes in the mesenterial filaments of anemones were destabilised by increased temperature, with greater destabilisation in heat-shocked symbiotic anemones than in heat-shocked aposymbiotic anemones in the early stages of the experiment. Lysosomal enzyme activity in zooxanthellae from heat-shocked symbiotic anemones was associated with the algal membranes and the cytoplasm of degenerate algal cells. While the relationship between host coelenterate and symbiotic alga may confer many benefits under normal conditions, comparison of the responses of symbiotic and aposymbiotic anemones to heat shock suggests that there may be disadvantages for symbiotic anemones under stress.  相似文献   

2.
 The effects of elevated pO2 and irradiance as inducers of prooxidant conditions have been investigated in the Mediterranean demosponge Petrosia ficiformis (Poiret, 1789). This species lives symbiotically with the autotrophic cyanobacterium Aphanocapsa feldmanni, the abundance of which is controlled by the intensity of light irradiance. In the presence of symbionts, tissues of P. ficiformis were characterized by a general enhancement of antioxidant defenses as compared to aposymbiotic specimens. The main differences included higher activities of several antioxidant enzymes and a greater capability to neutralize various forms of oxyradicals, as indicated by the total oxyradical scavenging capacity (TOSC) assay. Elevated pO2, more than light, appeared to be the primary factor inducing prooxidant pressure in the Mediterranean sponge; in fact, irrespective of the solar irradiance experienced by the sponge, symbiotic specimens showed comparable activities of antioxidant enzymes and a similar scavenging capacity towards various reactive oxygen species. However, the potential toxicity of photodynamic production of reactive oxygen species was demonstrated in organisms from more irradiated sites, as the levels of antioxidant defenses were lowered in the outer layer of the sponge. The role of enhanced antioxidant defenses in protecting symbiotic specimens, also from oxyradical-mediated toxicity of light exposure, was supported by translocation experiments; aposymbiotic sponges did not survive when moved to conditions of elevated solar irradiance, while no effects were observed in symbiotic specimens if translocated and/or deprived of symbionts. Received: 23 November 1999 / Accepted: 13 June 2000  相似文献   

3.
Rates of oxygen and carbon-dioxide exhange were measured in symbiotic and aposymbiotic specimens of the sea anemone Anthopleura elegantissima while fed and starved under light or dark conditions. Respiratory quotients indicated that fed anemones switched from a carbohydrate to a fat catabolism when starved, with the exception that symbiotic individuals starved in the light showed a pronounced carbohydrate catabolism for over 1 month. The source of the carbohydrate was probably photosynthate translocated by the dinoflagellate Symbiodinium (=Gymnodinium) microadriaticum (Freudenthal) living in the anemones' tissues. The starved symbiotic anemones maintained in the light had lipid levels not significantly different from fed controls and 44 to 61% higher than starved aposymbiotic anemones after 1 month. Thus, the quality and quantity of the metabolic flux from the symbionts to the sea anemone were sufficient to conserve the host's lipid reserves.  相似文献   

4.
In the Brazilian coast, high numbers of the small brittle star Ophiactis savignyi usually live associated with the sponge Geodia corticostylifera (Demospongiae, Geodidae), but not with other sympatric sponge species. In order to check whether this association was related only with the physical shelter provided by the sponge body or was chemically mediated, the crude organic extract of G. corticostylifera was added to sponge mimics made of phytagel and spongin skeleton. Control and treated mimics were simultaneously offered to previously sponge-associated O. savignyi in both static seawater and flow-through laboratory experiments. Ophiuroids were allowed to move towards the preferred mimic. The defensive properties of the sponge extract against fish predation and fouling were also evaluated. Chemotaxis assays showed that symbiotic ophiuroids were able to chemically recognize its host sponge, moving significantly more towards mimics containing G. corticostylifera extract. Chemical deterrence assays showed that the natural concentration of the extract of this sponge was also able to inhibit generalist fish predation on field experiments and the attachment of the common mussel Perna perna in laboratory assays. These results indicate that the crude extract of G. corticostylifera plays multiple functions in the marine environment, presumably being responsible for a closer association of this sponge with O. savignyi, providing protection for this ophiuroid and inhibition of epibionts on itself.  相似文献   

5.
Symbiotic dinoflagellates, Symbiodinium microadriaticum (=zooxanthellae), may gain access to aposymbiotic hosts (i.e., those lacking zooxanthellae) by chemosensory attraction of the motile algae by the potential host or via an intermediate host. Laboratory experiments showed that motile zooxanthellae were attracted to intact aposymbiotic host animals, but not to starved symbiotic hosts. Fed symbiotic hosts and brine shrimp (Artemia sp.) nauplii also attracted motile zooxanthellae. The attraction of these zooxanthellae was directly correlated with nitrogen levels in the seawater surrounding the hosts; thus ammonia and possibly nitrate could be atractants. Brine shrimp nauplii, acting as intermediate hosts actively ingested both motile and non-motile zooxanthellae. the ingested zooxanthellae tended to remain morphologically unaltered during and after passage through the gut of the brine shrimp. Capture and ingestion of brine shrimp containing zooxanthellae by aposymbiotic scyphistomae of the jellyfish Cassiopeia xamachana led to infection of the scyphistomae with zooxanthellae. Zooxanthellae isolated from 17 different species of coelenterates and molluscs could be transferred via brine shrimp to the endodermal cells of the scyphistomae. However only 10 of these isolates persisted to establish a permanent association with C. xamachana. Scyphistomae in suspensions of motile zooxanthellae responded by a classical coelenterate feeding response, which may facilitate ingestion of the potential symbionts and establishment of a symbiosis.  相似文献   

6.
Anemonia viridis (Forskäl) were collected from south-west Scotland and south-west England in October 1988. When exposed to 0.05 and 0.2mg 1–1 copper in sea water, anemones did not take up the metal in proportion to external concentrations. Results suggested thatA. viridis regulated copper by expelling symbiotic algae (or zooxanthellae) which were shown to accumulate copper. The use of aposymbiotic (non-zooxanthellate) anemones in similar metal-uptake experiments indicated that other mechanisms may also be involved in metal regulation. Mucus was produced byA. viridis when the anemone was exposed to copper, and it is proposed that mucus may be involved in the regulation process. The implication of this work on the use of coelenterates as biological indicators of environmental metal levels is discussed.  相似文献   

7.
The temperate sea anemoneAnemonia viridis (Forskäl) contained about 11% lipid on a dry weight basis when maintained at light levels of about 10µE m–2 s–1 and a temperature of 10°C. Aposymbiotic forms of the anemone had similar lipid levels. These values are very low compared with tropical symbiotic Anthozoa in which lipid levels constitute up to 50% of dry weight. In symbioticA. viridis, <6% of total lipid consisted of the storage lipids, wax esters and triglycerides. Most of the triglyceride was stored in the animal tissues rather than the zooxanthellae. Zooxanthellae contained only small amounts of wax esters. An analysis was made of the wax ester, triglyceride and fatty acid composition of symbiotic anemones, isolated zooxanthellae and aposymbiotic anemones. Wax ester composition was similar in symbiotic and aposymbiotic forms. However, triglyceride composition differed. In particular trimyristin (C42) was found only within the symbiotic association. Fatty acids showed a high degree of unsaturation, and acids with both even and odd numbers of carbon atoms were found. The most abundant fatty acid was 16:0 in all samples, except for the total lipids from zooxanthellae in which the major fatty acid wastrans-18:1.  相似文献   

8.
F. Schiemer  R. Novak  J. Ott 《Marine Biology》1990,106(1):129-137
The marine, free-living Stilbonematinae (Nematoda: Desmodoridae) are remarkable for the ectosymbiotic, prokaryotic microorganisms that populate their entire body surface. These nematodes occur in sulfidic sediments in the microoxic zone just above the sulfide maximum. Several facts point to a chemolithotrophic, sulfide oxidizing nature of the microorganisms. The oxygen uptake of three species was measured with and without their microbial coat using Cartesian and Gradient Diver microrespirometry in February 1989 at Carrie Bow Cay (Belize Barrier Reef). Symbiont-free stilbonematids exhibited constant and uniform oxygen uptake rates over several hours; rates which are significantly lower than those of oxyphilic nematodes. Freshly extracted stilbonematids, with intact bacterial coats, consumed significantly more oxygen than symbiont-free worms in the first 3 h of measurement. While the rates of aposymbiotic worms were more or less constant over time, the rates of symbiont-carrying worms exhibited a conspicuous drop during prolonged respiration. InStilbonema sp., symbiont carrying individuals kept under oxygenated conditions for more than 12 h had a respiration rate similar to those of aposymbiotic specimens. When such worms were re-incubated in sulfide-enriched seawater the respiration rate was significantly elevated. The possibility of recharging the oxygenated symbiosis system via sulfide-uptake is seen as an indication that storage of reduced sulfur compounds, or reserve substances synthetized in the presence of sulfide, play a decisive role in the metabolisms of the symbiotic bacteria. Migration of nematodes between sulfidic and oxidized sediment-layers are, most likely, the key to understanding the success of this nematode-bacteria symbiosis.Please address all correspondence and requests for reprints to Professor J. Ott  相似文献   

9.
Summary. Vole feeding amongst herbal willows that have a high concentration of salicylates in their bark and leaves, and may therefore be cultivated for use as raw material for herbal medicine was tested in the field and in laboratory conditions. Eight clones of dark-leaved willow (Salix myrsinifolia Salisb.) were cultivated for two years with six different methods combining three fertilisation levels (none, low and high), black plastic mulch applied for suppressing weed competition and unmulched control. Samples for the laboratory feeding trial were taken from the unfertilised plants during willow winter dormancy and twigs were fed to 16 voles as a multi-choice experiment. The bark area removed was calculated from image analysis of the material left by the voles. The diameter and the bark thickness of the twigs were measured. Concentrations of salicin, salicortin, HCH-salicortin, picein, triandrin, triandrin derivative, gallocatechin, (+)-catechin, luteolin-7-glucoside, hyperin, total condensed tannins and total nitrogen were measured from the twigs fed to voles in the laboratory. Browsing by a natural population of voles amongst winter-dormant willows was measured in the field. In the laboratory, voles browsed on 80% of the twigs and in the field voles browsed on 33% of the twigs. Vole feeding followed similar patterns in the field and in the laboratory experiment; feeding was clearly higher amongst the plants grown in unmulched control compared to those in plastic mulch. The same clones, 1, 2 and 6 were preferred in both experiments. Voles preferred thin twigs to thick ones. Feeding correlated negatively with concentrations of salicylates and tannins. As vole feeding seems to be highly affected by willow cultivation method and plant genotype, careful selection of cultivated clones and cultivation methods can enhance the reliability of herbal willow cultivation.  相似文献   

10.
The accumulation of arsenate from seawater by the shore crab Carcinus maenas L. (collected from Odense Fjord, Denmark in 1991 and from Restronguet Creek, UK in 1991) was investigated in a series of laboratory experiments. A field study was also carried out to determine the effects of raised environmental arsenic concentrations on intra-organismal distribution and tissue concentrations. Studies on the influence of nutritional state and sex on accumulation of As(5) from seawater indicated that most of the arsenic taken up from seawater in laboratory experiments was retained in the gills and the midgut gland. Arsenic accumulation exhibited sex-dependent differences which were also evident in correlation analyses carried out between total lipid contents and total arsenic contents of midgut glands of individual crabs. Arsenic concentrations in the gonads of both sexes were strongly influenced by the nutritional state of the crabs. Elevated arsenic concentrations in seawater and food at an arsenic polluted site (Restronguet Creek) significantly influenced arsenic concentrations and distribution among the tissues of C. maenas. Arsenic concentrations and distribution patterns differed markedly from those crabs from an unpolluted site in Odense Fjord. The gills of the crabs from Restronguet Creek contained extremely high arsenic concentrations ranging from 179 to 483 g As g-1 dry wt. These values were even higher than those measured in the gills of Odense crabs that had been exposed to 3 mgl-1 As(5) for 2 wk in the laboratory. Arsenic concentrations in the exoskeleton of Odense Fjord crabs were 15 times lower than those measured in exoskeletons of Restronguet Creek crabs. Approximately 69% of the total body burden of arsenic was located in muscle tissue of crabs from Odense Fjord, whereas the major pool of arsenic (46%) in Restronguet Creek crabs was located in the exoskeleton.  相似文献   

11.
Small-scale population densities of tidal creek eastern mudsnails, Ilyanassa obsoleta Say (studied in 1986 and in 1992 at West Meadow Creek, Stony Brook, New York) corresponded more to variation in water flow velocity than to surface sediment chlorophyll a. Higher densities were found at low flow sites. Short-term behavioral responses are likely to be responsible for density variation. Experiments using laboratory flumes and field observations both demonstrated that the snails responded to strong flow by burrowing into the substratum. Burrowing may prevent dislodgment from the sediment surface, but it also appears to be disadvantageous since burrowed mudsnails have smaller amounts of food in their guts. Snails released in sites of periodic high flow conditions moved greater distances and were soon found near the quiet-water periphery of the creek, whereas snails released at the quiet-water periphery moved far less. It is not clear whether movement from the high flow site was through crawling or through hydrodynamic transport. Laboratory flume experiments demonstrated an active crawling movement towards areas of lower current velocity. This evidence suggests that strong bottom flow in the creek center results in a combined response of burial to avoid dislodgment and a net movement towards quiet water, which reduces exposure to the high velocity conditions of the creek center.  相似文献   

12.
Energy budgets were calculated for individuals of the sea anemone Anthopleura elegantissima (Brandt), collected in 1981 and 1982 from Bodega Harbor, California, USA. Rates of ammonium excretion were measured in high-and low-intertidal, symbiotic and aposymbiotic sea anemones within 24 h of collection. Among symbiotic and aposymbiotic individuals, no differences in excretion rate were found on the basis of intertidal height. However, rates of ammonium excretion in aposymbiotic anemones (2.14 mol NH + 4 g-1 h-1) were significantly higher than in symbiotic ones (0.288 mol NH + 4 g-1 h-1). Rates of excretion were used with estimated rates of oxygen uptake to calculate nitrogen quotients (NQ). NQ and RQ values from the literature were used to calculate an oxyenthalpic equivalent [501 kJ (mol O2)-1 for R+U], and mass proportions of protein (54%), carbohydrate (44%) and lipid (2%) catabolized during routine metabolism in this species 24 h after feeding. Integrated energy budgets of these experimental anemones were calculated from data on ingestion, absorption and growth, and estimates of translocated energy from the symbiotic algae. Contribution of zooxanthellae to animal respiration based on translocation=90% and RQ=0.97 are 41 and 79% in high-and low-intertidal anemones, respectively. Calculated scope for growth is greater than directly measured growth in both high-and low-intertidal individuals. The deficit, estimated as 30% of assimilated energy in high-intertidal anemones, is attributed to unmeasured costs (specific dynamic effect) or production (mucus). Low-intertidal anemones lost mass during the experiment, implying that the magnitude of the deficit was greater in these anemones than in upper intertidal individuals. Anemones from both shore levels lost zooxanthellae during the experiment, which contributed to energy loss since the contribution of the zooxanthellae is greater in low-intertidal anemones. Scope for growth is preserved in high-intertidal anemones (29% of assimilated energy) because metabolic demands are lower due to aerial exposure, and prey capture rate is higher compared to lowshore anemones. Although possibly underestimated, lower scope for growth in low-shore anemones may result from continuous feeding and digestion processes that are less efficient than those of periodically feeding high-intertidal anemones.  相似文献   

13.
G. Piniak 《Marine Biology》2002,141(3):449-455
Symbiotic temperate corals can supplement prey capture by the coelenterate host with autotrophic carbon production by endosymbiotic zooxanthellae. To test the relationship between heterotrophic consumption and photosynthetic energy, prey capture by symbiotic and aposymbiotic specimens of the temperate scleractinian coral Oculina arbuscula (Verrill) was measured in January-April 2001. Corals were tested in a laboratory flume at five flow speeds, using Artemia franciscana cysts and nauplii as prey. Per-polyp capture rate and feeding efficiency were independent of symbiotic condition. Capture rate increased with flow speed, while capture efficiency declined. The location of capture shifted from the upstream to downstream side of the coral as flow speed increased. Differences in capture rate, location, and feeding efficiency for cysts and live brine shrimp nauplii were likely due to prey size rather than swimming ability.  相似文献   

14.
The establishment of symbiosis in early developmental stages is important for reef-building corals because of the need for photosynthetically derived nutrition. Corals spawn eggs and sperm, or brood planula larvae and shed them into the water. Some coral eggs or planulae directly inherit symbiotic dinoflagellates (Symbiodinium spp.) from their parents, while others acquire them at each generation. In most species examined to date, the larvae without dinoflagellates (aposymbiotic larvae) can acquire symbionts during the larval stage, but little is known regarding the timing and detailed process of the onset of symbiosis. We examined larval uptake of symbiotic dinoflagellates in nine species of scleractinian corals, the onset of symbiosis through the early larval stages, and the distribution pattern of symbionts within the larval host, while living and with histology, of two acroporid corals under laboratory conditions. The larvae acquired symbiotic dinoflagellates during the planktonic phase in all corals examined which included Acropora digitifera, A. florida, A. intermedia, A. tenuis, Isopora palifera, Favia pallida, F. lizardensis, Pseudosiderastrea tayamai, and Ctenactis echinata. The larvae of A. digitifera and A. tenuis first acquired symbionts 6 and 5 days after fertilization, respectively. In A. digitifera larvae, this coincided with the formation of an oral pore and coelenteron. The number of symbiotic dinoflagellates increased over the experimental periods in both species. To test the hypothesis that nutrients promotes symbiotic uptake, the number of incorporated dinoflagellates was compared in the presence and absence of homogenized Artemia sp. A likelihood ratio test assuming a log-linear model indicated that Artemia sp. had a significantly positive effect on symbiont acquisition. These results suggest that the acquisition of symbiotic dinoflagellates during larval stages is in common with many coral species, and that the development of both a mouth and coelenteron play important roles in symbiont acquisition.  相似文献   

15.
K. Mori 《Marine Biology》1979,51(4):361-369
The morphology of the primary tube feet in 15 species of comatulid (unstalked) crinoids from coral reefs in the Palau Islands and Lizard Island, Great Barrier Reef, was investigated using close-up underwater photographs of the tube feet taken in the natural habitat. Measurements of length of the tube feet and their spacing along the pinnule were taken from these photographs. Tube feet of species of the family Comasteridae have a mean length of 0.75 mm and a mean spacing of 6 tube feet mm-1. Tube feet of non-comasterid species occurring in the same environments have a mean length of 0.55 mm and a mean spacing of about 8 tube feet mm-1. The relationship between spacing and length of the tube feet is highty significant for both the Palau and Lizard Island samples (P<0.01). Species having longer and more widely spaced tube feet live partly concealed within the infrastructure of the reef and hold the arms and pinnules in a multidirectional posture. Species having shorter and more closely spaced tube feet perch on top of reef pinnacles or alcyonarians and form planar filtration fans normal to unidirectional currents or wave oscillations. Longer and more widely spaced tube feet in species dwelling within the reef infrastructure provide more efficient filtration in the slow, meandering flow prevailing there. Closer spacing of the tube feet in species exposed to near-mainstream flow provides a more efficient filtration mechanism at higher flow velocities. Reduced length of the tube feet in these species may be a consequence of closer spacing of the pinnules. Differentiation of these co-occurring species in spacing and length of the tube feet implies differentiation in food particles captured. This may in some cases constitute resource partitioning. Most species which overlap in living habits are significantly different in spacing and length of the tube feet.  相似文献   

16.
S. Einarson 《Marine Biology》1993,117(4):599-606
Seasonal variations of oxygen consumption rate, haemolymph osmolality and the concentrations of the inorganic ions potassium and sodium in the haemolymph were measured in the littoral amphipod Gammarus oceanicus collected from the Trondheimsfjorden, Norway in 1987. For each season comparisons were made of amphipods acclimated for 1 wk to 0.5, 4.5, 10.0, 15.0 and 20.0°C, in combination with seawater osmolalities of 100, 500 and 1200 mOsm and to the seawater osmolality corresponding to that of the collecting site. The oxygen consumption rate showed a temperature insensitivity when the amphipods were acclimated to low temperatures in winter and high temperatures in summer. Significant differences were found in oxygen consumption between individuals acclimated to various medium osmolalities, possibly indicating higher energy requirements for osmotic and ionic regulation at low seawater osmolalities. Oxygen consumption rate was significantly higher in summer than in other seasons. Haemolymph osmolality and the concentration of the inorganic ions sodium and potassium were not influenced by temperature or season. Determination of haemolymph osmolalities and concentrations of inorganic ions revealed that G. oceanicus is a strong hyper-osmotic and hyper-ionic regulator in dilute seawater. The concentration of potassium in the haemolymph is less influenced by seawater osmolality than haemolymph osmolality and the haemolymph concentration of sodium.  相似文献   

17.
The mechanism whereby inorganic carbon (Ci) is acquired by the symbiotic association between the giant clam (Tridacna derasa) and zooxanthellae (Symbiodinium sp.) has been investigated. Ci in the haemolymph of the clam is in equilibrium with the surrounding sea water. The photosynthesis rate exhibited by the intact clam varies as a function of the Ci concentration in the clam haemolymph. The gill tissue contains high carbonic anhydrase activity which may be important in adjusting the Ci equilibrium between haemolymph and sea water. Zooxanthellae (Symbiodinium sp.) isolated from the clam mantle prefer CO2 to HCO 3 - as a source of inorganic carbon. The zooxanthellae have low levels of carbonic anhydrase on the external surface of the cell; however, mantle extracts display high carbonic anhydrase activity. Carbonic anhydrase is absent from the mantle of aposymbiotic clams (T. gigas), indicating that this enzyme may be essential to the symbiosis. The enzyme is probably associated with the zooxanthellae tubes in the mantle. The results indicate that carbonic anhydrase plays an important role in the supply of carbon dioxide within the clam symbiosis.  相似文献   

18.
Concentrations of paralytic shellfish poisoning (PSP) toxins in toxic dinoflagellate cells and in marine planktonic copepods were monitored during the bloom of Alexandrium tamarense in Hiroshima Bay, western Japan. Concentration of the toxins retained by copepods was a function of the ambient toxin concentration, i.e. the product of A. tamarense cell density and cellular toxicity. The toxin concentration in copepods increased with the increase of toxicants in the seawater then leveled off, but decreased significantly at higher concentrations. In the field, the maximum toxin concentration was 1.2 pmol ind-1, whereas in the laboratory, the copepod Acartia omorii accumulated a much higher concentration of PSP toxins (24 pmol ind-1). Feeding avoidance against Alexandrium tamarense and a shift to alternative food sources such as diatoms in the field might keep their toxin levels lower than their potentially maximum level. The copepod toxin levels in the field were not so high as to cause an instantaneous lethal effect on their predator fishes but may reach possibly lethal levels after a few days' continuous feeding. Overall toxin retention by copepods after 12 h feeding and 2 h starvation was only 2.5% of total ingested toxins, which suggested that a significant amount of toxins was released into the seawater. Measurements of toxin reduction and gut evacuation suggested that the toxins were removed through both fecal evacuation and metabolism (e.g. excretion, decomposition and transformation). The results, as a whole, imply that copepods can be a link for PSP toxin flux in both pelagic and benthic food webs and can also be a sink for toxins by metabolizing and removing them from the environment.Communicated by T. Ikeda, Hakodate  相似文献   

19.
The small neritic cephalopod Euprymna scolopes possesses a large glandular light organ that contains the symbiotic luminous bacterium Vibrio fischeri. Adult and immature E. scolopes were caught in the evening with dip nets in shallow water along the shore of Kanohe Bay, Oahu, Hawaii, during late February 1984. The initiation of the symbiosis was investigated by rearing the cephalopods either in seawater taken from aquaria containing adult E. scolopes or in seawater with reduced bacterial concentrations due to filtration or due to absence of adults. Light production was measured during early development. Bioluminescence was not detected in E. scolopes immediately after hatching. Most individulas of E. scolopes that hatched into seawater containing, or previously exposed to, adults produced light within 24 h. Individuals that hatched into filtered seawater did not produce light. The data suggest that each generation aquires an infection from free-living bacteria rather than from the egg, and that light production is dependent on the nutritional state of the host. Access to an initial inoculum of free-living, luminous bacteria seems to be critical for establishing a successful symbiosis.  相似文献   

20.
The photosynthetic quotients of the marine prymnesiophyte Pavlova lutheri and the marine dinoflagellate Glenodinum sp. were measured at different concentrations of dissolved oxygen and inorganic carbon. Dissolved oxygen concentration appeared to be the most important factor controlling the photosynthetic quotient. Photosynthetic quotients generally were between 1.0 and 1.8 at oxygen concentrations less than saturation, were approximately 1.0 at oxygen saturation, and generally were from 0.1 to 1.0 at oxygen concentrations greater than saturation. The photosynthetic quotients greater than 1.0 were not caused by lipid synthesis. They may have been partially caused by the presence of KNO3 rather than an ammonium salt in the growth media. The lowered photosynthetic quotients at higher oxygen concentrations were probably caused by algal photorespiration.Contribution No. 202 from the Department of Biology, The Pennsylvania State University; 202 Buckhout Laboratory, University Park, Pennsylvania 16802, USA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号